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ABSTRACT

Graph-structured data such as social networks, functional brain networks, gene
regulatory networks, communications networks have brought the interest in gen-
eralizing deep learning techniques to graph domains. In this paper, we are inter-
ested to design neural networks for graphs with variable length in order to solve
learning problems such as vertex classification, graph classification, graph regres-
sion, and graph generative tasks. Most existing works have focused on recurrent
neural networks (RNNs) to learn meaningful representations of graphs, and more
recently new convolutional neural networks (ConvNets) have been introduced. In
this work, we want to compare rigorously these two fundamental families of ar-
chitectures to solve graph learning tasks. We review existing graph RNN and
ConvNet architectures, and propose natural extension of LSTM and ConvNet to
graphs with arbitrary size. Then, we design a set of analytically controlled experi-
ments on two basic graph problems, i.e. subgraph matching and graph clustering,
to test the different architectures. Numerical results show that the proposed graph
ConvNets are 3-17% more accurate and 1.5-4x faster than graph RNNs. Graph
ConvNets are also 36% more accurate than variational (non-learning) techniques.
Finally, the most effective graph ConvNet architecture uses gated edges and resid-
uality. Residuality plays an essential role to learn multi-layer architectures as they
provide a 10% gain of performance.

1 INTRODUCTION

Convolutional neural networks of LeCun et al. (1998) and recurrent neural networks of Hochreiter
& Schmidhuber (1997) are deep learning architectures that have been applied with great success to
computer vision (CV) and natural language processing (NLP) tasks. Such models require the data
domain to be regular, such as 2D or 3D Euclidean grids for CV and 1D line for NLP. Beyond CV
and NLP, data does not usually lie on regular domains but on heterogeneous graph domains. Users
on social networks, functional time series on brain structures, gene DNA on regulatory networks,
IP packets on telecommunication networks are a a few examples to motivate the development of
new neural network techniques that can be applied to graphs. One possible classification of these
techniques is to consider neural network architectures with fixed length graphs and variable length
graphs.

In the case of graphs with fixed length, a family of convolutional neural networks has been developed
on spectral graph theory by Chung (1997). The early work of Bruna et al. (2013) proposed to
formulate graph convolutional operations in the spectral domain with the graph Laplacian, as an
analogy of the Euclidean Fourier transform as proposed by Hammond et al. (2011). This work was
extended by Henaff et al. (2015) to smooth spectral filters for spatial localization. Defferrard et al.
(2016) used Chebyshev polynomials to achieve linear complexity for sparse graphs, Levie et al.
(2017) applied Cayley polynomials to focus on narrow-band frequencies, and Monti et al. (2017b)
dealt with multiple (fixed) graphs. Finally, Kipf & Welling (2017) simplified the spectral convnets
architecture using 1-hop filters to solve the semi-supervised clustering task. For related works, see
also the works of Bronstein et al. (2017b), Bronstein et al. (2017a) and references therein.

For graphs with variable length, a generic formulation was proposed by Gori et al. (2005); Scarselli
et al. (2009) based on recurrent neural networks. The authors defined a multilayer perceptron of a
vanilla RNN. This work was extended by Li et al. (2016) using a GRU architecture and a hidden state
that captures the average information in local neighborhoods of the graph. The work of Sukhbaatar
et al. (2016) introduced a vanilla graph ConvNet and used this new architecture to solve learning
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communication tasks. Marcheggiani & Titov (2017) introduced an edge gating mechanism in graph
ConvNets for semantic role labeling. Finally, Bruna & Li (2017) designed a network to learn non-
linear approximations of the power of graph Laplacian operators, and applied it to the unsupervised
graph clustering problem. Other works for drugs design, computer graphics and vision are presented
by Duvenaud et al. (2015); Boscaini et al. (2016); Monti et al. (2017a).

In this work, we study the two fundamental classes of neural networks, RNNs and ConvNets, in the
context of graphs with arbitrary length. Section 2 reviews the existing techniques. Section 3 presents
the new graph NN models. Section 4 reports the numerical experiments.

