
Under review as a conference paper at ICLR 2019

DYNCNN: AN EFFECTIVE DYNAMIC ARCHITEC-
TURE ON CONVOLUTIONAL NEURAL NETWORK FOR
SURVEILLANCE VIDEOS

Anonymous authors
Paper under double-blind review

ABSTRACT

The large-scale surveillance video analysis becomes important as the development
of intelligent city. The heavy computation resources neccessary for state-of-the-
art deep learning model makes the real-time processing hard to be implemented.
This paper exploits the characteristic of high scene similarity generally existing
in surveillance videos and proposes dynamic convolution reusing the previous
feature map to reduce the computation amount. We tested the proposed method
on 45 surveillance videos with various scenes. The experimental results show
that dynamic convolution can reduce up to 75.7% of FLOPs while preserving the
precision within 0.7% mAP. Furthermore, the dynamic convolution can enhance
the processing time up to 2.2 times.

1 INTRODUCTION

Nowadays, with the development of deep learning technologies, large-scale surveillance video anal-
ysis for intelligent city draws more and more attention in the real world applications, for instance, in
person re-identification (Ahmed et al. (2015)), vehicle re-identification (Liu et al. (2016))(Shen et al.
(2017)), pedestrian detection (Tian et al. (2014)) and crowd segmentation (Kang & Wang (2014)),
etc. However, these deep learning methods are extremely computationally expensive—state-of-the-
art methods for object detection performed on a state-of-the-art NVIDIA P100 GPU run at 10-80
frames per second. Although processing on one video can be done by utilizing one to several top-
performing hardware equipments, it still a challenge for large-scale actual deployment—it would
cost over 5 billion USD in hardware to analyze over 4 million CCTVs in real time in the UK alone
when considering these computational overheads in context (News (2015)).

Those real world applications for intelligent city employed the state-of-the-art network architectures
from the ILSVRC competition, e.g. VGG (Simonyan & Zisserman (2014)), GoogLeNet (Szegedy
et al. (2014)), and ResNet (He et al. (2015)) as their feature extraction architecture. However, these
powerful networks tend to be resource-hungry models with high computational demands at infer-
ence time to win the competition—processing an one-minute surveillance video through VGG16
network costs 23 TFLOPs. To make the feature extraction architectures more effective in terms of
surveillance video, this paper aims to explore ways to reduce the calculation on feature extraction.

Figure 1 shows two frame clips of a surveillance video with its corresponding feature map through
3×3 kernel. It is observed that most of the scene between two adjacent frames in the surveillance
video are almost the same with merely about 2% to 15% difference. Due to the linear characteristic
of convolution, the derived feature maps preserve the similarity of input video frames—it can reduce
significant amount of calculation if the previous feature map can be reused for the current feature
map. Suppose that the frame size is 512×512 while the amount of the changing pixels in feature
map is 52k, the calculation can be reduced from 7 MFLOPs to 1.4 MFLOPs, that is 5 times saving
ratio.

In this paper, we exploit the key characteristic of surveillance video—high scene similarity—and
propose a new architecture dynamic convolution which can be directly applied to off-the-shelf model
without retraining the weights. Dynamic convolution can inspect the inter-frame variation and thus
predict the changing pixels in each corresponding feature map. Accordingly, convolution performs
only on those predicted parts to achieve less computation while not affecting the accuracy. Finally,

1

Under review as a conference paper at ICLR 2019

Figure 1: The subtle difference in the feature map.

we apply dynamic convolution to one of the state-of-the-art object detector Single Shot MultiBox
Detection (Liu et al. (2015)) and test on several surveillance video datasets including overall 45
videos. In addition, we conduct a further analysis in the FLOP computation and execution time of
each convolutional layer to improve the understanding of dynamic convolution in practice.

2 PRIOR WORKS

For the last several years, tuning deep learning neural architectures to strike an optimal balance
between precision and processing time has been an area of active research. Many methods have
been proposed to reduce storage space and computing resources and also made great progress from
theoretical research to platform implementation. Basically, they can be divided into three major
techniques, effective model design, pruning, and quantization.

Effective model design MobileNets (Howard et al. (2017)) is a lightweight network architecture
proposed by Google for mobile deployment. The main idea is to disassemble the original convolu-
tion calculation into two parts: depthwise convolutions and pointwise convolutions. Although the
calculation amount on convolution can greatly be reduced, the precision would be decreased. In
addition, the feature map accordingly increases. The increasing data transfer followed by feature
map makes MobileNets hard to perform on GPU. To improve the precision, ShuffleNet (Zhang et al.
(2017)) proposed two new strategies channel shuffle and pointwise group convolutions based on the
concept that helps the information flowing across feature channels. On the other hand, Inception
(Szegedy et al. (2016)) introduces bottleneck structure to approximate sparse structures into several
dense sub-matrices to achieve more efficient use of computing resources. In the ultra-lightweight
neural network SqueezeNet (Iandola et al. (2016)), the 1x1 and 3x3 convolution kernels are exten-
sively used compared with Inception to achieve more compression on calculation amount.

