
Under review as a conference paper at ICLR 2017

RECURRENT COEVOLUTIONARY FEATURE
EMBEDDING PROCESSES FOR RECOMMENDATION

Hanjun Dai∗, Yichen Wang∗, Rakshit Trivedi & Le Song
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
{hanjundai,yichen.wang,rstrivedi}@gatech.edu, lsong@cc.gatech.edu

ABSTRACT

Recommender systems often use latent features to explain the behaviors of users
and capture the properties of items. As users interact with different items over
time, user and item features can influence each other, evolve and co-evolve over
time. To accurately capture the fine grained nonlinear coevolution of these features,
we propose a recurrent coevolutionary feature embedding process model, which
combines recurrent neural network (RNN) with a multi-dimensional point process
model. The RNN learns a nonlinear representation of user and item embeddings
which take into account mutual influence between user and item features, and
the feature evolution over time. We also develop an efficient stochastic gradient
algorithm for learning parameters. Experiments on diverse real-world datasets
demonstrate significant improvements in user behavior prediction compared to
state-of-the-arts.

1 INTRODUCTION

E-commerce platforms and social service websites, such as Reddit, Amazon, and Netflix, attracts
thousands of users every second. Effectively recommending the appropriate service items to users is
a fundamentally important task for these online services. It can significantly boost the user activities
on these sites and leads to increased product purchases and advertisement clicks.

The interactions between users and items play a critical role in driving the evolution of user interests
and item features. For example, for music streaming services, a long-time fan of Rock music listens
to an interesting Blues one day, and starts to listen to more Blues instead of Rock music. Similarly, a
single music may also serve different audiences at different times,e.g., a music initially targeted for
an older generation may become popular among the young, and the features of this music need to be
updated. Furthermore, as users interact with different items, users’ interests and items’ features can
also co-evolve over time, i.e., their features are intertwined and can influence each other:

• User → item. In online discussion forums such as Reddit, although a group (item) is initially
created for statistics topics, users with very different interest profiles can join this group. Hence,
the participants can shape the features of the group through their postings. It is likely that this
group can finally become one about deep learning because most users concern about deep learning.

• Item→ user. As the group is evolving towards topics on deep learning, some users may become
more interested in deep learning topics, and they may participate in other specialized groups on
deep learning. On the opposite side, some users may gradually gain interests in pure math groups,
lose interests in statistics and become inactive in this group.

Such co-evolutionary nature of user-item interactions raises very important questions on how to
learn them from the increasingly available data. However, existing methods either treat the temporal
user-item interactions data as a static graph or use epoch based methods such as tensor factorization
to learn the latent features (Chi & Kolda, 2012; Koren, 2009; Yang et al., 2011). These methods
are not able to capture the fine grained temporal dynamics of user-item interactions. Recent point
process based models treat time as a random variable and improves over the traditional methods
significantly (Du et al., 2015; Wang et al., 2016b). However, these works make strong assumptions

∗Authors have equal contributions.

1

Under review as a conference paper at ICLR 2017

ChristineAliceDavid

Item
feature
𝑖"(𝑡)

User
feature
𝑢'(𝑡)

Interaction
feature
𝑞(𝑡)

1 K2 1 K2 1 K2

1 K2 1 K2
1 K2

1 K2
1 K2

1 K2

(a) User-item interaction data as a bipartite graph

1 K2

𝑢", 𝑖", 𝑡", 𝑞"

Initialize item feature
𝑖'(𝑡) = 𝜎 𝑉" ⋅ 𝑖'(

) Item profile

Drift
Context

Evolution
Co-evolution
User àItem

Initialize user feature
𝑢.(𝑡) = 𝜎 𝑊" ⋅ 𝑢.(

) User profile

Drift
Context

Evolution
Co-evolution
ItemàUser

1 K2

Alice

(b) Deep coevolutionary embedding process.

Figure 1: Model illustration. (a) User-item interaction events data. Each edge stands for a tuple
and contains the information of user, item, interaction time, and interaction feature. (b) The latent
feature of the user and item are updated at each event time, by a nonlinear activation function σ(·)
and contain four terms: self evolution, co-evolution, context (interaction feature), and self drift.

about the function form of the generative processes, which may not reflect the reality or accurate
enough to capture the complex and nonlinear user-item influence in real world.

In this paper, we propose a recurrent coevolutionary feature embedding process framework. It
combines recurrent neural network (RNN) with point process models, and efficiently captures the
co-evolution of user-item features. Our model can automatically find an efficient representation of
the underlying user and item latent feature without assuming a fixed parametric forms in advance.
Figure 1 summarizes our framework. In particular, our work makes the following contributions:

• Novel model. We propose a novel model that captures the nonlinear co-evolution nature of users’
and items’ embeddings. It assigns an evolving feature embedding process for each user and item,
and the co-evolution of these latent feature processes is modeled with two parallel components: (i)
item→ user component, a user’s latent feature is determined by the nonlinear embedding of latent
features of the items he interacted with; and (ii) user→ item component, an item’s latent features
are also determined by the latent features of the users who interact with the item.

• Technical Challenges. We use RNN to parametrize the interdependent and intertwined user and
item embeddings. The increased flexibility and generality further introduces technical challenges
on how to train RNN on the co-evolving graphs. The co-evolution nature of the model makes the
samples inter-dependent and not identically distributed, which is contrary to the assumptions in
the traditional setting and significantly more challenging. We are the first to propose an efficient
stochastic training algorithm that makes the BTPP tractable in the co-evolving graph.

• Strong performance. We evaluate our method over multiple datasets, verifying that our method
can lead to significant improvements in user behavior prediction compared to previous state-of-the-
arts. Precise time prediction is especially novel and not possible by most prior work.