2 NEURAL NETWORKS FOR GRAPHS WITH ARBITRARY LENGTH

2.1 RECURRENT NEURAL NETWORKS

Generic formulation. Consider a standard RNN for word prediction in natural language processing.
Let hi be the feature vector associated with word i in the sequence. In a regular vanilla RNN, hi is
computed with the feature vector hj from the previous step and the current word xi, so we have:

hi = fVRNN ( xi , {hj : j = i− 1} )

The notion of neighborhood for regular RNNs is the previous step in the sequence. For graphs, the
notion of neighborhood is given by the graph structure. If hi stands for the feature vector of vertex
i, then the most generic version of a feature vector for a graph RNN is

hi = fG-RNN ( xi , {hj : j → i} ) (1)

where xi refers to a data vector and {hj : j → i} denotes the set of feature vectors of the neighboring
vertices. Observe that the set {hj} is unordered, meaning that hi is intrinsic, i.e. invariant by vertex
re-indexing (no vertex matching between graphs is required). Other properties of fG-RNN are locality
as only neighbors of vertex i are considered, weight sharing, and such vector is independent of the
graph length. In summary, to define a feature vector in a graph RNN, one needs a mapping f that
takes as input an unordered set of vectors {hj}, i.e. the feature vectors of all neighboring vertices,
and a data vector xi, Figure 1(a).

We refer to the mapping fG-RNN as the neighborhood transfer function in graph RNNs. In a regular
RNN, each neighbor as a distinct position relatively to the current word (1 position left from the
center). In a graph, if the edges are not weighted or annotated, neighbors are not distinguishable.
The only vertex which is special is the center vertex around which the neighborhood is built. This
explains the generic formulation of Eq. (1). This type of formalism for deep learning for graphs with
variable length is described by Scarselli et al. (2009); Gilmer et al. (2017); Bronstein et al. (2017a)
with slightly different terminology and notations.

Graph Neural Networks of Scarselli et al. (2009). The earliest work of graph RNNs for arbitrary
graphs was introduced by Gori et al. (2005); Scarselli et al. (2009). The authors proposed to use a
vanilla RNN with a multilayer perceptron to define the feature vector hi:

hi = fG-VRNN (xi, {hj : j → i}) =
∑
j→i

CG-VRNN(xi, hj) (2)

with

CG-VRNN(xi, hj) = Aσ(Bσ(Uxi + V hj)),

and σ is the sigmoid function, A,B,U, V are the weight parameters to learn.

Minimization of Eq. (2) does not hold a closed-form solution as the dependence computational graph
of the model is not a directed acyclic graph (DAG). Scarselli et al. (2009) proposed a fixed-point
iterative scheme: for t = 0, 1, 2, ...

ht+1
i =

∑
j→i

C(xi, htj), ht=0
i = 0 ∀i. (3)

The iterative scheme is guaranteed to converge as long as the mapping is contractive, which can be
a strong assumption. Besides, a large number of iterations can be computational expensive.
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(a) Graph RNN (b) Graph ConvNet

Figure 1: Generic feature representation hi of vertex i on a graph RNN (a) and a graph convNet (b).

Gated Graph Neural Networks of Li et al. (2016). In this work, the authors use the gated recurrent
units (GRU) of Chung et al. (2014):

hi = fG-GRU (xi, {hj : j → i}) = CG-GRU(xi,
∑
j→i

hj) (4)

As the minimization of Eq. (4) does not have an analytical solution, Li et al. (2016) designed the
following iterative scheme:

ht+1
i = CG-GRU(hti, h̄

t
i), ht=0

i = xi ∀i,

where h̄ti =
∑
j→i

htj ,

and CG-GRU(hti, h̄
t
i) is equal to

zt+1
i = σ(Uzh

t
i + Vzh̄

t
i)

rt+1
i = σ(Urh

t
i + Vrh̄

t
i)

h̃t+1
i = tanh

(
Uh(hti � rt+1

i ) + Vhh̄
t
i

)
ht+1
i = (1− zt+1

i )� hti + zt+1
i � h̃t+1

i ,

where � is the Hadamard point-wise multiplication operator. This model was used for NLP tasks
by Li et al. (2016) and also in quantum chemistry by Gilmer et al. (2017) for fast organic molecule
properties estimation, for which standard techniques (DFT) require expensive computational time.