Pruning Besides of the model design, pruning is another efficient way to reduce storage space and
computing resources by removing redundant parts of model. Li et al. (2016) proposed a method
for cropping filters of convolutional layer. This method determines the importance of filter by the
magnitude of the absolute sum of weights on the filter. After that, the model needs to be trained
again. Without lossing greately precision, such method can effectively reduce the complexity of the
model. However, heavy analysis on each convolution layer costs lots of time and may occur the
concern of one-case model. Liu et al. (2017) used another factor, the scaling coefficient γ in batch
normalization, to determine the importance of the filter.

Quantization Network weight sharing quantization is also an important type of network compres-
sion method which focuses on the weight representation. The nature of this technique is to find
the center value which can represent the original weight distribution by clustering method. Deep
Compression proposed by Han et al. (2015) clusters the weights and replaces them by the center
value of each cluster. The transformation between the weights and center values is stored in a code-
book. Such transformation greatly compresses the weight representation from a 32-bit floating point
number to a short bit number.

2

Under review as a conference paper at ICLR 2019

3 DYNAMIC CONVOLUTION

Dynamic convolution is an architecture which applies to each layer of convolutional neural network.
Figure 2 illustrates a convolution neural network with our dynamic convolution, called dynamic
convolutional neural network (DynCNN). The work flow of dynamic convolution consists of three
main parts: 1) frame differencing; 2) prediction; 3) dyn-convolution. Let IDMt denote the input
difference map of t-th frame (Framet) derived by frame differencing and iDMt denote the inner
difference map derived from the previous inner difference map or input difference map by predic-
tion. Dyn-convolution preserves the feature map (FM) from the previous layer and selectively do
convolution according to the position which the inner difference map indicates in order to update
the feature map.

Figure 2: DynCNN Architecture

3.1 FRAME DIFFERENCING

The frame differencing method (Liu & Hou (2012)) is often used in the moving object detection and
segmentation methods. In this work, we employ it to inspect the inter-frame variation between two
adjacent frames. The basic concept of frame differencing is to subtract two frames to calculate the
difference of each pixel. However, in most surveillance video sequences there exist speckle noise
which severely affects the difference value. Accordingly, the difference map, as referred to input
difference map (IDM), is derived by thresholding the result of frame differencing with the following
statement:

D(i, j) =

{
1, |∆I(i, j)| < ΘIDM

0, otherwise
(1)

where ΘIDM denotes the threshold of the statement. The pixel at (i,j) is denoted as a changed pixel
when D is determined as 1 and we called it changing point. ∆I(i, j) in (1) represents the result of
frame differencing as the following expression:

∆I(i, j) = ICurr(i, j)− IPrev(i, j) (2)

where ICurr(i, j) and IPrev(i, j) in (2) denote the pixel intensity at position (i, j) of the current and
previous frame respectively.

The value of the threshold ΘIDM is an important factor which determines the amount of convolution
calculation. Therefore, the effect of the threshold on the speed and accuracy during the inference
phase will be well analyzed in Section 4.

3.2 PREDICTION

In the convolution process, there exists a diffusion effect in the result if the input is changed. Suppose
that the kernel size of convolution is 3×3, each pixel of the result is determined by the corresponding

3

Under review as a conference paper at ICLR 2019

9 pixels from the input—the pixel at the same position and its 8 peripheral pixels. On the contrary,
when a certain pixel in the input is changed, 9 pixels in the output which the pixel involves will be
affected simultaneously and are denoted as impacted pixels. Based on the characteristic of diffusion
effect in convolution process, the position of impacted pixels in each feature map can be predicted
by using dilation operation and recorded on the inner difference map.

3.3 DYN-CONVOLUTION

The iDM records the position of the impacted pixel of the FM and also implicates which pixel
value of the FM needs to be updated. To update the value, the pixels of the previous FM which
contributes to it will be re-convoluted and are denoted as needed pixels while this process is called
dyn-convolution. In this work, we employ the lastest cuDNN library developed by Nvidia to opti-
mize the performance on calculation speed. However, the convolution calculation provided by the
library is only allowed for contiguous blocks instead of discrete blocks with given position. There-
fore, we create another memory space, denoted as new array, in GPU to store those needed pixels
for the requirement of library.

3.4 PRACTICAL CONCERN AND IMPLEMENTATION

In real surveillance video application, although the calculation reduction on convolution is the main
concern of speeding up the overall processing time, the data transfer is another important factor
which contributes to the time. Dyn-convolution is intuitive but rude and also not efficient in GPU.
Accordingly, we apply two strategies to improve the overall processing time, cell-based partition
and continuous convolution.

Cell-based Partition Compared with pixel-based map iDM, each FM is divided into several block
cells. If any impacted pixel exists in the cell, the cell will be noted as “impacted” and recorded
on cell difference map (CDM). The dyn-convolution thus performs according to the cell difference
map rather than the pixel difference map—the new array stores the needed pixels of impacted cells.
Figure 3 illustrates the difference between the naive method and the improved method.