2 RELATED WORK

Recent work predominantly fix the latent features assigned to each user and item (Salakhutdinov &
Mnih, 2008; Chen et al., 2009; Agarwal & Chen, 2009; Ekstrand et al., 2011; Koren & Sill, 2011;
Yang et al., 2011; Yi et al., 2014; Wang & Pal, 2015). In more sophisticated methods, the time
is divided into epochs, and static latent feature models are applied to each epoch to capture some
temporal aspects of the data (Koren, 2009; Karatzoglou et al., 2010; Xiong et al., 2010; Karatzoglou
et al., 2010; Xiong et al., 2010; Chi & Kolda, 2012; Gultekin & Paisley, 2014; Charlin et al., 2015;
Preeti Bhargava, 2015; Gopalan et al., 2015; Hidasi & Tikk, 2015; Wang et al., 2016a). For such
methods, it is not clear how to choose the epoch length parameter. First, different users may have very
different timescale when they interact with those service items, making it difficult to choose a unified
epoch length. Second, it is not easy for these methods to answer time-sensitive queries such as when
a user will return to the service item. The predictions are only in the resolution of the chosen epoch
length. Recently, (Du et al., 2015) proposed a low-rank point process based model for time-sensitive
recommendations from recurrent user activities. However, it fails to capture the heterogeneous
coevolutionary properties of user-item interactions. Wang et al. (2016b) models the co-evolutionary
property, but uses a simple linear representation of the users’ and items’ latent features, which might
not be expressive enough to capture the real world patterns. As demonstrated in Du et al. (2016),

2

Under review as a conference paper at ICLR 2017

the nonlinear RNN is quite flexible to approximate many point process models. Also we will show
that, our model only has O(#user + #item) regardless of RNN related parameters, and can also be
potentially applied to online setting.

In the deep learning community, (Wang et al., 2015a) proposed a hierarchical Bayesian model
that jointly performs learning for the content features and collaborative filtering for the ratings
matrix. (Hidasi et al., 2016) applied RNN and adopt item-to-item recommendation approach with
session based data. (Tan et al., 2016) improved this model with techniques like data augmentation,
temporal change adaptation. (Ko et al., 2016) proposed collaborative RNN that extends collaborative
filtering method to capture history of user behavior. Specifically, they used static global latent factors
for items and assign separate latent factors for users that are dependent on their past history. (Song
et al., 2016) extended the deep semantic structured model to capture multi-granularity temporal
preference of users. They use separate RNN for each temporal granularity and combine them with
feed forward network which models users’ and items’ long term static features. However, none of
these works model the coevolution of users’ and items’ latent features and are still extensions of epoch
based methods. Our work is unique since we explicitly treat time as a random variable and captures
the coevolution of users’ and items’ latent features using temporal point processes. Finally, our work
is inspired from the recurrent marked temporal point process model (Du et al., 2016). However, this
work only focuses on learning a one-dimension point process. Our work is significantly different
since we focus on the recommendation system setting with the novel idea of feature coevolution and
we use multi-dimensional point processes to capture user-item interactions.

3 BACKGROUND ON TEMPORAL POINT PROCESSES

A temporal point process (Cox & Isham, 1980; Cox & Lewis, 2006; Aalen et al., 2008) is a random
process whose realization consists of a list of discrete events localized in time, {ti} with ti ∈ R+.
Equivalently, a given temporal point process can be represented as a counting process, N(t), which
records the number of events before time t. An important way to characterize temporal point processes
is via the conditional intensity function λ(t), a stochastic model for the time of the next event given
all the previous events. Formally, λ(t)dt is the conditional probability of observing an event in a
small window [t, t+dt) given the historyH(t) up to t and that the event has not happen before t, i.e.,

λ(t)dt := P {event in [t, t+ dt)|H(t)} = E[dN(t)|H(t)],
where one typically assumes that only one event can happen in a small window of size dt, i.e., dN(t) ∈
{0, 1}. Then, given a time t > 0, we can also characterize the conditional probability that no event
happens during [0, t) as: S(t) = exp

(
−
∫ t
0
λ(τ) dτ

)
and the conditional density that an event occurs

at time t is defined as
f(t) = λ(t)S(t) (1)

The function form of the intensity λ(t) is often designed to capture the phenomena of interests. Some
commonly used form includes:

• Hawkes processes (Hawkes, 1971; Wang et al., 2016c), whose intensity models the mutual
excitation between events, i.e., λ(t) = µ + α

∑
ti∈H(t) κω(t − ti), where κω(t) := exp(−ωt)

is an exponential triggering kernel, µ > 0 is a baseline intensity. Here, the occurrence of each
historical event increases the intensity by a certain amount determined by the kernel κω and the
weight α > 0, making the intensity history dependent and a stochastic process by itself.
• Rayleigh process, whose intensity function is λ(t) = αt, where α > 0 is the weight parameter.

4 RECURRENT COEVOLUTIONARY FEATURE EMBEDDING PROCESSES

In this section, we present the generative framework for modeling the temporal dynamics of user-item
interactions. We first use RNN to explicitly capture the co-evolving nature of users’ and items’ latent
feature. Then, based on the compatibility between the users’ and items’ latent feature, we model the
user-item interactions by a multi-dimensional temporal point process. We further parametrize the
intensity function by the compatibility between users’ and items’ latent features.

