Under review as a conference paper at ICLR 2017

Important note: This technical report refers to an outdated draft, which is no longer maintained
by the authors. Please refer to https://arxiv.org/pdf/1702.08484 .pdf|for the current
version with updated theory, algorithms, and experimental results. All subsequent revisions will be
posted on the above arXiv link.

BOOSTED GENERATIVE MODELS

Aditya Grover & Stefano Ermon
Department of Computer Science

Stanford University

{adityag, ermon}@cs.stanford.edu

ABSTRACT

We propose a new approach for using boosting to create an ensemble of gener-
ative models, where models are trained in sequence to correct earlier mistakes.
Our algorithm can leverage many existing base learners, including recent latent
variable models. Further, our approach allows the ensemble to leverage discrim-
inative models trained to distinguish real from synthetic data during sample gen-
eration. We show theoretical conditions under which incorporating a new model
to the ensemble will improve the fit and empirically demonstrate the effectiveness
of boosting on density estimation, sample generation, and unsupervised feature
learning on real and synthetic datasets.

1 INTRODUCTION

Many of the recent successful applications of machine learning in computer vision, speech recog-
nition, and natural language processing are based on discriminative models. Learning generative
models has proven to be much more difficult. Deep architectures, including latent variable mod-
els such as Boltzmann machines (Smolensky, |1986), variational autoencoders (Kingma & Welling,
2014])), and generative adversarial networks (Goodfellow et al., 2014), have recently shown great
success. Despite significant progress, existing generative models cannot fit complex distributions
with a sufficiently high degree of accuracy.

In this paper, we propose a technique for ensembling (imperfect) generative models to improve
their overall performance. Our meta-algorithm is inspired by boosting, a powerful technique used in
supervised learning to construct ensembles of weak classifiers (e.g., decision stumps or trees), which
individually might not perform well on a given classification task. The boosting algorithm will
attempt to learn a classifier to correct for the mistakes made and repeat this procedure recursively.
Under some conditions on the weak classifiers’ effectiveness, the boosting meta-algorithm can drive
the (training) error to zero (Freund et al., |1999). Boosting can also be thought as a feature learning
algorithm, where at each round a new feature is learned by training a classifier on a re-weighted
version of the original dataset. In practice, algorithms based on boosting (such as boosted trees)
perform extremely well in machine learning competitions (Caruana & Niculescu-Mizil, 2006).

We show that a similar procedure can be applied to generative models. Given an initial generative
model that provides an imperfect fit to the data distribution, we construct a second model to correct
for the error, and repeat recursively. The second model is also a generative one, which is trained on
a re-weighted version of the original training set. Our meta algorithm is general and can construct
ensembles of many existing generative models such as restricted Boltzmann machines and varia-
tional autoencoders. Surprisingly, our method can even leverage discriminative models, which have
been shown to perform extremely well in practice (Krizhevsky et al., [2012; [LeCun et al.| 2015).
Specifically, we train a discriminator to distinguish true data samples from “fake” ones generated by

https://arxiv.org/pdf/1702.08484.pdf

Under review as a conference paper at ICLR 2017

the current model and provide a principled way to include this discriminator in the ensemble. We
also provide conditions under which adding a model to the ensemble is guaranteed to improve the
fit and recover the true data distribution under idealized conditions.

To evaluate our algorithmic framework, we learn several ensembles of weakly-trained generators
and discriminators and test them on popular use cases of generative models: density estimation,
sample generation, and unsupervised feature learning. We show how boosted generative models can
outperform baseline models without any additional computation cost.

2 BOOSTING GENERATIVE MODELS

Boosting is an ensembling technique for supervised learning, providing an algorithmic formalization
of the hypothesis that a sequence of weak learners can create a single strong learner (Schapire & Fre-
und, [2012)). In this section, we propose a framework that extends boosting to unsupervised settings
for learning joint distributions using generative models. For ease of presentation, all distributions
are w.r.t. any arbitrary x € R%, unless otherwise specified.

