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Abstract

Deep learning approaches such as convolutional neural networks (CNN) have
achieved state-of-the-art performance in cardiac magnetic resonance (CMR) image
segmentation. However, it is non-trivial to introduce shape prior knowledge to
CNN-based approaches. In this paper, we employ a CNN-based method combined
with image registration to develop and evaluate a shape-based bi-ventricular seg-
mentation tool from short-axis CMR images. The method first employs a fully
convolutional network (FCN) to learn the segmentation task from manually labelled
ground truth CMR images generated in a low long-axis resolution. The FCN seg-
mentation results are then used to perform a non-rigid registration using multiple
high-resolution atlases, allowing the shape constraint to be inferred. This approach
produces accurate, high-resolution and automatically smooth segmentation results
from input images with low long-axis resolution, thus retaining clinically important
global anatomical features.

1 Introduction

Cardiac magnetic resonance (CMR) imaging is a gold standard method for assessing cardiac anatomy
and function. CMR imaging techniques, together with semi-automated or automated CMR segmenta-
tion algorithms, have shown a great impact on studying, understanding and diagnosing cardiovascular
diseases. However, due to limitations of imaging modality, CMR images contain several artefacts,
including intensity inhomogeneity, respiratory motion, large slice thickness, etc. Building an accurate,
motion-free, automatically meaningful bi-ventricular segmentation model therefore remains an open
problem. Recently, neural network-based methods have achieved state-of-the-art segmentation per-
formance in the CMR domain. On the other hand, incorporating anatomical shape prior knowledge
into image segmentation algorithms has proven very useful to obtain highly accurate and plausible
results, which facilitates further statistical shape analysis. As such, in this paper we propose a novel
deep learning-based method combined with the anatomical bi-ventricular shape constraint for CMR
image segmentation. The method has two steps. First, a FCN model is trained to effectively learn
useful segmentation features from manually labelled 2D CMR images which have a low resolution
in the long-axis and potential motion artefact. Second, multiple 3D high-resolution CMR atlases
are propagated onto the 2D CMR segmentation to form a high-resolution segmentation. This step
effectively induces a hard anatomical shape constraint. As such, the proposed method can produce
accurate, high-resolution and automatically smooth segmentation results from input images with low
long-axis resolution, thus retaining clinically important global anatomical features.
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2 Methodology

Convolutional neural network: Let us formulate the deep learning problem as follows: we de-
note the input training data set by S = {(Up, Rp), p = 1, ..., N}, where sample Up = {upj , j =

1, ..., |Up|} is the raw CMR input image, Rp = {rpj , j = 1, ..., |Rp|}, rpj ∈ {1, ..., n} represents
the ground truth labels (n = 5 regions) for image Up. We denote all network layer parameters as
W. In a supervised setting, we propose to minimise the following objective function via standard
(back-propagation) stochastic gradient descent (SGD): W∗ = argmin(LS(W) + αLD(W)), where
LS(W) is the cross-entropy loss associated with softmax probability, while LD(W) is the Dice index
loss. The weight α balances the two losses. By minimising the objective function, the network is
able to obtain predictions for the 5 classes simultaneously. In our image-to-image training, the loss
functions are computed over all pixels in all training images U and label maps R.

Figure 1: The architecture of a fully convolutional network with 17 convolutional layers. The network
takes the CMR image as input, applies a branch of convolutions, learns image features from fine to
coarse levels, concatenates multi-scale features and finally segments the image into 5 disjoint regions.

In Fig 1, we show the proposed network architecture for automatic CMR segmentation, which is a
fully convolutional network (FCN). It is adapted from [1] and similar to the U-net architecture [2]. In
contrast to U-net, our network predicts feature maps in the original resolution. Batch-normalisation
(BN) is used after each convolutional layer, and before a rectified linear unit (ReLU) activation.
The last layer is followed by the channel-wise softmax function. In the FCN, input images have
pixel dimensions of 160× 160. Every layer whose label is prefixed with ‘C’ performs the operation:
convolution→ BN→ ReLU, except C17. The (filter size/stride) is (3×3/1) for layers from C1 to C16,
excluding layers C3, C5, C8 and C11 which are (3×3/2). The arrows represent (3×3/1) convolutional
layers (C14a−e) followed by a transpose convolutional (up) layer with a factor necessary to achieve
feature map volumes with size 160 × 160 × 32, all of which are concatenated into the red feature
map volume. Finally, C17 applies a (1×1/1) convolution with a softmax activation, producing the
blue feature map volume with a depth 5, corresponding to 5 segmented regions of an input image.