Figure 3: The diagram of data transfer. In the pixel-based method, the amount of needed pixels for
one cell (e.g. 2× 2 pixels) is 4× 9 while the cell-based method requires 4× 4 needed pixels, which
greatly reduces the amount of data transfer.

In this strategy, the data in new array may contains “non-needed” pixels when the cell involves non-
impacted pixels. In addition, new array performs unnecessary convolution on the boundary of two
needed pixel blocks, where generates don’t-care feature value x. Nevertheless, the needed pixels are
reused to reduce the amount of data transfer and the characteristic of cuDNN library—convolution
costs less processing time when stride is 1—is contemplated to speed up the convolution process,
which indicates that less sacrification on computation while greatly improving the processing time.

Continuous Convolution Another part which costs processing time is the layer number. It multi-
plies the data transfer on a new array. We partition whole convolution layer by pooling process and

4

Under review as a conference paper at ICLR 2019

group the convolution layers up, called convolution group. For each convolution group, the convolu-
tion structure is modified from “once padding before once convolution” to “continuous padding first
then continuous convolution”. Continuous convolution aims at directly updating the last layer of
the convolution group rather than updating each layer to further reduce the amount of data transfer
on new array. Although the updated value may be blemished by the don’t-care value x in continu-
ous convolution, it causes insignificant effect on the overall precision while significantly saving the
processing time.

4 EXPERIMENTS

This section will evaluate the performance of the dynamic convolution by employing the Single Shot
MultiBox Detector 512× 512 model 1 (SSD512) on GTX1080 GPU with cuDNN v5.1.

Ground Truth. The existing benchmarks with ground truth for multi-object detection are designed
to evaluate the performance of CNN model on still image evaluation, such as Microsoft COCO (Lin
et al. (2014)) and PASCAL VOC datasets (Everingham et al. (2010)). However, such benchmarks
tested on the surveillance video are not given the ground truth. To well evaluate our proposed dy-
namic convolution, the ground truth is defined as the detection result of SSD512 model on surveil-
lance video. We choose VOC712Plus SSD 512x512 iter 240000—trained on VOC2007, VOC2012
and COCO, 240000 step iterations, 83.2% mAP on VOC2007 test—as the weight parameters.

Baseline. Dynamic convolution is a mechanism aimed at reducing the computation of original CNN
model on surveillance video without affecting the performance. In the experiments, we choose
the weight parameters VOC0712 SSD 512x512 iter 120000—trained on VOC2007 and VOC2012,
120000 step iterations, 79.8% mAP on VOC2007 test—as our baseline to evaluate our proposed
method. The performance critiria is how close the precision is compared to the baseline.

Dataset. The dynamic convolution is tested on four surveillance video datasets: PETS2009 (Fer-
ryman & Ellis (2014)), AVSS2007 (AVS (2007)), VIRAT (Oh et al. (2011)) and some videos from
Youtube. In the surveillance video, person and car are the main objects which appear in the scene and
are the most significant targets for surveillance application. Therefore, the performance in the exper-
iments focuses on the objects of person and car. Table 1 lists the charascteristics of four surveillance
video datasets, where the scene similarity ratio is defined as the ratio of the number of non-changing
points to frame size.

Table 1: Comparison of characteristics of datasets

PEST2009 AVSS2007 VIRAT Youtube
Resolution 768x576 720x576 1920x1080 1280x720

Avg. Person Height in Pixels 75 193 139 149
Avg. Person to video height ratio 13% 34% 13% 21%

Avg. Car Height in Pixels 49 66 104 98
Avg. Car to video height ratio 20% 6% 10% 14%

Avg. Scene Similarity Ratio (ΘIDM = 20) 96.6% 97.4% 99.9% 97.4%

4.1 ON PETS 2009

The PETS 2009 dataset is a benchmark which focuses on several challenges for crowd analysis in
public area including the estimation of crowd person count and density, tracking of individual(s)
within a crowd, and detection of flow and crowd events. In this dataset, we choose 20 difference
scene videos totally involving 4,884 photos as test data. Table 2 presents the result of the perfor-
mance on objects person and car with the threshold of frame differencing setting at 20. It is clear
to see that the proposed dynamic convolution can preserve the precision with respect to baseline,
where the difference is only 0.06% and 0.21% on person and car respectively.

1available at https://github.com/weiliu89/caffe/tree/ssd

5

https://github.com/weiliu89/caffe/tree/ssd

Under review as a conference paper at ICLR 2019

Table 2: Average precision results on PETS2009

Class-Person TotalGT TotalPred TruePositives FalsePositives AvgPrecision
Baseline 40720 39357 35202 4155 80.54%
DynCNN 40720 39227 35047 4180 80.48%
Class-Car TotalGT TotalPred TruePositives FalsePositives AvgPrecision
Baseline 4845 5592 4661 931 90.22%
DynCNN 4845 5540 4642 898 90.01%

4.2 ON AVSS 2007

AVSS2007 is a data set for evaluating the algorithm on event detection and tracking. In this dataset,
we choose six videos, which contains public surveillance scene for train station and road located in
the UK, as our test data including 35,000 images. Table 3 presents the result of the performance on
objects person and car with the threshold of frame differencing setting at 20. It is clear to see that the
proposed dynamic convolution can preserve the precision with respect to baseline where difference
is only 0.16% and 0.42% on person and car respectively.