Tree-Structured LSTM of Tai et al. (2015). The authors extended the original LSTM model of
Hochreiter & Schmidhuber (1997) to a tree-graph structure:

hi = fT-LSTM (xi, {hj : j ∈ C(i)}) = CT-LSTM(xi, hi,
∑

j∈C(i)

hj), (5)

where C(i) refers the set of children of node i. CT-LSTM(xi, hi,
∑

j∈C(i) hj) is equal to

h̄i =
∑

j∈C(i)

hj

ii = σ(Uixi + Vih̄i)

oi = σ(Uoxi + Voh̄i)

c̃i = tanh
(
Ucxi + Vch̄i

)
fij = σ(Ufxi + Vfhj)

ci = ii � c̃i +
∑

i∈C(i)

fij � cj

hi = oi � tanh(ci)
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Unlike the works of Scarselli et al. (2009); Li et al. (2016), Tree-LSTM does not require an iterative
process to update its feature vector hi as the tree structure is also a DAG as original LSTM. Conse-
quently, the feature representation (5) can be updated with a recurrent formula. Nevertheless, a tree
is a special case of graphs, and such recurrence formula cannot be directly applied to arbitrary graph
structure. A key property of this model is the function fij which acts as a gate on the edge from
neighbor j to vertex i. Given the task, the gate will close to let the information flow from neighbor
j to vertex i, or it will open to stop it. It seems to be an essential property for learning systems
on graphs as some neighbors can be irrelevant. For example, for the community detection task, the
graph neural network should learn which neighbors to communicate (same community) and which
neighbors to ignore (different community). In different contexts, Dauphin et al. (2017) added a gated
mechanism inside the regular ConvNets in order to improve language modeling for translation tasks,
and van den Oord et al. (2016) considered a gated unit with the convolutional layers after activation,
and used it for image generation.

2.2 CONVOLUTIONAL NEURAL NETWORKS

Generic formulation. Consider now a classical ConvNet for computer vision. Let h`ij denote the
feature vector at layer ` associated with pixel (i, j). In a regular ConvNet, h`+1

ij is obtained by ap-
plying a non linear transformation to the feature vectors h`i′j′ for all pixels (i′, j′) in a neighborhood
of pixel (i, j). For example, with 3× 3 filters, we would have:

h`+1
ij = f `CNN

(
{h`i′j′ : |i− i′| ≤ 1 and |j − j′| ≤ 1}

)
In the above, the notation {h`i′j′ : |i − i′| ≤ 1 and |j − j′| ≤ 1} denote the concatenation of all
feature vectors h`i′j′ belonging to the 3 × 3 neighborhood of vertex (i, j). In ConvNets, the notion
of neighborhood is given by the euclidian distance. As previously noticed, for graphs, the notion of
neighborhood is given by the graph structure. Thus, the most generic version of a feature vector hi
at vertex i for a graph ConvNet is

h`+1
i = fG-CNN

(
h`i , {h`j : j → i}

)
(6)

where {h`j : j → i} denotes the set of feature vectors of the neighboring vertices. In other words, to
define a graph ConvNet, one needs a mapping fG-CNN taking as input a vector h`i (the feature vector of
the center vertex) as well as an unordered set of vectors {h`j} (the feature vectors of all neighboring
vertices), see Figure 1(b). We also refer to the mapping fG-CNN as the neighborhood transfer function.
In a regular ConvNet, each neighbor as a distinct position relatively to the center pixel (for example
1 pixel up and 1 pixel left from the center). As for graph RNNs, the only vertex which is special for
graph ConvNets is the center vertex around which the neighborhood is built.

CommNets of Sukhbaatar et al. (2016). The authors introduced one of the simplest instantiations
of a graph ConvNet with the following neighborhood transfer function:

h`+1
i = f `G-VCNN

(
h`i , {h`j : j → i}

)
= ReLU

U `h`i + V `
∑
j→i

h`j

 , (7)

where ` denotes the layer level, and ReLU is the rectified linear unit. We will refer to this architecture
as the vanilla graph ConvNet. Sukhbaatar et al. (2016) used this graph neural network to learn the
communication between multiple agents to solve multiple tasks like traffic control.