Formally, we consider the following maximum likelihood estimation (MLE) setting. Given some
data points X = {x; € R4}, sampled i.i.d. from an unknown distribution with p.d.f. p, we
provide a model class Q parametrizing the distributions that can be represented by the generative
model and minimize the KL-divergence w.r.t. the true distribution,

in D . 1
min kLl q) (1)

In practice, we only observe samples from p and hence, maximize the log-likelihood of the observed
data X. Selecting the model class for maximum likelihood learning is non-trivial; the maximum
likelihood estimate w.r.t. a small class can be very far from the true distribution whereas a large
class poses the risk of overfitting.

2.1 FACTORED LIKELIHOODS FOR UNSUPERVISED BOOSTING

In unsupervised boosting, we factorize the joint distribution specified by a generative model as a ge-
ometric average of 7' + 1 intermediate model distributions {h; }1_, each assigned an exponentiated
weight oy,

T
[0 12"

qr = Zr

where the partition function Zy = [szo hi* dx. Because a joint optimization over all the in-
termediate model distributions and weights is computationally prohibitive, we instead perform a
greedy optimization at every round. The joint distribution of a boosted generative model (BGM) can
be recursively expressed as,

G = hi" - G—1)

where ¢; is the unnormalized BGM distribution (at round ¢). The base model distribution hq is
learned using the maximum likelihood principle. Given suitable weights, we now derive conditions
on the intermediate model distributions that allow us to make “progress” in every round of boosting.

Theorem 1. Let 0% (hi,ar) = Drr(p || qi-1) — Drr(p || q:) denote the reduction in KL
divergence at the t'" round of boosting. Then, for all 0 < «; < 1, the following conditions hold,

1. Sufficient: If Ep[log hy] > logEq, | [h], then 6% (he, at) > 0.

2. Necessary: If 6% ; (hi, o) > 0, then Ep[log hy] > Eq, , [log hyl.

Proof. See Appendix O

Under review as a conference paper at ICLR 2017

Algorithm 1 DiscBGM(X = {x;},, T rounds)

Initialize Dy(x;) = 1/mforalli =1,2,...,m.
Set (unnormalized) density estimate Go = hg
Train generative model hg to maximize Ey,~ p, [log ho(x;)]

fort=1,...,Tdo
e Generate k negative samples from q;_1
o Train discriminative model d; to maximize Ex,~.p, [log di| + Ex,~q,_, [log(1 — d;)].

e Seth, =~

lftdt where v = k/m.
e Choose «;.
e Set (unnormalized) density estimate G = hy** - Gi—1.

end for

Estimate Zr = [gr(x)dx.
return gr = §r/Zr

The equality in the above conditions holds true for oy = 0 which corresponds to the trivial case
where the intermediate model distribution in the current round is ignored in the BGM distribution
in Eq.). For all other valid a; > 0, the non-degenerate versions of the sufficient inequality
guarantees progress towards the true data distribution. Note that the intermediate models increase
the overall capacity of the BGM at every round.

From the necessary condition, we see that a “good” intermediate density h; necessarily assigns a
better-or-equal log-likelihood under the true desired distribution as opposed to the BGM distribution
in the previous round, ¢;_1. This condition suggests two learning objectives for intermediate models
which we discuss next.

2.2 DISCRIMINATIVE APPROACH FOR BOOSTING GENERATIVE MODELS

In the discriminative approach for boosting generative models, the intermediate model distribution
is specified as the odds ratio of a binary classifier. Specifically, consider the following binary clas-
sification problem: we observe m samples drawn i.i.d. from the true data distribution p (w.l.o.g.
assigned the label y = +1), and k samples drawn i.i.d. from the BGM distribution in the previ-
ous round ¢;—; (assigned the label y = —1). The objective of the binary classifier is to learn a
conditional distribution d; € D; that maximizes the cross-entropy,

nax Ex~pllog di] + Ex~g, . [log(1 —d;)]. 3)
Definition 1. If u; denotes the joint distribution over (x,y) at round t, then a binary classifier with
density d; is Bayes optimal iff,

di(x) = ut(y = +1 | x).