Table 3: Average precision results on AVSS2007

Class-Person TotalGT TotalPred TruePositives FalsePositives AvgPrecision
Baseline 227232 226448 198876 27538 80.57%

DynCNN 227232 222102 191999 30067 79.89%
Class-Car TotalGT TotalPred TruePositives FalsePositives AvgPrecision
Baseline 44275 44682 40485 4195 89.39%
DynCNN 44275 44116 39984 4130 89.23%

4.3 ON VIRAT

VIRAT dataset collects broad surveillance videos in terms of various realism scenes including
ground camera videos and aerial videos. In this dataset, 10 different scene videos on parking lot,
lane and plaza totally involving 63,947 photos are selected as test data. Table 4 presents the result
of the performance on objects person and car with the threshold of frame differencing setting at 20.
It is clear to see that the proposed dynamic convolution can preserve the precision with respect to
baseline, where the difference is only 0.54% and 0.1% on person and car respectively.

Table 4: Average precision results on VIRAT

Class-Person TotalGT TotalPred TruePositives FalsePositives AvgPrecision
Baseline 48514 42154 36895 5110 70.50%
DynCNN 48514 39716 34733 4843 69.96%
Class-Car TotalGT TotalPred TruePositives FalsePositives AvgPrecision
Baseline 192489 189550 173042 16491 80.94%
DynCNN 192489 186340 169027 17313 80.84%

4.4 ON YOUTUBE

The collected surveillance videos on Youtube contain 9 scene videos with different viewing angles
on the zoo, MRT station, campus and street involving 115,652 images. Table 5 presents the result
of the performance on objects person and car with the threshold of frame differencing setting at 20.
It is clear to see that the proposed dynamic convolution can preserve the precision with respect to
baseline, where the difference is only 0.7% and 0.7% on person and car respectively.

6

Under review as a conference paper at ICLR 2019

Table 5: Average precision results on Youtube

Class-Person TotalGT TotalPred TruePositives FalsePositives AvgPrecision
Baseline 465470 458898 383821 75077 78.90%
DynCNN 465470 449537 372898 76639 78.20%

Class-Car TotalGT TotalPred TruePositives FalsePositives AvgPrecision

Baseline 59867 61832 47447 14385 70.92%
DynCNN 59867 61304 46402 14905 70.22%

4.5 CONTINUOUS CONVOLUTION

Table 6 shows the average calculation process in each layer over all test videos of PETS 2009 dataset
including the DynCNN with and without continuous convolution. The fifth and eighth column rep-
resents the new array size of dyn-convolution and the horizontal lines represent the pooling process
which is used to delimit the convolution groups. As the layer more deeper, the pruned ratio generally
decreases due to the increasing size of needed pixels. Note that the increasing behavior of pruned ra-
tio in each convolution group under DynCNN (w/). In continuous convolution, the inner difference
map of the first layer of convolution group directly predicts the impacted pixels of the last layer in
advance, which results in that the needed pixels on the new array is more than DynCNN (w/o) and
decreases gradually as layer deeper. This phenomenon can also be found in other datasets as shown
in Appendix 7.4. Table 7 summarizes the average calculation amount and processing time per frame
on each dataset. From this table, although DynCNN (w/o) can prune more calculation amount than
DynCNN (w/), DynCNN (w/o) needs to cost more processing time on data transfer. The improve-
ment of the overall processing time is not significant and even invalid in dataset AVSS2007 with
respect to baseline. Therefore, the strategy of continuous convolution is demonstrated that can make
DynCNN more valuable at the practical application as mentioned in Subsection 3.4.

Table 6: Average FLOPs result on PETS2009

Layer-type Maps
Baseline DynCNN (w/o) DynCNN (w/)

wxh FLOPs wxh FLOPs %Pruned wxh FLOPs %Pruned
Conv1-1 64 512 x 512 4.5E+08 1456x16 4.0E+07 91.1% 1704x18 5.3E+07 88.2%
Conv1-2 64 512 x 512 9.6E+09 1572x16 9.2E+08 90.4% 1702x16 1.0E+09 89.4%
Conv2-1 128 256 x 256 4.8E+09 978x8 5.9E+08 87.7% 1085x10 8.0E+08 83.2%
Conv2-2 128 256 x 256 9.6E+09 1044x8 1.23E+09 87.2% 1083x8 1.3E+09 86.5%
Conv3-1 256 128 x 128 4.8E+09 389x8 9.1E+08 81.0% 536x12 1.9E+09 59.8%
Conv3-2 256 128 x 128 9.6E+09 421x8 1.97E+09 79.5% 534x10 3.2E+09 66.5%
Conv3-3 256 128 x 128 9.6E+09 453x8 2.13E+09 77.8% 532x8 2.5E+09 73.3%
Conv4-1 512 64 x 64 4.8E+09 181x8 1.69E+09 64.8% 264x12 3.7E+09 22.3%
Conv4-2 512 64 x 64 9.6E+09 196x8 3.66E+09 61.9% 262x10 6.1E+09 35.6%
Conv4-3 512 64 x 64 9.6E+09 212x8 3.96E+09 58.8% 260x8 4.9E+09 48.9%
Conv5-1 512 32 x 32 2.4E+09 84x8 1.54E+09 35.8% 118x12 3.3E+09 -39.1%
Conv5-2 512 32 x 32 2.4E+09 89x8 1.64E+09 31.7% 116x10 2.7E+09 -13.7%
Conv5-3 512 32 x 32 2.4E+09 95x8 1.75E+09 27.1% 114x8 2.1E+09 10.4%
FC6 FC7 1024 1 1.3E+08 1024 1.3E+08 0% 1024 1.3E+08 0%