Syntactic Graph Convolutional Networks of Marcheggiani & Titov (2017). The authors pro-
posed the following transfer function:

h`+1
i = f `S-GCN

(
{h`j : j → i}

)
= ReLU

∑
j→i

ηij � V `h`j

 (8)

where ηij act as edge gates, and are computed by:

ηij = σ
(
A`h`i +B`h`j

)
. (9)

These gated edges are very similar in spirit to the Tree-LSTM proposed in Tai et al. (2015). We
believe this mechanism to be important for graphs, as they will be able to learn what edges are
important for the graph learning task to be solved.
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3 MODELS

Proposed Graph LSTM. First, we propose to extend the Tree-LSTM of Tai et al. (2015) to arbitrary
graphs and multiple layers:

h`+1
i = f `G-LSTM

(
x`i , {h`j : j → i}

)
= CG-LSTM(x`i , h

`
i ,
∑
j→i

h`j , c
`
i) (10)

As there is no recurrent formula is the general case of graphs, we proceed as Scarselli et al. (2009)
and use an iterative process to solve Eq. (10): At layer `, for t = 0, 1, ..., T

h̄`,ti =
∑
j→i

h`,tj ,

i`,t+1
i = σ(U `

i x
`
i + V `

i h̄
`,t
i )

o`,t+1
i = σ(U `

ox
`
i + V `

o h̄
`,t
i )

c̃`,t+1
i = tanh

(
U `
cx

`
i + V `

c h̄
`,t
i

)
f `,t+1
ij = σ(U `

fx
`
i + V `

f h
`,t
j )

c`,t+1
i = i`,t+1

i � c̃`,t+1
i +

∑
j→i

f `,t+1
ij � c`,t+1

j

h`,t+1
i = o`,t+1

i � tanh(c`,t+1
i )

and initial conditions: h`,t=0
i = c`,t=0

i = 0, ∀i, `
x`i = h`−1,Ti , x`=0

i = xi, ∀i, `

In other words, the vector h`+1
i is computed by running the model from t = 0, .., T at layer `. It

produces the vector h`,t=T
i which becomes h`+1

i and also the input x`+1
i for the next layer. The

proposed Graph LSTM model differs from Liang et al. (2016); Peng et al. (2017) mostly because
the cell CG-LSTM in these previous models is not iterated over multiple times T , which reduces the
performance of Graph LSTM (see numerical experiments on Figure 4).

Proposed Gated Graph ConvNets. We leverage the vanilla graph ConvNet architecture of
Sukhbaatar et al. (2016), Eq.(7), and the edge gating mechanism of Marcheggiani & Titov (2017),
Eq.(8), by considering the following model:

h`+1
i = f `G-GCNN

(
h`i , {h`j : j → i}

)
= ReLU

U `h`i +
∑
j→i

ηij � V `h`j

 (11)

where h`=0
i = xi,∀i, and the edge gates ηij are defined in Eq. (9). This model is the most generic

formulation of a graph ConvNet (because it uses both the feature vector h`i of the center vertex and
the feature vectors h`j of neighboring vertices) with the edge gating property.

Residual Gated Graph ConvNets. In addition, we formulate a multi-layer gated graph ConvNet
using residual networks (ResNets) introduced by He et al. (2016). This boils down to add the identity
operator between successive convolutional layers:

h`+1
i = f `

(
h`i , {h`j : j → i}

)
+ h`i . (12)

As we will see, such multi-layer strategy work very well for graph neural networks.

4 EXPERIMENTS

4.1 SUBGRAPH MATCHING

We consider the subgraph matching problem presented by Scarselli et al. (2009), see Figure 2(a).
The goal is to find the vertices of a given subgraph P in larger graphs Gk with variable sizes.
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(a) Subgraph matching (b) Semi-supervised clustering

Figure 2: Graph learning tasks.

Identifying similar localized patterns in different graphs is one of the most basic tasks for graph
neural networks. The subgraph P and larger graphGk are generated with the stochastic block model
(SBM), see for example Abbe (2017). A SBM is a random graph which assigns communities to each
node as follows: any two vertices are connected with the probability p if they belong to the same
community, or they are connected with the probability q if they belong to different communities.
For all experiments, we generate a subgraph P of 20 nodes with a SBM q = 0.5, and the signal on
P is generated with a uniform random distribution with a vocabulary of size 3, i.e. {0, 1, 2}. Larger
graphs Gk are composed of 10 communities with sizes randomly generated between 15 and 25. The
SBM of each community is p = 0.5. The value of q, which acts as the noise level, is 0.1, unless
otherwise specified. Besides, the signal on Gk is also randomly generated between {0, 1, 2}. Inputs
of all neural networks are the graphs with variable size, and outputs are vertex classification vectors
of input graphs. Finally, the output of neural networks are simple fully connected layers from the
hidden states.