Theorem 2. If a binary classifier d; trained to optimize Eq. is Bayes optimal, then the BGM
distribution at the end of the round will immediately converge to the true data distribution if we set
o = 1 and

dy

11— d,

hy = “4)

where v = k/m.

Proof. See Appendix O

In practice, a classifier with limited capacity trained on a finite dataset will not generally be Bayes
optimal. The above theorem, however, suggests that a good classifier can provide a “direction of im-
provement”. Additionally, if the intermediate model distribution h; obtained using Eq. {@) satisfies
the conditions in Theorem [I] it is guaranteed to improve the BGM distribution.

Under review as a conference paper at ICLR 2017

Algorithm 2 GenBGM(X = {x;},, T rounds)

Initialize Dy(x;) = 1/m foralli =1,2,...,m.
Train generative model hg to maximize Ey,~ p, [log ho(%;)]-
Set (unnormalized) density estimate Gy = hg

fort=1,2,...,T do
e Update D; using Eq. (3).
e Train generative model h; to maximize Ex, . p, [log h¢(x;)].
e Choose «;.
e Set (unnormalized) density estimate G = Gz—1 - hy.
end for

Estimate Zr = [§r(x)dx.
return qr = ¢r/Zt.

The pseudocode for the corresponding boosting algorithm DiscBGM is given in Algorithm[I] At
every round of boosting, we train a binary classifier to optimize the objective in Eq. (3). Note that
the BGM distributions at the intermediate boosting rounds can be specified up to a normalization
constant if samples from the previous BGM distribution are generated via MCMC sampling. If the
partition function is required, it can be estimated using techniques such as Annealed Importance
Sampling (Neal, 2001)

The weights 0 < a; < 1 can be interpreted as our confidence in the classifier density estimate. While
in practice we use heuristic strategies for assigning weights to the intermediate models, the greedy
optimum value of these weights at every round is a critical point for &%, (defined in Theorem .
We consider a few special cases below.

e If d; is uninformative, i.e., d; = 0.5, then % ; (ht, o) = 0 forall 0 < oy < 1.
e If d; is Bayes optimal, then 0%, attains a maxima at o = 1. (Theorem .

e For a completely adversarial classifier w.r.t. the Bayes optimality criteria, i.e., d:(x) =
u(y = —1|x), we have the following result.

Corollary 1. If d, is completely adversarial, then 8% ; attains a maxima of zero at oy = 0.

Proof. See Appendix O

2.3 GENERATIVE APPROACH FOR BOOSTING GENERATIVE MODELS

In the greedy optimization framework of unsupervised boosting, we want to learn an intermediate
model distribution at every round that maximizes §%; when factored as a product with the BGM dis-
tribution in the previous round. In the generative approach, the intermediate model specifies a ratio
of densities and maximizes the log-likelihood of data sampled from a reweighted data distribution,

max Ex~p, [log h¢]

where D; P (5)

Qt—l.

The pseudocode for the corresponding unsupervised boosting algorithm, GenBGM is is given in
Algorithm[2] Starting with a uniform distribution over X, GenBGM learns an intermediate model at
every round that maximizes the log-likelihood of data sampled from a reweighted data distribution.

"For many applications of generative models such as sample generation and feature learning, we can
sidestep computing the partition function.

Under review as a conference paper at ICLR 2017

2.4 GENERATIVE-DISCRIMINATIVE APPROACH FOR BOOSTING GENERATIVE MODELS

Intermediate models need not be exclusively generators or discriminators as in Algorithm [I] and
Algorithm 2} we can design a boosting algorithm that uses any ensemble of generators and discrimi-
nators as intermediate models. If an intermediate distribution is required to be a generator, we train a
generative model by appropriately reweighting our training set. If a discriminator odds ratio is used
to specify an intermediate distribution, we set up the corresponding binary classification problem.

In practice, we want BGMs to generalize to data points outside the training set X. Regularization
in BGMs is imposed primarily in two ways. First, every intermediate model can be independently
regularized by incorporating explicit terms in the learning objective, early stopping of training based
on validation error, specialized techniques such as dropout, etc. Moreover, regularization in BGMs
is also imposed by restricting the number of rounds of boosting. If the intermediate models are
exseveral applications of pressive enough, then very few rounds of boosting are required. We now
do an empirical study of BGMs for several applications of generative modeling.