Other 1.07E+10 1.07E+10 0% 1.07E+10 0%
Total 9.05e+10 3.29e+10 63.7% 4.47e+10 50.5%

Table 7: Overview results on all datasets

Dataset
Baseline DynCNN (w/o) DynCNN (w/)

FLOPs Time(ms) FLOPs %Pruned Time(ms) FLOPs %Pruned Time(ms)
PETS2009 9.05E+10 30.7 3.29E+10 63.7% 28.3 4.47E+10 50.5% 19.2
AVSS2007 9.05E+10 30.7 3.91E+10 56.8% 32.1 5.36E+10 40.8% 22.9

VIRAT 9.05E+10 30.7 1.5E+10 83.3% 20.3 2.2E+10 75.7% 13.9
Youtube 9.05E+10 30.7 2.46E+10 72.8% 27.5 4.47E+10 50.6% 20

7

Under review as a conference paper at ICLR 2019

5 DISCUSSION

5.1 THRESHOLD OF FRAME DIFFERENCING

The threshold of IDM is used to filter the speckle noise in video. In addition, it can greatly speed
up the processing time due to the high scene similarity of video—most difference values derived
from frame differencing are introduced by noise. For various surveillance videos, the threshold of
IDM should be different, resulting in a single threshold is difficult to be applicable to all surveillance
images. To find the best threshold, we conduct a research on the relationship between the precision
and calculation amount over different thresholds. Figure 4 shows the test result on 4 datasets.

(a) (b)

Figure 4: The average precision and calculation amount on 4 dataset over different threshold of input
difference map

It is observed from Fig. 4a that the calculation amount exists a significant drop in the threshold
interval of 5 to 15 over 4 datasets, which indicates the threshold greater or equal to 15 can filter the
speckle noise efficiently in four datasets. However, the precision will be affected as the threshold is
greater or equal to 25 as shown in Fig. 4b. Therefore, by trading the calculation amount off against
precision, 20 is the best choice of threshold applicable to various surveillance videos and is selected
as the default in experiments.

5.2 THE EFFECT ON SCENE SIMILARITY

(a) (b)

Figure 5: The distribution of each test surveillance videos

In Fig. 5, we reveal the distribution of each test surveillance videos on calculation amount and FPS
with respect to the average scene similarity. The triangle mark denotes the average of videos in the
same dataset while the purple line represents the value of baseline. It is obvious that the higher the

8

Under review as a conference paper at ICLR 2019

average scene similarity the more the calulation amount decreases. In addition, the FPS also tends
to increase as the average scene similarity is higher, especially in the dataset VIRAT. In dataset
VIRAT, the most scene of surveillance videos is parking lot where most of time are the still scene,
resulting in 99% average scene similarity. The high scene similarity prunes the calculation amount
of baseline model up to 75.7% (90.5 GFLOPs to 22.0 GFLOPs) and improves 2.2 times (32.5 to
71.7) of FPS. From the distribution map shown in Fig. 5, it is implied that the surveillance videos
generally exist high scene similarity. Furthermore, the proposed dynamic convolution is applicable
to all the videos. Therefore, it is believed that dynamic convolution can be applied to the practical
applications on surveillance videos.

6 CONCLUSION

This paper exploits the high scene similarity generally existing in surveillance videos and proposes
a dynamic convolution to reduce the calculation amount efficiently for heavy-computational surveil-
lance analyses. The dynamic convolution only updates the feature value for the position which is
predicted as changed to achieve the reuse of previous feature map. Besides the calculation amount,
dynamic convolution also considers the importance of the processing time on pratical applications
and employs two strategies to optimize the processing time by sacrificing a few calculation amounts.
Compared with the existing technology, the it can directly be applied to the existing convolution
neural network architecture without retraining and analyzing weights. Experimental results on four
famous and authoritative datasets of surveillance videos provides a powerful evident that the pro-
posed method is applicable to most of surveillance videos. The reduction on the calculation amount
can be up to 75.7% while the precision preserves within 0.7% mAP. Furthermore, the processing
time can be enhanced up to 2.2 times with respect to baseline. Finally, the aspect of design in the
proposed method is completely different from the existing relevant methods. In the future work,
we will complement our work with the existing relevent methods to verify the possibility of further
acceleration.