4.1 EVENT REPRESENTATION

Given m users and n items, we denote the ordered list of N observed events as O = {ej =
(uj , ij , tj , qj)}Nj=1 on time window [0, T], where uj ∈ {1, . . . ,m}, ij ∈ {1, . . . , n}, tj ∈ R+,
0 6 t1 6 t2 . . . 6 T . This represents the interaction between user uj , item ij at time tj , with the
interaction context qj ∈ Rd. Here qj can be a high dimension vector such as the text review, or

3

Under review as a conference paper at ICLR 2017

simply the embedding of static user/item features such as user’s profile and item’s categorical features.
For notation simplicity, we defineOu = {euj = (iuj , t

u
j , q

u
j)} as the ordered listed of all events related

to user u, and Oi = {eij = (uij , t
i
j , q

i
j)} as the ordered list of all events related to item i. We also set

ti0 = tu0 = 0 for all the users and items. tk− denotes the time point just before time tk.

4.2 RECURRENT FEATURE EMBEDDING PROCESSES

We associate feature embeddings uu(t) ∈ Rk with each user u and ii(t) ∈ Rk with each item
i. These features represent the subtle properties which cannot be directly observed, such as the
interests of a user and the semantic topics of an item. Specifically, we model the drift, evolution, and
co-evolution of uu(t) and ii(t) as a piecewise constant function of time that has jumps only at event
times. Specifically, we define:

User latent feature embedding process. For each user u, the corresponding embedding after user
u’s k-th event euk = (iuk , t

u
k , q

u
k) can be formulated as:

uu(t
u
k) = σ

(
W1(t

u
k − tuk−1)︸ ︷︷ ︸

temporal drift

+W2uu(t
u
k−1)︸ ︷︷ ︸

self evolution

+ W3iik(t
u
k−)︸ ︷︷ ︸

co-evolution: item feature

+ W4q
u,ik
k︸ ︷︷ ︸

interaction feature

)
(2)

Item latent feature embedding process. For each item i, we specify ii(t) at time tik as:

ii(t
i
k) = σ

(
V1(t

i
k − tik−1)︸ ︷︷ ︸

temporal drift

+V2ii(t
i
k−1)︸ ︷︷ ︸

self evolution

+ V3uuk
(tik−)︸ ︷︷ ︸

co-evolution: item feature

+ V4q
i,uk

k︸ ︷︷ ︸
interaction feature

)
(3)

where t− means the time point just before time t, W4,V4 ∈ Rk×d are the embedding matrices
mapping from the explicit high-dimensional feature space into the low-rank latent feature space and
W1,V1 ∈ Rk, W2,V2,W3,V3 ∈ Rk×k are weights parameters. σ(·) is the nonlinear activation
function, such as commonly used Tanh or Sigmoid for RNN. For simplicity, we use basic recurrent
neural network to formulate the recurrence, but it is also straightforward to extend it using GRU or
LSTM to gain more expressive power. Figure 1 summarizes the basic setting of our model.

Here both the user and item’s feature embedding processes are piecewise constant functions of time
and only updated if an interaction event happens. A user’s attribute changes only when he has a new
interaction with some item. For example, a user’s taste for music changes only when he listens to
some new or old musics. Also, an item’s attribute changes only when some user interacts with it.
Different from Chen et al. (2013) who also models the time change with piecewise constant function,
but their work has no coevolve modeling, and is not capable of predicting the future time point.

Next we discuss the rationale of each term in detail:

• Temporal drift. The first term is defined based on the time difference between consecutive events
of specific user or item. It allows the basic features of users (e.g., a user’s self-crafted interests)
and items (e.g., textual categories and descriptions) to smoothly drift through time. Such changes
of basic features normally are caused by external influences.

• Self evolution. The current user feature should also be influenced by its feature at the earlier time.
This captures the intrinsic evolution of user/item features. For example, a user’s current taste
should be more or less similar to his/her tastes two days ago.

• User-item coevolution. Users’ and items’ latent features can mutually influence each other. This
term captures the two parallel processes. First, a user’s embedding is determined by the latent
features of the items he interacted with. At each time tk, the latent item feature is iik(t

u
k−).

We capture both the temporal influence and feature of each history item as a latent embedding.
Conversely, an item’s embedding is determined by the feature embedding of the user who just
interacts with the item.

• Evolution with interaction features. Users’ and items’ features can evolve and be influenced by
the characteristics of their interactions. For instance, the genre changes of movies indicate the
changing tastes of users. The theme of a chatting-group can be easily shifted to certain topics of
the involved discussions. In consequence, this term captures the influence of the current interaction
features to the changes of the latent user (item) features.

• Interaction feature. This is the additional information happened in the user-item interactions. For
example, in online discussion forums such as Reddit, the interaction features are the posts and
comments. In online review sites such as Yelp, it is the reviews of the businesses.

4

Under review as a conference paper at ICLR 2017

To summarize, each feature embedding process evolves according to the respective base temporal
user (item) features and also are mutually dependent on each other due to the endogenous influences
from the interaction features and the entangled latent features.
4.3 USER-ITEM INTERACTIONS AS TEMPORAL POINT PROCESSES

For each user, we model the recurrent occurrences of all users interaction with all items as a multi-
dimensional temporal point process, with each user-item pair as one dimension. In particular, the
intensity function in the (u, i)-th dimension (user u and item i) is modeled as a Rayleigh process:

λu,i(t|t′) = exp
(
uu(t

′)>ii(t
′)
)︸ ︷︷ ︸

user-item compatibility

· (t− t′)︸ ︷︷ ︸
time lapse

(4)

where t > t′, and t′ is the last time point where either user u’s embedding or item i’s embedding
changes before time t. The rationale behind this formulation is three-fold:

• Time as a random variable. Instead of discretizing the time into epochs as traditional meth-
ods (Charlin et al., 2015; Preeti Bhargava, 2015; Gopalan et al., 2015; Hidasi & Tikk, 2015; Wang
et al., 2016a), we explicitly model the timing of each interaction event as a random variable, which
naturally captures the heterogeneity of the temporal interactions between users and items.