3 EMPIRICAL EVALUATION

We evaluated the performance of BGMs as a general-purpose meta-algorithm for generative model-
ing applications on real and synthetic datasets for three tasks: density estimation, sample generation,
and unsupervised feature learning for downstream semi-supervised classification.

3.1 DENSITY ESTIMATION

A common pitfall with training generative models is model misspecification w.r.t. the true under-
lying data distribution. To illustrate how BGMs can effectively correct for model misspecification,
we consider density estimation on synthetic data. The true data distribution in Figure 1] (a) is a
equi-weighted mixture of four Gaussians centered symmetrically around the origin, each having an
identity covariance matrix. We only observe 1,000 samples drawn i.i.d. from the data distribution
(shown as black dots), and the task is to learn this distribution.

Experimental setup. As a baseline (misspecified) model, we fit a mixture of two Gaussians to the
data shown in Figure[I] (b). We evaluate the following ensembling techniques.

1. Bagging. Bagging works just like GenBGM but without any reweighting at every round of
ensembling. The intermediate generative models are mixtures of two Gaussians.

2. GenBGM (Algorithm[2)). The intermediate models are mixtures of two Gaussians.

3. DiscBGM (Algorithm [I). The binary classifiers used to specify the intermediate models
are support vector machines (SVMs) with a radial basis function kernel.

In all ensembles, equal weights are heuristically assigned to every model such that 7 «; = 1. For
the bagging and GenBGM approaches, ensembling is stopped after 7' = 3 rounds when the addition
of a new model does not result in any significant change in the density estimate. For the DiscBGM
approach, ensembling is stopped after 7' = 15 rounds to prevent overfitting.

Results and discussion. The contour plots for the density estimated by the three approaches are
shown in Figure[T] While the bagging approach is not very effective, GenBGM and DiscBGM steer
the initial misspecified distribution towards the true distribution. DiscBGM is more conservative in
assigning density mass to outliers and requires more rounds of boosting as opposed to GenBGM.

3.2 SAMPLE GENERATION

In this task, we generate samples from the learned BGM models and visually inspect their quality.
We consider sample generation for the binarized MNIST handwritten digits dataset (LeCun et al.,
2010), which contains 50,000 train, 10,000 validation, and 10,000 test images of dimensions 28 x 28.

Experimental setup. Boosting is a particularly attractive framework for improving weak learners.
For a baseline generative model, we consider the following two latent variable models.

Under review as a conference paper at ICLR 2017

-10 =5 o 5 10 -10] 0 5 10

(a) Target distribution (b) Base generative model (¢ = 0)

(c) Bagging (t = 1) (d) Bagging (t = 2) (e) Bagging (t = 3)

(f) GenBGM (¢ = 1) () GenBGM (t = 2) (h) GenBGM (t = 3)

(i) DiscBGM (t = 5) (j) DiscBGM (t = 10) (k) DiscBGM (¢t = 15)

Figure 1: Densities estimated using GenBGM (f-h) and DiscBGM (i-k) can correct for model mis-
specification (b) w.r.t. the true distribution (a) unlike densities estimated using other bagging-style
ensembling methods (d-f).

Variational Autoencoder (Kingma & Welling| 2014). VAEs are directed models with continuous
latent units where the posterior over the latent units is specified using a neural network. We use the
evidence lower bound as a proxy for approximately evaluating the log-likelihood during learning.

Restricted Boltzmann Machine (Smolenskyl |1986). RBMs are undirected 2-layer models with dis-
crete latent units such that the latent and visible layer form a fully-connected bipartite graph. In
RBMs, the log-likelihood can be tractably computed up to a normalization constant and learning is
done using contrastive divergence (Hinton, 2002).