All reported results are averaged over 5 trails. We run 5 algorithms; Gated Graph Neural Networks
of Li et al. (2016), CommNets of Sukhbaatar et al. (2016), SyntacticNets of Marcheggiani & Titov
(2017), and the proposed Graph LSTM and Gated ConvNets from Section 3. We upgrade the ex-
isting models of Li et al. (2016); Sukhbaatar et al. (2016); Marcheggiani & Titov (2017) with a
multilayer version for Li et al. (2016) and using ResNets for all three architectures. We also use the
batch normalization technique of Ioffe & Szegedy (2015) to speed up learning convergence for our
algorithms, and also for Li et al. (2016); Sukhbaatar et al. (2016); Marcheggiani & Titov (2017). The
learning schedule is as follows: the maximum number of iterations, or equivalently the number of
randomly generated graphs with the attached subgraph is 5,000 and the learning rate is decreased by
a factor 1.25 if the loss averaged over 100 iterations does not decrease. The loss is the cross-entropy
with 2 classes (the subgraph P class and the class of the larger graph Gk) respectively weighted by
their sizes. The accuracy is the average of the diagonal of the normalized confusion matrix w.r.t.
the cluster sizes (the confusion matrix measures the number of nodes correctly and badly classified
for each class). We also report the time for a batch of 100 generated graphs. The choice of the
architectures will be given for each experiment. All algorithms are optimized as follow. We fix a
budget of parameters of B = 100K and a number of layers L = 6. The number of hidden neurons
H for each layer is automatically computed. Then we manually select the optimizer and learning
rate for each architecture that best minimize the loss. For this task, Li et al. (2016); Sukhbaatar et al.
(2016); Marcheggiani & Titov (2017) and our gated ConvNets work well with Adam and learning
rate 0.00075. Graph LSTM uses SGD with learning rate 0.075. Besides, the value of inner iterative
steps T for graph LSTM and Li et al. (2016) is 3.

The first experiment focuses on shallow graph neural networks, i.e. with a single layer L = 1. We
also vary the level of noise, that is the probability q in the SBM that connects two vertices in two
different communities (the higher q the more mixed are the communities). The hyper-parameters are
selected as follows. Besides L = 1, the budget isB = 100K and the number of hidden neuronsH is
automatically computed for each architecture to satisfy the budget. First row of Figure 3 reports the
accuracy and time for the five algorithms and for different levels of noise q = {0.1, 0.2, 0.35, 0.5}.
RNN architectures are plotted in dashed lines and ConvNet architectures in solid lines. For shallow
networks, all RNN architectures (graph LSTM and Li et al. (2016)) performs much better, but they
also take more time than the graph ConvNets architectures we propose, as well as Sukhbaatar et al.
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(2016); Marcheggiani & Titov (2017). As expected, all algorithms performances decrease when the
noise increases.

The second experiment demonstrates the importance of having multiple layers compared to shallow
networks. We vary the number of layers L = {1, 2, 4, 6, 10} and we fix the number of hidden
neurons to H = 50. Notice that the budget is not the same for all architectures. Second row
of Figure 3 reports the accuracy and time w.r.t. L (middle figure is a zoom in the left figure).
All models clearly benefit with more layers, but RNN-based architectures see their performances
decrease for a large number of layers. The ConvNet architectures benefit from large L values, with
the proposed graph ConvNet performing slightly better than Sukhbaatar et al. (2016); Marcheggiani
& Titov (2017). Besides, all ConvNet models are faster than RNN models.

In the third experiment, we evaluate the algorithms for different budgets of parameters B =
{25K, 50K, 75K, 100K, 150K}. For this experiment, we fix the number of layers L = 6 and
the number of neurons H is automatically computed given the budget B. The results are reported
in the third row of Figure 3. For this task, the proposed graph ConvNet best performs for a large
budget, while being faster than RNNs.
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Figure 3: Subgraph matching: First row studies shallow networks w.r.t. noise. Second row investi-
gates multilayer graph networks. Third row reports graph architectures w.r.t. budget.