• Short term preference. The probability for user u to interact with item i depends on the compatibility
of their instantaneous embeddings, which is evaluated through the inner product at the last event
time t′. Because uu(t) and ii(t) co-evolve through time, their inner-product measures a general
representation of the cumulative influence from the past interactions to the occurrence of the
current event. The exp(·) function ensures the intensity is positive and well defined.

• Rayleigh time distribution. The user and item embeddings are piecewise constant, and we use the
time lapse term to make the intensity piecewise linear. This form leads to a Rayleigh distribution
for the time intervals between consecutive events in each dimension. It is well-adapted to modeling
fads, where the event-happening likelihood f(·) in (1) rises to a peak and then drops extremely
rapidly. Furthermore, it is computationally easy to obtain an analytic form of f(·). One can then
use f(·) to make item recommendation by finding the dimension that f(·) reaches the peak.

With the parameterized intensity function, we can further estimate the parameters using maximum
likelihood estimation of all events. The joint negative log-likelihood is (Daley & Vere-Jones, 2007):

` = −
N∑
j=1

log
(
λuj ,ij (tj |t′j)

)
︸ ︷︷ ︸

intensity of interaction event

+

m∑
u=1

n∑
i=1

∫ T

0

λu,i(τ |τ ′) dτ︸ ︷︷ ︸
survival probability of event not happened

(5)

The rationale of the objective two-fold: (i) the negative intensity summation term ensures the
probability of all interaction events is maximized; (ii) the second survival probability term penalizes
the non-presence of an interaction between all possible user-item pairs on the observation window.
Hence, our framework not only explains why an event happens, but also why an event did not happen.

5 PARAMETER LEARNING

In this section, we propose an efficient algorithm to learn the parameters {Vi}4i=1 and {Wi}4i=1. The
batch objective function is presented in (5). The Back Propagation Through Time (BPTT) is the
standard way to train a RNN. To make the back propagation tractable, one typically needs to do
truncation during training. However, due to the novel co-evolutionary nature of our model, all the
events are related to each other by the user-item bipartite graph (Figure 2), which makes it hard to
decompose.

Hence, in sharp contrast to works (Hidasi et al., 2016; Du et al., 2016) in sequential data where one
can easily break the sequences into multiple segments to make the BPTT trackable, it is a challenging
task to design BPTT in our case. To efficiently solve this problem, we first order all the events
globally and then do mini-batch training in a sliding window fashion. Each time when conducting
feed forward and back propagation, we take the consecutive events within current sliding window to
build the computational graph. Thus in our case the truncation is on the global timeline, instead over
individual independent sequences as in prior works.

Next, we explain our procedure in detail. Given a mini-batch of M ordered events Õ = {ej}Mj=1, we
set the time span to be [T0 = t1, T = tM]. Below we show how to compute the intensity and survival
probability term in the objective function (5) respectively.

5

Under review as a conference paper at ICLR 2017

Jacob

9:45amSophie 2:45pm1:30pm10:15am

1 K2 1 K2

1 K2 1 K2

1 K2

Jacob Sophie Jacob
events

1 K2 1 K21 K2 1 2 𝐷

1

32
4

(a) Graph of embedding computation

Jacob

1:45pm

Sophie

Jacob

Sophie

3:45pm 5:00pm

3:30pm

3:15pm

2:30pm 4:25pm

(user, forum)

(b) Dependency between events

Figure 2: Intensity computation. (a) Each arrow means the flow of feature embedding computa-
tion, e.g., Jacob interacts with basketball at 10:15am. Then the embeddings are updated: his feature
at 10:15 am is influenced by his feature and the basketball feature at 9:45am (arrow 1 and 2); the
basketball’s feature is influenced by Jacob’s feature and its feature (arrow 3 and 4). (b) The events
dependency for two users and two forums (items). It shows how event at one dimension influence
other dimensions. Each orange arrow represents the dependency within each dimension, and the
black arrow denotes the cross-dimension dependency, e.g., Sophie interacts with volleyball at 2:30pm,
and this event changes the volleyball embedding, thus will affect Jacob’s visit at 3:30pm.

1 dimension of
user embedding

time𝑇𝑡# = 0

𝑢', 𝑖', 𝑡', 𝑞' 𝑢+, 𝑖+, 𝑡+,𝑞+ 𝑢+, 𝑖', 𝑡,, 𝑞,

1 dimension of
Item embedding

𝑢', 𝑖', 𝑡- , 𝑞-

(a) Piecewise constant embedding visualization

!"# = 0 "& "' "(")

−+ ,-,/
0

#
1 21

−+ ,-,/
0

34
1 21 =

(t(' − T')
2 :(;< 34 =>?(34))

(b) Survival probability computation

Figure 3: Survival probability computation. (a) A user or item’s feature embedding is piecewise
constant and will change only after an interaction event happens. Only one dimension of the feature
embedding is shown. (b) Survival probability for a user-item pair (u, i). The integral

∫ T
0
λu,i(τ |τ ′)dτ

is decomposed into 4 inter-event intervals separated by {t0, · · · , t3}, with close form on each interval.

Computing the intensity function. Each time when a new event ej happens between uj and ij ,
their corresponding feature embeddings will evolve according to a computational graph, as illustrated
in Figure 2a. Due to the change of feature embedding, all the dimensions related to uj or ij will
be influenced and the intensity function for that dimension will change consequently. Such cross-
dimension influence dependency is shown in Figure 2b. In our implementation, we first compute the
corresponding intensity λuj ,ij (tj |t′j) according to (4), and then update the embedding of uj and ij .
This operation takes O(M) complexity, and is independent to the number of users or items.