REFERENCES

Fourth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS
2007, 5-7 September, 2007, Queen Mary, University of London, London, United Kingdom, 2007.
IEEE Computer Society.

Ejaz Ahmed, Michael Jones, and Tim K. Marks. An improved deep learning architecture for person
re-identification. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3908–3916, June 2015.

Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. Int. J. Comput. Vision, 88(2):303–338, June 2010.
ISSN 0920-5691. doi: 10.1007/s11263-009-0275-4. URL http://dx.doi.org/10.
1007/s11263-009-0275-4.

James Ferryman and Anna-Louise Ellis. Performance evaluation of crowd image analysis using the
pets2009 dataset. Pattern Recogn. Lett., 44(C):3–15, July 2014. ISSN 0167-8655. doi: 10.1016/j.
patrec.2014.01.005. URL http://dx.doi.org/10.1016/j.patrec.2014.01.005.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015. URL
http://arxiv.org/abs/1510.00149.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385. Pub-
lished in Proc. CVPR, 2016.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017. URL http://arxiv.org/abs/
1704.04861.

9

http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1016/j.patrec.2014.01.005
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

Under review as a conference paper at ICLR 2019

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size.
CoRR, abs/1602.07360, 2016. URL http://arxiv.org/abs/1602.07360.

Kai Kang and Xiaogang Wang. Fully convolutional neural networks for crowd segmentation. CoRR,
abs/1411.4464, 2014. URL http://arxiv.org/abs/1411.4464.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. CoRR, abs/1608.08710, 2016. URL http://arxiv.org/abs/1608.
08710.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
common objects in context. CoRR, abs/1405.0312, 2014. URL http://arxiv.org/abs/
1405.0312.

Honghai Liu and Xianghua Hou. Moving detection research of background frame difference based
on gaussian model. In 2012 International Conference on Computer Science and Service System,
pp. 258–261, Aug 2012.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu,
and Alexander C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015. URL
http://arxiv.org/abs/1512.02325.

Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. A deep learning-based approach to progressive
vehicle re-identification for urban surveillance. In Computer Vision – ECCV 2016, pp. 869–884,
Cham, 2016. Springer International Publishing.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. CoRR, abs/1708.06519, 2017.
URL http://arxiv.org/abs/1708.06519.

BBC News. CCTV: Too many cameras useless, warns surveillance watchdog Tony Porter. https:
//www.bbc.com/news/uk-30978995, January 2015. Accessed: 2018-08-21.

Sangmin Oh, A. Hoogs, A. Perera, N. Cuntoor, Chia-Chih Chen, Jong Taek Lee, S. Mukherjee, J. K.
Aggarwal, Hyungtae Lee, L. Davis, E. Swears, Xioyang Wang, Qiang Ji, K. Reddy, M. Shah,
C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, Bi Song, A. Fong, A. Roy-
Chowdhury, and M. Desai. A large-scale benchmark dataset for event recognition in surveillance
video. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’11, pp. 3153–3160, Washington, DC, USA, 2011. IEEE Computer Society.

Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, and Xiaogang Wang. Learning deep neural
networks for vehicle re-id with visual-spatio-temporal path proposals. In 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 1918–1927, Oct 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.
Published in Proc. ICLR, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.4842. Published in
Proc. CVPR, 2015.

Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet and
the impact of residual connections on learning. CoRR, abs/1602.07261, 2016. URL http:
//arxiv.org/abs/1602.07261.

Yonglong Tian, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Pedestrian detection aided by deep
learning semantic tasks. CoRR, abs/1412.0069, 2014. URL http://arxiv.org/abs/
1412.0069. Published in Proc. CVPR, 2015.

10

http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1411.4464
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1708.06519
https://www.bbc.com/news/uk-30978995
https://www.bbc.com/news/uk-30978995
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1412.0069
http://arxiv.org/abs/1412.0069

Under review as a conference paper at ICLR 2019

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. CoRR, abs/1707.01083, 2017. URL http:
//arxiv.org/abs/1707.01083.

7 APPENDIX

7.1 DYNAMIC CONVOLUTION MODEL

The proposed dynamic convolution is implemented on SSD512 model by caffe framework. Figure 6
and 7 illustrate the first convolution group (gp1) of SSD512 model and that with dynamic convolu-
tion (DynSDD512) respectively. In the implementation of dynamic convolution, the original model
is combined with three additional layers: 1) Comparison Layer; 2) Position Layer; 3) Recovery
Layer. Comparison layer is used to store the current frame and output input difference map (IDM)
by comparing with the previous frame. After recieving the IDM, position layer will output the cell
index table (CIT), for the position indication, the inner difference table (iDM) and the new array
(NA) to next stage. Position layer generates the iDM by directly predicting the impacted pixels of
the last layer in gp1 for the continuous convoltion as mentioned in subsection 3.4. Accordingly,
the NA is generated according to the iDM through cell-based partition. Finally, recovery layer re-
cieves the feature value from convolution and transfer those value where they locates on feature map
through CIT.