Figure 2: Incorporation of shape constraints by
multi-atlas registration. Bl1 , Bl2 and Bl3 are high-
resolution bi-ventricular atlas shape models. They
are warped to B′l1 , B′l2 and B′l3 using the transform
between the FCN result Bl and each atlas. The
warped results are finally fused together to generate
a smooth high-resolution output.

Multi-atlas registration: As Fig 1 shows, the
segmentation produced by FCN is influenced
by respiratory motion artefact. Moreover, as
the CMR images are low resolution in the
long axis, the 3D segmentation model is not
smooth. By incorporating shape constraints,
these drawbacks can be overcome. Specifi-
cally, we perform multi-atlas image registra-
tion to induce such shape constraints. The ob-
jective function for registration is defined as:
Φ∗n = arg minS (Bl, Bln(Φn)) where Φn is
the transformation between the FCN result Bl

and the nth atlas Bln . It is modelled by a free-
form deformation based on B-splines [3]. S
denotes the label consistency between two bi-
nary labels. Note that the atlases we used here
are 3D bi-ventricular binary labels derived from
motion-free CMR images with a high long-axis
resolution. Gradient descent is used to min-
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imise the objective function. After the optimal Φ∗ is found, we transform the atlases to the FCN
segmentation space and perform label fusion in that space to generate an accurate, motion-free and
smooth bi-ventricular model. See Fig 2 for the illustration of the process.

3 Experimental Results

Experiments were performed using short-axis CMR images from 430 patients with pulmonary
hypertension. For each patient 10 to 16 short-axis slices were acquired roughly covering the whole
heart. Each short-axis image has resolution of 1.5× 1.5× 8.0 mm3. Due to the large slice thickness
of the short-axis slices and the inter-slice shift caused by respiratory motion, we train the FCN in
a 2D fashion and apply the trained FCN to segment each slice separately. The segmentation is
then passed to the multi-atlas non-rigid registration to form a high-resolution smooth shape model.
The high-resolution atlases are derived from healthy subjects, scanned at Hammersmith Hospital,
Imperial College London. The image resolution acquired is improved to 1.25 × 1.25 × 2.0 mm3.
The reduction of the slice thickness enables to model the cardiac shape in greater detail. In Fig 3, we
visually compare the proposed method with the vanilla deep learning method without shape prior
knowledge. As evident, the proposed method gives better 3D phenotype results free of respiratory
motion artefact. This is due to the application of shape constraints. Our method thus outperforms the
vanilla FCN in this regard.

Figure 3: Visual comparison of segmentation results from the vanilla FCN and the proposed method.
1st column: original short- and long-axis CMR images. 2nd column: vanilla FCN results. 3rd column:
results by the proposed method. Last column: FCN results (top) and our results (bottom). The 5
segmented regions are respectively right ventricular (RV) blood pool (yellow), left ventricular (LV)
blood pool (red), RV wall (blue), LV wall (green) and background.

4 Conclusion

In this paper, we developed a CNN-based method combined with image registration for shape-based
bi-ventricular segmentation of short-axis CMR images. The method first employs a novel fully
convolutional network (FCN) to segment the images at a low resolution level. Based on the FCN
results, the method then performs the non-rigid registration by using multiple high-resolution atlases,
thereby imposing shape constraints. Experiments show that the method has capability of producing
smooth high-resolution segmentation results that follow the global anatomical properties of the
underlying anatomy, even though the input images are low resolution in the long-axis. Future work
will focus on the development of a method to quantify the segmentation results produced by our
shape-based method and using the results for statistical shape analysis for clinical use.
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