Computing the survival function. To compute the survival probability −
∫ T
T0
λu,i(τ |τ ′)dτ for each

pair (u, i), we first collect all the time stamps {tk} that have events related to either u or i. For notation
simplicity, let |{tk}| = nu,i and t1 = T0, tnu,i = T . Since the embeddings are piecewise constant,
the corresponding intensity function is piecewise linear, according to (4). Thus, the integration is
decomposed into each time interval where the intensity is constant, i.e.,∫ T

T0

λu,i(τ |τ ′)dτ =

nu,i−1∑
k=1

∫ tk+1

tk

λu,i(τ |τ ′)dτ =

nu,i−1∑
k=1

(t2k+1 − t2k) exp
(
uu(tk)

>ii(tk)
)

(6)

Figure 3 visualizes the computation. Although the survival probability term exists in close form, we
still need to solve two challenges. First, it is still expensive to compute it for each user item pair.
Moreover, since the user-item interaction bipartite graph is very sparse, it is not necessary to monitor
each dimension in the stochastic training setting. To speed up the computation, we propose a novel
random-sampling scheme as follows.

Note that the intensity term in the objective function (5) tries to maximize the inner product between
user and item that has interaction event, while the survival term penalize over all other pairs of inner

6

Under review as a conference paper at ICLR 2017

Table 1: Comparison with different methods.
Method DeepCoevolve LowRankHawkes Coevolving PoissonTensor TimeSVD++ FIP STIC

Continuous time
√ √ √ √

Predict Item
√ √ √ √ √ √

Predict Time
√ √ √ √ √

Computation RNN Factorization Factorization Factorization Factorization Factorization HMM

products. We observe that this is similar to Softmax computing for classification problem. Hence,
inspired by the noise-contrastive estimation method (Gutmann & Hyvärinen, 2012) that is widely
used in language models (Mnih & Kavukcuoglu, 2013), we keep the dimensions that have events on
them, while randomly sample dimensions without events in current mini-batch.

The second challenge lies in the fact that the user-item interactions vary a lot across mini-batches,
hence the corresponding computational graph also changes greatly. To make the learning efficient, we
use the graph embedding framework (Dai et al., 2016) which allows training deep learning models
where each term in the objective has a different computational graphs but with shared parameters.
The Adam Optimizer (Kingma & Ba, 2014) together with gradient clip is used in our experiment.

6 EXPERIMENTS

We evaluate our model on real-world datasets. For each sequence of user activities, we use all the
events up to time T · p as the training data, and the rest events as the testing data, where T is the
observation window. We tune the latent rank of other baselines using 5-fold cross validation with
grid search. We vary the proportion p ∈ {0.7, 0.72, 0.74, 0.76, 0.78} and report the averaged results
over five runs on two tasks (we will release code and data once published):

• Item prediction. At each test time t, we predict the item that the user u will interact with. We rank
all the items in the descending order of the conditional density fu,i(t) = λu,i(t)Su,i(t). We report
the Mean Average Rank (MAR) of each test item at the test time. Ideally, the item associated with
the test time t should rank one, hence smaller value indicates better predictive performance.

• Time prediction. We predict the expected time when a testing event will occur between a given
user-item pair. Using Rayleigh distribution, it is given by Et∼fu,i(t)(t) =

√
π

2 exp(uu(t−)>ii(t−)) .

We report the Mean Absolute Error (MAE) between the predicted and true time.

6.1 COMPETITORS

We compared our DEEPCOEVOLVE with the following methods. Table 1 summarizes the differences.

• LowRankHawkes (Du et al., 2015): This is a low rank Hawkes process model which assumes
user-item interactions to be independent of each other and does not capture the co-evolution of
user and item features.

• Coevolving (Wang et al., 2016b): This is a multi-dimensional point process model which uses a
simple linear embedding to model the co-evolution of user and item features.

• PoissonTensor (Chi & Kolda, 2012): Poisson Tensor Factorization has been shown to perform
better than factorization methods based on squared loss (Karatzoglou et al., 2010; Xiong et al.,
2010; Wang et al., 2015b) on recommendation tasks. The performance for this baseline is reported
using the average of the parameters fitted over all time intervals.

• TimeSVD++ (Koren, 2009) and FIP (Yang et al., 2011): These two methods are only designed
for explicit ratings, the implicit user feedbacks (in the form of a series of interaction events) are
converted into the explicit ratings by the respective frequency of interactions with users.

• STIC (Kapoor et al., 2015): it fits a semi-hidden markov model (HMM) to each observed user-item
pair and is only designed for time prediction.

6.2 DATASETS

We use three real world datasets as follows.

• IPTV. It contains 7,100 users’ watching history of 385 TV programs in 11 months (Jan 1 - Nov 30
2012), with around 2M events, and 1,420 movie features (including 1,073 actors, 312 directors, 22
genres, 8 countries and 5 years).

• Yelp. This data was available in Yelp Dataset challenge Round 7. It contains reviews for various
businesses from October, 2004 to December, 2015. The dataset we used here contains 1,005 users
and 47,924 businesses, with totally 291,716 reviews.