Figure 6: SSD512 model

Figure 7: DynSSD512 model

11

http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

Under review as a conference paper at ICLR 2019

7.2 GPU EXECUTION TIME

For a better understanding of the proposed method, we list the average execution time of each layer
in detail. Take the PETS2009 dataset for example.

Table 8: Average execution time per layer

Layer-type Baseline (ms) DynCNN (ms) Saved Time%
Compare - 0.043
Position1 - 0.18
Conv1-1 1.15 0.13 88.2%
Relu1-1 0.58 0.075 87.0%
Conv1-2 2.53 0.39 84.5%
Relu1-2 0.58 0.062 89.4%

Recovery1 - 0.036
Group1 4.84 0.92 80.9%
Position2 - 0.27
Conv2-1 1.2 0.32 73.2%
Relu2-1 0.58 0.062 89.4%
Conv2-2 1.73 0.46 73.5%
Relu2-2 0.29 0.042 85.7%

Recovery2 - 0.047
Group2 3.52 1.19 65.9%
Position3 - 0.39
Conv3-1 0.88 0.60 31.5%
Relu3-1 0.15 0.059 60.4%
Conv3-2 1.49 0.76 49.1%
Relu3-2 0.15 0.048 67.0%
Conv3-3 1.49 0.42 71.8%
Relu3-3 0.15 0.04 72.7%

Recovery3 - 0.078
Group3 4.3 2.4 44.1%
Position4 - 0.63
Conv4-1 0.85 0.86 -1.6%
Relu4-1 0.076 0.057 25.2%
Conv4-2 2.86 1.87 34.6%
Relu4-2 0.078 0.046 41.0%
Conv4-3 2.81 1.51 46.2%
Relu4-3 0.078 0.036 53.5%

Recovery4 - 0.16
Group4 6.75 5.17 23.3%
Position5 - 1.08
Conv5-1 0.78 1.28 -64.5%
Relu5-1 0.014 0.026 -80.9%
Conv5-2 0.77 0.99 -28.4%
Relu5-2 0.014 0.019 -37.3%
Conv5-3 0.77 0.78 -0.9%
Relu5-3 0.014 0.013 5.6%

Recovery5 - 0.13
Group5 2.36 4.31 -82.6%
FC6 FC7 - - 0%

Other - - 0%

12

Under review as a conference paper at ICLR 2019

7.3 EXAMPLE DETECTIONS

(a) Baseline on PETS2009 (b) DynCNN on PETS2009

(c) Baseline on AVSS2007 (d) DynCNN on AVSS2007

(e) Baseline on VIRAT (f) DynCNN on VIRAT

(g) Baseline on YouTube (h) DynCNN on YouTube

Figure 8: Example detections on 4 test datasets

13

Under review as a conference paper at ICLR 2019

7.4 CALCULATION RESULTS ON OTHER DATASETS

Table 9: Average FLOPs result on AVSS2007

Layer-type Maps Baseline DynCNN (w/o) DynCNN (w/)
wxh FLOPs wxh FLOPs %Pruned wxh FLOPs %Pruned

Conv1-1 512 x 512 64 4.5E+08 1704 x 16 4.7E+07 89.6% 1931 x 18 6.3E+07 85.9%
Conv1-2 512 x 512 64 9.6E+09 1916 x 16 1.1E+09 88.2% 1929 x 16 1.2E+09 87.5%
Conv2-1 256 x 256 128 4.8E+09 1276 x 8 7.5E+08 84.4% 1507 x 10 1.1E+09 77.1%
Conv2-2 256 x 256 128 9.6E+09 1385 x 8 1.6E+09 83.0% 1505 x 8 2.2E+09 77.0%
Conv3-1 128 x 128 256 4.8E+09 532 x 8 1.2E+09 74.0% 753 x 12 2.6E+09 44.6%
Conv3-2 128 x 128 256 9.6E+09 578 x 8 2.7E+09 71.7% 751 x 10 4.4E+09 53.9%
Conv3-3 128 x 128 256 9.6E+09 619 x 8 2.9E+09 69.7% 749 x 8 3.5E+09 63.2%
Conv4-1 64 x 64 512 4.8E+09 236 x 8 2.2E+09 54.2% 377 x 12 4.7E+09 1.7%
Conv4-2 64 x 64 512 9.6E+09 254 x 8 4.7E+09 50.5% 375 x 10 7.8E+09 18.5%
Conv4-3 64 x 64 512 9.6E+09 273 x 8 5.1E+09 46.8% 373 x 8 6.2E+09 35.3%
Conv5-1 32 x 32 512 2.4E+09 99 x 8 1.8E+09 23.8% 129 x 12 3.5E+09 -48.7%
Conv5-2 32 x 32 512 2.4E+09 104 x 8 1.8E+09 20.0% 127 x 10 2.9E+09 -22.1%
Conv5-3 32 x 32 512 2.4E+09 108 x 8 2.0E+09 16.7% 125 x 8 2.3E+09 4.2%
FC6 FC7 1 1024 1.3E+08 1024 1.3E+08 0% 1024 1.3E+08 0%

Other 1.07E+10 1.07E+10 0% 1.07E+10 0%
Total 9.05e+10 3.91e+10 56.8% 5.36e+10 40.8%