We compare the baseline models with several BGMs. The starting distribution hg for a BGM is
specified using a VAE or an RBM with the same model specification and learning procedure as the
baseline models. However, when baseline models are used on their own (7' = 0, i.e., no boosting)
the training is run for 50 epochs. It is reduced to 10 epochs when the base model is used to specify

Under review as a conference paper at ICLR 2017

“~

]

5 g ~ |~ |
4[s]3]%]3]
X, ™ - (3
HHHEE

(b) Baseline RBM

%48

(e) VAE— RBM
522 6|d
EIFACIEF]

Ekibirr
6[{|0/6]Y
71774 8]

(f) VAE — CNN (g) RBM — CNN (h) VAE — CNN — RBM

Figure 2: Samples generated from the boosted generative models (c-h) demonstrate how boosting
may be used to ensemble weak learners (a, b) into stronger models with samples that are much more
visually reflective of the true data distribution.

a BGM with T' > 0, in an attempt to ensure fairness in terms of computation. The intermediate
distributions are specified either using a VAE or RBM, or through a Convolutional Neural Network
(CNN) (LeCun & Bengiol [1995) that performs binary classification.

The model architectures, learning procedure, and hyperparameters for the VAE, RBM, and CNN are
described in Appendix [A.2] The boosting sequences we consider are as follows.

1. T' = 0: Baseline VAE, Baseline RBM.
2. T =1: VAE — VAE, RBM — RBM, VAE — RBM, VAE — CNN, RBM — CNN.
3. T = 2: VAE — CNN — RBM.

The weights, «’s, at every round are set to unity for all BGMs, with exceptions made in the cases
of RBM — RBM (ag = 0.1,a; = 0.9) and VAE — RBM (o = 0.3, @7 = 0.7) where the tuned
weights offered significant performance enhancements over the default setting. For the baseline
models, we use the respective customary sampling technique, i.e., forward sampling for VAEs and
blocked Gibbs sampling for RBMs. Samples from the BGMs are generated by running a Markov
chain using the Metropolis-Hastings algorithm with a discrete, uniformly random proposal and the
BGM distribution as the stationary distribution for the chain.

Results and discussion. The samples generated by the baseline models and BGM models are shown
in Figure 2] While BGMs significantly improve over baselines models in all cases, evaluating the
relative performance of the intermediate models purely based on the samples is hard since these
models have different architectures and parameter settings.

Under review as a conference paper at ICLR 2017

Table 1: Training time (in seconds) of the baseline models and boosted generative models.

Model Train time H Model Train time
Baseline VAE 267 Baseline RBM 472
VAE — VAE 140 RBM — RBM 266
VAE — CNN 285 RBM — CNN 554
VAE — RBM 213 VAE — RBM — CNN 625
1.0 T T T T T T T T T 1.0
0.9 0.9
0.8 0.8
gm g()i
3 3
5 0.6 506
<< <
§05 §05
g 8
£ 04 £ 04] Baseline VAE
803 803 «]- Baseline RBM
o o —— VAE-VAE
0.2 0.2 —— RBM—RBM
o1 o1 —— VAE—RBM
) VAE—CNN—RBM
l)‘l)ll 10 20 30 40 50 60 70 80 90 100 “'“l) 10 20 30 40 50 60 70 80 90 100
Number of labels per class Number of labels per class
(a) Total dataset size: 1,000 (b) Total dataset size: 2,000

Figure 3: Semi-supervised classification using unsupervised feature learning. The boosted genera-
tive models are competitive and can also outperform baseline models with an appropriate sequence
of intermediate models.

Learning in BGMs is also computationally efficient. We show the wall-clock time taken to learn
these models in Table[T} In many cases, BGMs generate significantly better looking samples with a
lower training time compared to the baseline models. A key observation that emerges from the re-
sults is that discriminators are more computationally expensive since they require MCMC sampling
from the previous generative model distribution as opposed to using intermediate generative models,
which only require reweighting of the training set.

3.3 UNSUPERVISED FEATURE LEARNING

Latent variable models are particularly attractive for unsupervised feature learning since they directly
learn hidden representations that model interdependencies between the data variables. In this task,
we evaluate the latent representations learned by BGMs for semi-supervised classification on the
MNIST dataset consisting of 10 classes.