7

Under review as a conference paper at ICLR 2017

It
em

pr
ed

ic
tio

n
1.7 1.8

10.4

150.3
177.2 191.3

1

10

100

Methods
M
A
R

Methods
DeepCoevolve
LowRankHawkes
Coevolving
PoissonTensor
TimeSVD++
FIP

1.9
2.5

13.2

450.1 510.7 540.7

1

10

100

Methods

M
A
R

Methods
DeepCoevolve
LowRankHawkes
Coevolving
PoissonTensor
TimeSVD++
FIP

107.16 120.1

2128.3

8823.3 9104.2 9318.2

10

1000

Methods

M
A
R

Methods
DeepCoevolve
Coevolving
LowRankHawkes
PoissonTensor
TimeSVD++
FIP

Ti
m

e
pr

ed
ic

tio
n

10.79

34.5

356

830.2 901.1

10

1000

Methods

M
A
E

Methods
DeepCoevolve
Coevolving
LowRankHawkes
PoissonTensor
STIC

10.4
8.1

67.2

186.4 203

1

10

100

Methods

M
A
E

Methods
DeepCoevolve
Coevolving
LowRankHawkes
PoissonTensor
STIC

884.3
1360.5

11043.5 12423.4 14847.4

10

1000

Methods

M
A
E

Methods
DeepCoevolve
Coevolving
LowRankHawkes
PoissonTensor
STIC

(a) IPTV (b) Reddit (c) Yelp

Figure 4: Prediction results on three real world datasets.

• Reddit. We collected discussion related data on different subreddits (groups) for the month of
January 2014. We filtered all bot users’ and their posts from this dataset. Furthermore, we randomly
selected 1,000 users, 1,403 groups, and 10,000 discussion events.

6.3 PREDICTION RESULTS

Figure 4 shows that DEEPCOEVOLVE significantly outperforms both epoch-based baselines and
state-of-arts point process based methods. LOWRANKHAWKES has good performance on item
prediction but not on time prediction, while COEVOLVING has good performance on time prediction
but not on item prediction. We discuss the performance regarding the two metrics below.

Item prediction. Note that the best possible MAR one can achieve is 1, and our method gets quite
accurate results: with the value of 1.7 on IPTV and 1.9 on Reddit. Note LOWRANKHAWKES achieves
comparable item prediction performance, but not as good on the time prediction task. We think the
reason is as follows. Since one only need the rank of conditional density f(·) in (1) to conduct item
prediction, LOWRANKHAWKES may still be good at differentiating the conditional density function,
but could not learn its actual value accurately, as shown in the time prediction task where the value of
the conditional density function is needed for precise prediction.

Time prediction. The second row of Figure 4 shows that DEEPCOEVOLVE outperforms other meth-
ods. Compared with LOWRANKHAWKES that achieves comparable time predication performance,
6× improvement on Reddit, it has 10× improvement on Yelp, and 30× improvement on IPTV. The
time unit is hour. Hence it has 2 weeks accuracy improvement on IPTV and 2 days on Reddit. This is
important for online merchants to make time sensitive recommendations. An intuitive explanation
is that our method accurately captures the nonlinear pattern between user and item interactions.
The competitor LOWRANKHAWKES assumes specific parametric forms of the user-item interaction
process, hence may not be accurate or expressive enough to capture real world temporal patterns.
Furthermore, it models each user-item interaction dimension independently, which may lose the
important affection from user’s interaction with other items while predicting the current item’s
reoccurrence time. Our work also outperforms COEVOLVING, e.g., with around 3×MAE improve on
IPTV. Moreover, the item prediction performance is also much better than COEVOLVING. It shows
the importance of using RNN to capture the nonlinear embedding of user and item latent features,
instead of the simple parametrized linear embedding in COEVOLVING.

6.4 INSIGHT OF RESULTS

We will look deeper and provide rationale behind the prediction results in the following two sub-
sections. First, to understand the difficulty of conducting prediction tasks in each dataset, we study
their different sparsity properties. For the multidimensional point process models, the fewer events
we observe in each dimension, the more sparse the dataset is. Our approach alleviates the sparsity
problem via the modeling of dependencies among dimensions, thus is consistently doing better than
other baseline algorithms.

Next, we fix one dataset and evaluate how different levels of sparsity in training data influences each
algorithm’s performance.

8

Under review as a conference paper at ICLR 2017

#
ev

en
ts

di
st

ri
bu

tio
n

0 200 400 600 800 1000
events per user

0

0.05

0.1

0.15

0.2

0.25

0.3

fr
ac

tio
n

of
 u

se
r

IPTV

0 200 400 600 800 1000
events per user

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
ac

tio
n

of
 u

se
r

Reddit

0 200 400 600 800 1000
events per user

0

0.1

0.2

0.3

0.4

0.5

fr
ac

tio
n

of
 u

se
r

Yelp

In
te

ra
ct

io
n

G
ra

ph

users items
users items

users items

(a) IPTV, 385 items (b) Reddit, 1,403 groups (c) Yelp, 47,924 businesses

Figure 5: Visualization of the sparsity property in each dataset. The first row shows the distribution
of number of events per user. The second row shows the user-item interaction graph. It is generated
as follows. For each dataset, we randomly pick 10 users with 100 history events each user and collect
all items they have interacted with. The interaction graph itself is a bipartite graph, and we put users
on left side, and items on the right side.

6.4.1 UNDERSTANDING THE DATASETS

We visualize the three datasets in Figure 5 according to (i) the number of events per user, and (ii) the
user-item interaction graph.

Sparsity in terms of the number of events per user. Typically, the more user history data we have,
the better results we will obtain in the prediction tasks. We can see in IPTV dataset, users typically
have longer length of history than the users in Reddit and Yelp datasets. Thus our algorithm and all
other baseline methods have their best performance on this dataset. However, the Reddit dataset and
Yelp dataset are hard to tell the performance based only on the distribution of history length, thus we
do a more detailed visualization.

Sparsity in terms of diversity of items to recommend. From the bipartite graph, it is easy to see
that Yelp dataset has higher density than the other two datasets. The density of the interaction graph
reflects the variety of history per each user. For example, the users in IPTV only has 385 programs to
watch, but they can have 47,924 businesses to choose in Yelp dataset. Also, the Yelp dataset has 9
times more items than IPTV and Reddit dataset in the bipartite graph. This means the users in Yelp
dataset has more diverse tastes than users in other two datasets. This is because if users has similar
tastes, the distinct number of items in the union of their history should be small.