We also show the influence of hyper-parameter T for Li et al. (2016) and the proposed graph LSTM.
We fix H = 50, L = 3 and B = 100K. Figure 4 reports the results for T = {1, 2, 3, 4, 6}. The T
value has an undesirable impact on the performance of graph LSTM. Multi-layer Li et al. (2016) is
not really influenced by T . Finally, the computational time naturally increases with larger T values.

4.2 SEMI-SUPERVISED CLUSTERING

In this section, we consider the semi-supervised clustering problem, see Figure 2(b). This is also a
standard task in network science. For this work, it consists in finding 10 communities on a graph
given 1 single label for each community. This problem is more discriminative w.r.t. to the architec-
tures than the previous single pattern matching problem where there were only 2 clusters to find (i.e.
50% random chance). For clustering, we have 10 clusters (around 10% random chance). As in the
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Figure 4: Influence of hyper-parameter T on RNN architectures. Left figure is for graph matching,
middle figure for semi-supervised clustering, and right figure are the batch time for the clustering
task (same trend for matching).

previous section, we use SBM to generate graphs of communities with variable length. The size for
each community is randomly generated between 5 and 25, and the label is randomly selected in each
community. Probability p is 0.5, and q depends on the experiment. For this task, Li et al. (2016);
Sukhbaatar et al. (2016); Marcheggiani & Titov (2017) and the proposed gated ConvNets work well
with Adam and learning rate 0.00075. Graph LSTM uses SGD with learning rate 0.0075. The value
of T for graph LSTM and Li et al. (2016) is 3.

The same set of experiments as in the previous task are reported in Figure 5. ConvNet architectures
get clearly better than RNNs when the number of layers increase (middle row), with the proposed
Gated ConvNet outperforming the other architectures. For a fixed number of layersL = 6, our graph
ConvNets and Marcheggiani & Titov (2017) best perform for all budgets, while paying a reasonable
computational cost.
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Figure 5: Semi-supervised clustering: First row reports shallow networks w.r.t. noise q. Second row
shows multilayer graph networks w.r.t. L. Third row is about graph architectures w.r.t. budget B.
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Next, we report the learning speed of the models. We fix L = 6, B = 100K with H being
automatically computed to satisfy the budget. Figure 6 reports the accuracy w.r.t. time. The ConvNet
architectures converge faster than RNNs, in particular for the semi-supervised task.
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Figure 6: Learning speed of RNN and ConvNet architectures. Left figure is for graph matching and
right figure semi-supervised clustering.

To close this study, we are interested in comparing learning based approaches to non-learning varia-
tional ones. To this aim, we solve the variational Dirichlet problem with labeled and unlabelled data
as proposed by Grady (2006). We run 100 experiments and report an average accuracy of 45.37%
using the same setting as the learning techniques (one label per class). The performance of the best
learning model is 82%. Learning techniques produce better performances with a different paradigm
as they use training data with ground truth, while variational techniques do not use such information.
The downside is the need to see 2000 training graphs to get to 82%. However, when the training
is done, the test complexity of these learning techniques is O(E), where E is the number of edges
in the graph. This is an advantage over the variational Dirichlet model that solves a sparse linear
system of equations with complexity O(E3/2), see Lipton et al. (1979).

5 CONCLUSION

This work explores the choice of graph neural network architectures for solving learning tasks with
graphs of variable length. We developed analytically controlled experiments for two fundamental
graph learning problems, that are subgraph matching and graph clustering. Numerical experiments
showed that graph ConvNets had a monotonous increase of accuracy when the network gets deeper,
unlike graph RNNs for which performance decreases for a large number of layers. This led us
to consider the most generic formulation of gated graph ConvNets, Eq. (11). We also explored
the benefit of residuality for graphs, Eq. (12). Without residuality, existing graph neural networks
are not able to stack more than a few layers. This makes this property essential for graph neural
networks, which receive a 10% boost of accuracy when more than 6 layers were stacked. Future
work will focus on solving domain-specific problems in chemistry, physics, and neuroscience.
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