Setup. We consider the same baselines as before and compare against BGM sequences that have
more than a single generator. For the BGM sequences, we concatenate the parameters specifying the
posterior over the latent variables (conditioned on the observed variables) in the intermediate models
to form a feature representation which we then feed into a transductive-SVM. For the transductive-
SVM, we use a publicly available implemention (Joachims| |1999) with a linear kernel and all other
parameters set to their default values. Due to computational constraints on the classification proce-
dure, we experiment with subsets of the training dataset and perform semi-supervised classification
on a class-balanced sampling of 1,000 and 2,000 training data points varying the number of labelled
instances per class from 5 to 80. The procedure is repeated 10 times for statistical significance.

Results and discussion. The classification accuracies are show in Figure|3| We observe that BGMs
closely match, and in some cases outperform the representations learned by baseline models in spite
of making fewer passes over the data. A likely explanation of this phenomena is due to the fact
that the learning objective for intermediate models is aware of the BGM distribution at the previous

Under review as a conference paper at ICLR 2017

round, and hence, is more computationally efficient in modeling specific regions of the underlying
distribution that are not covered by the BGM distribution in the previous round.

While it is difficult to make general statements about the intermediate models (which are likely to
be dataset specific), a surprising observation is that representations learned by the sequence VAE —
CNN — RBM are weaker for classification purposes than the representations learned by a similar
VAE — RBM sequence. The likely explanation for this observation is that having a generator later
in the sequence offers diminishing advantage from the perspective of feature learning, assuming the
previous intermediate models are making progress in modeling the underlying true distribution.

4 DISCUSSION AND RELATED WORK

In this work, we revisited boosting, a meta-algorithmic framework developed in response to a sem-
inal question posed by |[Kearns & Valiant| (1994)): can a set of weak learners create a strong learner?
For the supervised learning problem, boosting has offered interesting theoretical insights into the
fundamental limits of learning and led to the development of practical algorithms that work well in
practice (Schapire, |1990; [Freund et al.| |1999; [Friedman 2002} |Caruana & Niculescu-Mizill, 2006).

The algorithmic framework we propose in this work builds on the insights offered by prior work
in boosting, yet is significantly different as the motivation is to learn generative models in unsuper-
vised settings. In order to do so, we first defined an appropriate objective function for the generative
model. We considered the standard log-loss because of its tight connections with the maximum
likelihood principle. In the supervised setting, |[Lebanon & Lafferty| (2002) have shown theoretical
results connecting the log-loss for exponential families and the exponential loss minimized by Ad-
aBoost (Freund et al.l [1999). Subsequently, we showed how we can greedily optimize a factored
generative model as a sequence of intermediate models. Finally, we incorporated the boosting intu-
ition to develop an algorithmic framework where the intermediate models are tightly coupled with
the previous models in the sequence and yet can be efficiently learned in practice.

In the context of unsupervised learning, recent advancements in deep generative models have signifi-
cantly improved our ability to model high-dimensional distributions. For example, highly expressive
models such as pixel-RNNs (Oord et al., 2016) and ladder networks (Rasmus et al., [2015]) exhibit
state-of-the-art performance in generating natural images and semi-supervised learning respectively.
The flexibility in choosing intermediate models in BGMs allows for potential integration of these
models in our proposed framework.

There has also been a renewed interest in the use of density ratios to distinguish data samples from
the model samples. This unsupervised-as-supervised learning approach was first proposed by [Fried-
man et al.[(2001) and forms the basis for using binary classifiers for specifying intermediate models
in Algorithm [I| The approach has subsequently been applied elsewhere, including parameter esti-
mation in unnormalized models (Gutmann & Hyvirinen, [2010). [Tu|(2007)’s approach for generative
modeling is closely related to Algorithm I} but fails to account for imperfections in learning of dis-
criminative models, and the ability to incorporate generative models alongside discriminative mod-
els. Hybrid generative-discriminative classifiers have been applied to supervised settings (Truyen
et al.,[2006; |Grabner et al., [2007; [Negri1 et al., 2008; Ratner et al., [2016)).