Based on the above two facts, we can see Yelp dataset is the most sparse, since it has shorter length
of history per user, and much more diversity of the items, it is not surprising that this dataset is much
harder than the other IPTV and Reddit dataset.

6.4.2 ROBUSTNESS OF THE ALGORITHM

With the case study on the most challenging Yelp dataset, we further evaluate how each algorithm
performs with lower level of sparsity as compared to the one used in Figure 4 (c).We use this to
demonstrate that our work is most robust and performs well across different levels of sparsity.

We first create Yelp100, a more dense dataset, by filtering the original Yelp dataset to keep the top
100 users. Each user would have at least 200 events. Figure 6 (a) shows the statistics of this dataset.
On average the users have more history events than the original Yelp dataset in Figure 5(c).

On this dense dataset, Figure 6 (b) and (c) show that all the algorithms’ performances improve
with more history events, comparing to the performance in original Yelp dataset. For example,
LOWRANKHAWKES has similar rank prediction results as our DEEPCOEVOLVE on this dense dataset.
However, as the dataset becomes sparse, the performance of LOWRANKHAWKES drops significantly,
as shown in Figure 4(c). For example, the rank prediction error goes from 90 to 2128, and the

9

Under review as a conference paper at ICLR 2017

St
at

is
tic

so
fY

el
p1

00

0 200 400 600 800 1000
events per user

0

0.05

0.1

0.15

0.2

0.25

0.3

fr
ac

tio
n

of
 u

se
r

Yelp100

87.16 90.1 80.1

7800.1 8100.3 8320.5

10

1000

Methods

M
A
R

Methods
DeepCoevolve
LowRankHawkes
Coevolving
PoissonTensor
TimeSVD++
FIP

72.81

125.9

724.3 768.4 883

10

1000

Methods

M
A
E

Methods
DeepCoevolve
Coevolving
LowRankHawkes
PoissonTensor
STIC

(a) # events distribution (b) MAR (c) MAE

Figure 6: Comparison of performance with different amount of history.

time error goes from 724 to 11043.5. We think it is because this model relies more on the history
information per each user-item pair.

On the contrary, our DEEPCOEVOLVE still has superior performance with such high level of sparsity.
The rank error only changes from 87 to 107, and the time error changes from 72 to 884 as the data
becomes sparse. It shows that our work is the most robust to the sparsity in the data. We think it is
because our work accurately captures the nonlinear multidimensional dependencies between users
and items latent features.

7 CONCLUSION

We have proposed an efficient framework to model the nonlinear co-evolution nature of users’ and
items’ latent features. Moreover, the user and item’s evolving and co-evolving processes are captured
by the RNN. It is based on temporal point processes and models time as a random variable. Hence
it is in sharp contrast to prior epoch based works. We demonstrate the superior performance of our
method on both the time and item prediction task, which is not possible by most prior work. Future
work includes extending to other social applications, such as group dynamics in message services.

10

Under review as a conference paper at ICLR 2017

REFERENCES

Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event history analysis: a process point
of view. Springer, 2008.

D. Agarwal and B.-C. Chen. Regression-based latent factor models. In J.F. Elder, F. Fogelman-Soulié,
P.A. Flach, and M.J. Zaki (eds.), KDD, 2009.

Laurent Charlin, Rajesh Ranganath, James McInerney, and David M Blei. Dynamic poisson factor-
ization. In RecSys, 2015.

Tianqi Chen, Hang Li, Qiang Yang, and Yong Yu. General functional matrix factorization using gra-
dient boosting. In Proceeding of 30th International Conference on Machine Learning (ICML’13),
volume 1, pp. 436–444, 2013.

Y. Chen, D. Pavlov, and J.F. Canny. Large-scale behavioral targeting. In J.F. Elder, F. Fogelman-Soulié,
P.A. Flach, and M. J. Zaki (eds.), KDD, 2009.

Eric C Chi and Tamara G Kolda. On tensors, sparsity, and nonnegative factorizations. SIAM Journal
on Matrix Analysis and Applications, 33(4):1272–1299, 2012.

D.R. Cox and V. Isham. Point processes, volume 12. Chapman & Hall/CRC, 1980.

D.R. Cox and P.A.W. Lewis. Multivariate point processes. Selected Statistical Papers of Sir David
Cox: Volume 1, Design of Investigations, Statistical Methods and Applications, 1:159, 2006.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured
data. In ICML, 2016.

D.J. Daley and D. Vere-Jones. An introduction to the theory of point processes: volume II: general
theory and structure, volume 2. Springer, 2007.

Nan Du, Yichen Wang, Niao He, and Le Song. Time sensitive recommendation from recurrent user
activities. In NIPS, 2015.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In KDD, 2016.

Michael D Ekstrand, John T Riedl, and Joseph A Konstan. Collaborative filtering recommender
systems. Foundations and Trends in Human-Computer Interaction, 4(2):81–173, 2011.

Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with hierarchical
poisson factorization. UAI, 2015.

San Gultekin and John Paisley. A collaborative kalman filter for time-evolving dyadic processes. In
ICDM, pp. 140–149, 2014.

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical
models, with applications to natural image statistics. Journal of Machine Learning Research, 13
(Feb):307–361, 2012.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58
(1):83–90, 1971.

Balázs Hidasi and Domonkos Tikk. General factorization framework for context-aware recommenda-
tions. Data Mining and Knowledge Discovery, pp. 1–30, 2015.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In ICLR, 2016.

Komal Kapoor, Karthik Subbian, Jaideep Srivastava, and Paul Schrater. Just in time recommendations:
Modeling the dynamics of boredom in activity streams. In WSDM, 2015.