Table 10: Average FLOPs result on VIRAT

Layer-type Maps Baseline DynCNN (w/o)) DynCNN (w/)
wxh FLOPs wxh FLOPs %Pruned wxh FLOPs %Pruned

Conv1-1 512 x 512 64 4.5E+08 120x16 3.2E+06 99.3% 310x18 9.6E+06 97.8%
Conv1-2 512 x 512 64 9.6E+09 138x16 8.0E+07 99.2% 308x16 1.8E+08 98.1%
Conv2-1 256 x 256 128 4.8E+09 99x8 5.7E+07 98.8% 188x10 1.4E+08 97.1%
Conv2-2 256 x 256 128 9.6E+09 110x8 1.3E+08 98.7% 186x8 2.2E+08 97.7%
Conv3-1 128 x 128 256 4.8E+09 54x8 1.2E+08 97.5% 129x12 4.5E+08 90.6%
Conv3-2 128 x 128 256 9.6E+09 60x8 2.7E+08 97.2% 127x10 7.4E+08 92.3%
Conv3-3 128 x 128 256 9.6E+09 67x8 3.1E+08 96.8% 125x8 5.8E+08 93.9%
Conv4-1 64 x 64 512 4.8E+09 36x8 3.2E+08 93.3% 90x12 1.2E+09 74.1%
Conv4-2 64 x 64 512 9.6E+09 40x8 7.2E+08 92.5% 88x10 2.1E+09 78.1%
Conv4-3 64 x 64 512 9.6E+09 45x8 8.1E+08 91.6% 86x8 1.5E+09 83.7%
Conv5-1 32 x 32 512 2.4E+09 26x8 4.5E+08 81.1% 60x12 1.6E+09 32.1%
Conv5-2 32 x 32 512 2.4E+09 28x8 4.9E+08 79.6% 58x10 1.3E+09 45.8%
Conv5-3 32 x 32 512 2.4E+09 31x8 5.4E+08 77.5% 56x8 1.1E+09 58.3%
FC6 FC7 1 1024 1.3E+08 1024 1.3E+08 0% 1024 1.3E+08 0%

Other 1.07E+10 1.07E+10 0% 1.07E+10 0%
Total 9.05e+10 1.5e+10 83.3% 2.2e+10 75.7%

Table 11: Average FLOPs result on YouTube

Layer-type Maps Baseline DynCNN (w/o) DynCNN (w/)
wxh FLOPs wxh FLOPs %Pruned wxh FLOPs %Pruned

Conv1-1 512 x 512 64 4.5E+08 742x16 2.0E+07 95.6% 1702x18 5.3E+07 88.2%
Conv1-2 512 x 512 64 9.6E+09 845x16 5.0E+08 94.8% 1700x16 1.0E+09 89.6%
Conv2-1 256 x 256 128 4.8E+09 582x8 3.4E+08 92.9% 1205x10 8.8E+08 81.7%
Conv2-2 256 x 256 128 9.6E+09 637x8 7.5E+08 92.2% 1203x8 1.6E+09 82.9%
Conv3-1 128 x 128 256 4.8E+09 251x8 5.8E+08 87.9% 571x12 2.0E+09 58.1%
Conv3-2 128 x 128 256 9.6E+09 272x8 1.3E+09 86.8% 569x10 3.3E+09 65.2%
Conv3-3 128 x 128 256 9.6E+09 293x8 1.4E+09 85.7% 567x8 2.6E+09 72.3%
Conv4-1 64 x 64 512 4.8E+09 113x8 1.0E+09 78.3% 265x12 3.7E+09 22.5%
Conv4-2 64 x 64 512 9.6E+09 122x8 2.3E+09 76.5% 263x10 6.1E+09 35.9%
Conv4-3 64 x 64 512 9.6E+09 131x8 2.4E+09 74.7% 261x8 4.9E+09 49.1%
Conv5-1 32 x 32 512 2.4E+09 55x8 1.0E+09 58.3% 110x12 3.0E+09 -27.9%
Conv5-2 32 x 32 512 2.4E+09 59x8 1.1E+09 55.4% 108x10 2.5E+09 -4.6%
Conv5-3 32 x 32 512 2.4E+09 62x8 1.1E+09 52.9% 106x8 1.9E+09 17.9%
FC6 FC7 1 1024 1.3E+08 1024 1.3E+08 0% 1024 1.3E+08 0%

Other 1.07E+10 1.07E+10 0% 1.07E+10 0%
Total 9.05e+10 2.46e+10 72.8% 4.47e+10 50.6%

14

	Introduction
	Prior Works
	Dynamic Convolution
	Frame Differencing
	Prediction
	Dyn-Convolution
	Practical Concern and Implementation

	Experiments
	ON PETS 2009
	On AVSS 2007
	On VIRAT
	On Youtube
	Continuous convolution

	Discussion
	Threshold of Frame Differencing
	The effect on scene similarity

	Conclusion
	APPENDIX
	Dynamic Convolution Model
	GPU Execution Time
	Example detections
	Calculation results on other datasets