Recently, the unsupervised-as-supervised learning approach has been successfully applied for sam-
ple generation in generative adversarial networks (GAN) (Goodfellow et al.l |2014). GANs consist
of a pair of generative-discriminative networks. While the discriminator maximizes the conditional
entropy as in Eq. (3), the generator minimizes the same objective. For a parametric class of gen-
erative and discriminative networks, the stationary point is a saddle point i.e., a local minima for
the generator and a local maxima for the discriminator. Accordingly, the GAN objective is not
guaranteed to converge, and stable training of GANs is difficult in practice (Goodfellow, [2014).
Additionally, GANs do not explicitly represent the likelihood of the generative model limiting their
applicability, and Parzen window estimates of the model’s log-likelihood (Breuleux et al., 2011) can
be misleading (Theis et al.|[2016).

Borrowing terminology from|Mohamed & Lakshminarayanan| (2016), our work fits into the frame-
work of prescribed probabilistic models that provide an explicit characterization of the log-
likelihood and can still benefit from the unsupervised-as-supervised learning approach by incor-
porating intermediate models specified using discriminative approaches.

Under review as a conference paper at ICLR 2017

5 CONCLUSION

We presented a general-purpose framework for boosting generative models by explicit factorization
of the model likelihood as a product of simpler intermediate model distributions. These intermediate
model distributions are learned greedily using discriminative or generative approaches, gradually
increasing the overall model’s capacity. We demonstrated the effectiveness of boosted generative
models by designing ensembles of weakly trained variational autoencoders, restricted Boltzmann
machines, and convolutional neural networks. Our ensembles improve upon baseline generative
models on density estimation, sample generation, and unsupervised feature learning without incur-
ring any significant computational overhead.

As a future work, we would like to apply our framework to more sophisticated models on complex
datasets such as natural images. The optimal weighting for intermediate models also remains an
open question to explore in future work. Finally, in the proposed framework, an intermediate model
specified using a discriminator requires MCMC sampling from the BGM distribution at the previous
round. This can be expensive, and future work could explore the design of more efficient strategies.

REFERENCES

Olivier Breuleux, Yoshua Bengio, and Pascal Vincent. Quickly generating representative samples
from an rbm-derived process. Neural Computation, 23(8):2058-2073, 2011.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. In ICML, 2006.

Yoav Freund, Robert Schapire, and N Abe. A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):1612, 1999.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics Springer, Berlin, 2001.

Jerome H Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38
(4):367-378, 2002.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Ian J Goodfellow. On distinguishability criteria for estimating generative models. arXiv preprint
arXiv:1412.6515, 2014,

Helmut Grabner, Peter M Roth, and Horst Bischof. Eigenboosting: Combining discriminative and
generative information. In CVPR, 2007.

Michael Gutmann and Aapo Hyvirinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In AISTATS, 2010.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771-1800, 2002.

T. Joachims. Transductive inference for text classification using support vector machines. In ICML,
1999.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. JACM, 41(1):67-95, 1994.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR, 2015.
Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NIPS, 2012.

Guy Lebanon and John Lafferty. Boosting and maximum likelihood for exponential models. In
NIPS, 2002.

10

Under review as a conference paper at ICLR 2017

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. Mnist handwritten digit database. AT&T
Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv
preprint arXiv:1610.03483, 2016.

Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125-139, 2001.
Pablo Negri, Xavier Clady, Shehzad Muhammad Hanif, and Lionel Prevost. A cascade of boosted
generative and discriminative classifiers for vehicle detection. EURASIP Journal on Advances in

Signal Processing, 2008.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In ICML, 2016.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. In NIPS, 2015.

Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data program-
ming: Creating large training sets, quickly. In NIPS, 2016.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197-227, 1990.
Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. MIT press, 2012.

Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory.
Technical report, DTIC Document, 1986.

Lucas Theis, Adron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. In ICLR, 2016.

Tran The Truyen, Dinh Q Phung, Svetha Venkatesh, and Hung Hai Bui. Adaboost. mrf: Boosted
markov random forests and application to multilevel activity recognition. In CVPR, 2006.

Zhuowen Tu. Learning generative models via discriminative approaches. In CVPR, 2007.