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Multiverse recom-
mendation: n-dimensional tensor factorization for context-aware collaborative filtering. In Recsys,
2010.

11

Under review as a conference paper at ICLR 2017

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Young-Jun Ko, Lucas Maystre, and Matthias Grossglauser. Collaborative recurrent neural networks
for dynamic recommender systems. Journal of Machine Learning Research, pp. 1–16, 2016.

Y. Koren. Collaborative filtering with temporal dynamics. In KDD, 2009.

Yehuda Koren and Joe Sill. Ordrec: an ordinal model for predicting personalized item rating
distributions. In RecSys, 2011.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive
estimation. In Advances in Neural Information Processing Systems, pp. 2265–2273, 2013.

Jiayu Zhou Juhan Lee Preeti Bhargava, Thomas Phan. Who, what, when, and where: Multi-
dimensional collaborative recommendations using tensor factorization on sparse user-generated
data. In WWW, 2015.

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte
carlo. In ICML, 2008.

Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. Multi-rate deep learning for temporal
recommendation. In Proceedings of the 39th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 909–912, 2016.

Yong K Tan, Xinxing Xu, and Yong Liu. Improved recurrent neural networks for session-based
recommendations. arXiv:1606.08117v2, 2016.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems.
In KDD. ACM, 2015a.

Xin Wang, Roger Donaldson, Christopher Nell, Peter Gorniak, Martin Ester, and Jiajun Bu. Recom-
mending groups to users using user-group engagement and time-dependent matrix factorization.
In AAAI, 2016a.

Yichen Wang and Aditya Pal. Detecting emotions in social media: A constrained optimization
approach. In IJCAI, 2015.

Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You Chen, Bradley A Malin,
and Jimeng Sun. Rubik: Knowledge guided tensor factorization and completion for health data
analytics. In KDD, 2015b.

Yichen Wang, Nan Du, Rakshit Trivedi, and Le Song. Coevolutionary latent feature processes for
continuous-time user-item interactions. In NIPS, 2016b.

Yichen Wang, Bo Xie, Nan Du, and Le Song. Isotonic hawkes processes. In ICML, 2016c.

Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G. Schneider, and Jaime G. Carbonell. Temporal
collaborative filtering with bayesian probabilistic tensor factorization. In SDM, 2010.

Shuang-Hong Yang, Bo Long, Alex Smola, Narayanan Sadagopan, Zhaohui Zheng, and Hongyuan
Zha. Like like alike: joint friendship and interest propagation in social networks. In WWW, 2011.

Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Rajan. Beyond clicks: Dwell
time for personalization. In RecSys, 2014.

12

Under review as a conference paper at ICLR 2017

A DETAILS ON GRADIENT COMPUTATION

Computing gradient. For illustration purpose, we here use Sigmoid as the nonlinear activation
function σ. In order to get gradient with respect to parameter W ’s, we first compute gradients with
respect to each varying points of embeddings. For user u’s embedding after his k-th event, the
corresponding partial derivatives are computed by:

∂`

∂uu(tuk)
= −iiuk︸︷︷︸

from intensity

+

n∑
i=1

∂
∫ tuk+1

tuk
λu,i(τ |τ ′)dτ

∂uu(tuk)︸ ︷︷ ︸
from survival

+
∂`

∂uu(tuk+1)
� (1− uu(t

u
k+1))� uu(t

u
k+1)W2︸ ︷︷ ︸

from user u’s next embedding

+
∂`

∂iiuk+1
(tuk+1)

� (1− iiuk+1
(tuk+1))� iiuk+1

(tuk+1)︸ ︷︷ ︸
from user u’s next item embedding

where � denotes element-wise multiplication.

The gradient coming from the second term (i.e., the survival term) is also easy to compute, since the
Rayleigh distribution has closed form of survival function. For a certain item i, if its feature doesn’t
changed between time interval [tuk , t

u
k+1], then we have

∂
∫ tuk+1

tuk
λu,i(τ |τ ′)dτ

∂uu(tuk)
=

(tuk+1 − tuk)2

2
exp

(
uu(t

u
k)
>ii(t

u
k)ii(t

u
k)
)

(7)

On the other hand, if the embedding of item i changes during this time interval, then we should break
this interval into segments and compute the summation of gradients in each segment in a way similar
to (7). Thus, we are able to compute the gradients with respect to Wi, i ∈ {1, 2, 3, 4} as follows.

∂`

∂W1
=

m∑
u=1

∑
k

∂`

∂uu(tuk)
� (i− uu(t

u
k))� uu(t

u
k)(t

u
k − tuk−1)

∂`

∂W2
=

m∑
u=1

∑
k

(
∂`

∂uu(tuk)
� (i− uu(t

u
k))� uu(t

u
k)

)
uu(t

u
k−1)

>

∂`

∂W3
=

m∑
u=1

∑
k

(
∂`

∂uu(tuk)
� (i− uu(t

u
k))� uu(t

u
k)

)
iik(t

u
k−)>

∂`

∂W4
=

m∑
u=1

∑
k

(
∂`

∂uu(tuk)
� (i− uu(t

u
k))� uu(t

u
k)

)
qu,ikk

Since the items are treated symmetrically as users, the corresponding derivatives can be obtained in a
similar way.

13

	Introduction
	Related work
	Background on Temporal Point Processes
	Recurrent Coevolutionary Feature Embedding Processes
	Event representation
	Recurrent feature embedding processes
	User-item interactions as temporal point processes

	Parameter Learning
	Experiments
	Competitors
	Datasets
	Prediction Results
	Insight of Results
	Understanding the datasets
	Robustness of the Algorithm

	Conclusion
	Details on Gradient Computation