A APPENDICES

A.1 PROOFS

A.1.1 THEOREM[]

Proof. We first derive the sufficient condition,
O, (e, o) = /plogqt dx — /plog g1 dx

_ h{t - qr .

= [plog Yz plogg:—1 (using Eq. (@)

=y - Ep[log hy] —logE,, | [h"] (6)
> ay - Eyllog hy] — log Eg, , [he]™ (Jensen’s inequality)

= oy - [Epllog hy] — log By, [h¢]]

>0 (by assumption).

11

Under review as a conference paper at ICLR 2017

Note that if a; = 1, the sufficient condition is also necessary. For the necessary condition,
0 < 8% (hey o) = ay - Epllog hy] — log By, [R7]
< ay-Eylloghi] — Eq, , [log h] (Jensen’s inequality)
=y - [Epllog hy] — Eq,_, [log hy]] (Linearity of expectation)
< E,[log h] — Eq, _, [log h (since 0 < ay < 1).

A.1.2 THEOREM[Z

Proof. For the proposed binary classification problem, since the m positive training examples are
sampled from p and the k negative training examples are sampled from g;_1,

p=ulxly=+1) u(y =+1) = ik (7
k
-1 = u(xly = —1) uly =—-1) = A (8)
The Bayes optimal density d can be expressed as,
dy = uly = +1|x) (from Definition [T])
=ux |y =+Duly = +1)/u(x). ©)
Similarly,
1—di=ulx|y=-Duly = —-1)/u(x). (10)
From Egs. (7} [I0), we have,
o dy __Pp
L—di g1
Finally from Eq. (2),
q = q—1 - hy"
=P
finishing the proof. O
A.1.3 COROLLARYI]
Proof. For a completely adversarial classifier w.r.t. Bayes optimality,
dy = u(x |y = —Du(y = —1)/u(x) (11)
1—di=u(x|y=4+Duly =—+1)/u(x). (12)
From Eqs. (78] [TT][T2).
dy
hy =~ -
U
_ &t
p

Substituting the above intermediate model distribution in Eq. @,

Step(hayen) = ar - B, [log QH logE,, . [qgl }

<aE, [g qtpl} Eq. . {at log %1} (Jensen’s inequality)

p
=qy- []Ep {log qtl} Eq . {log } (Linearity of expectation)
b
=~ [Drr(p | ¢-1) + Drr(g-1 || p)]
<0 (D 1, is non-negative).
By inspection, the equality holds when a; = 0 finishing the proof. O

12

Under review as a conference paper at ICLR 2017

A.2 MODEL ARCHITECTURES AND PARAMETER SETTINGS

The baseline VAE model consists of a deterministic hidden layer with 500 units between the visible
layer and stochastic hidden layer with 50 latent variables. The inference network specifying the pos-
terior also contains a single deterministic layer with 500 units. The prior over the latent variables is
standard Gaussian, the hidden layer activations are tanh, and learning is done using Adam (Kingma
& Ba,|2015) with a learning rate of 10~3 and mini-batches of size 100.

The baseline RBM model consists of 250 hidden units trained for 50 epochs using Stochastic Gra-
dient Descent with a learning rate of 5 x 10~2, mini-batches of size 100, and 15 steps of contrastive
divergence.

The CNN contains two convolutional layers and a single full connected layer with 1024 units. Con-
volution layers have kernel size 5 x 5, and 32 and 64 output channels, respectively. We apply ReL.Us
and 2 x 2 max pooling after each convolution. The net is randomly initialized prior to training, and
learning is done for 2 epochs using Adam (Kingma & Ba, [2015)) with a learning rate of 10~ and
mini-batches of size 100.

13

	Introduction
	Boosting Generative Models
	Factored likelihoods for unsupervised boosting
	Discriminative approach for boosting generative models
	Generative approach for boosting generative models
	Generative-discriminative approach for boosting generative models

	Empirical evaluation
	Density estimation
	Sample generation
	Unsupervised feature learning

	Discussion and Related work
	Conclusion
	appendices
	Proofs
	Theorem 1
	Theorem 2
	Corollary 1

	Model architectures and parameter settings

