AprilFEC: Real-Time Channel Estimation and
Adaptive Forward Error Correction

Ryan J. Marcotte, Xipeng Wang, and Edwin Olson
University of Michigan
{ryanjmar, xipengw, ebolson}@umich .edu

Abstract—Transporting large amounts of data over the wireless
links of a mobile ad hoc network requires mitigating significant
and unpredictable packet loss. Traditional acknowledgment-
based transport protocols (e.g. TCP) perform poorly as ACK mes-
sages are dropped and the transport falls back on retransmission
timeouts. We propose a novel application-layer transport system,
AprilFEC, that employs erasure codes to ensure reliable delivery
over lossy, time-varying wireless links. Moreover, AprilFEC
minimizes added overhead by estimating packet loss rates and
adapting its encoding level accordingly. We show that AprilFEC
delivers large media files over lossy, time-varying links more
reliably than a traditional TCP-based system.

I. INTRODUCTION

While modern wireless links are capable of very high
peak bandwidths, their empirical performance in a mobile
robotics setting can vary over orders of magnitude. As nodes
in a robotic network move through their environment, link
qualities fluctuate and network performance suffers. Even low-
bandwidth communication requirements can be hard to meet in
high-loss networks; high-bandwidth communication becomes
virtually impossible. We propose an end-to-end application-
layer system, AprilFEC, that reliably transports data over
variable-quality network links through the adaptive application
of erasure coding, significantly improving performance for
network-intensive tasks such as media streaming.

The traditional approach to reliable network transport is
a scheme of acknowledgments (ACKs) and retransmissions.
In such a protocol, the source node repeatedly transmits a
packet until the destination node acknowledges its receipt
by replying with an ACK message. ACK-based protocols
pervade modern networking stacks because they are simple
and largely effective across a wide range of network types
and applications. However, these protocols have primarily
been developed for use in wired and wireless networks with
fixed physical infrastructure and low packet loss. Mobile
ad hoc networks (MANETSs), such as those used by many
robotic systems, lack such infrastructure and can exhibit high
packet loss, causing ACK-based protocols to perform poorly
as ACK messages are regularly dropped and the transport falls
back on retransmission timeouts. For example, TCP displays
significant performance deterioration when loss rates exceed
10 percent [15]. Mobile robotic networks often experience
packet loss events well in excess of this level [8], requiring
an alternative approach to reliable delivery.

In this paper, we propose AprilFEC, a reliable application-
layer transport mechanism suited for the lossy, time-varying

0.8

0.7 i
0.6 R
0.5F R

(o
0.4} o f

Successful Transmission Ratio

0.3F §—§ AprilFEC 1

¢ TCP
0.2} -6 UDP o
200 500 1000 2000

Image Size (KB)

Fig. 1. Proportion of successful transmissions during image streaming
simulations driven by real-world robotic network data. AprilFEC significantly
outperforms TCP, the traditional reliable-delivery protocol. When packet loss
rates are high, ACK messages are frequently dropped causing TCP to stall on
retransmission timeouts. By comparison, AprilFEC uses an adaptive forward
error correction scheme to deliver data with high likelihood even under poor
network conditions.

links of a robotic network. AprilFEC is built on top of
UDP and employs erasure codes to recover data lost during
transmission. More specifically, AprilFEC adaptively applies
fountain codes [6], a type of erasure code that efficiently
produces variable levels of redundancy (see Sec. [II). In
this way, AprilFEC supports reliable message delivery while
minimizing the overhead it incurs on the network. We show
in Fig. |1| that AprilFEC significantly outperforms TCP at the
demanding task of streaming high-resolution imagery over a
time-variable, lossy wireless link.

Our specific contributions include:

o A kernel density estimation technique for characteriz-
ing the instantaneous packet loss rate of a channel
(Sec. [V-B),

e An inference mechanism to predict the amount of for-
ward error correction needed to achieve a given level of
confidence for successful delivery (Sec. , and

o Robust and repeatable performance evaluation with a
network emulator driven by packet traces from a real-
world robotic network (Sec. [V).

II. RELATED WORK

This paper builds upon many of the ideas previously
presented in [8]. In that paper, we propose a system that
adaptively applies forward error correction (FEC) to decrease
effective packet loss rates even as raw loss rates grow. The
primary contribution of the previous work is the identification
of a tradeoff between latency tolerance and the reliability of
delivery in such a system. Namely, when the transmission of
encoded data has a wide temporal distribution, the system is
more reliable in the face of burst errors typical to wireless
networks.

This finding forms the basis for AprilFEC, but we make
several distinguishing contributions in this paper. AprilFEC’s
kernel density estimator is better suited to packet loss rate
estimation than the single-hypothesis Kalman filter of the pre-
vious paper (see Sec. [[V-B). In contrast to the Reed Solomon
codes used in the previous paper, AprilFEC employs fountain
codes, which allow for highly efficient adaptation of encoding
strength and scale to very large input sizes, such as the image
files we transmit in our evaluation (see Sec. . Finally, we
present a more repeatable evaluation consisting of simulations
driven by real-world network traces (see Sec. [V-A).

Winstein and Balakrishnan [15] propose Sprout, an adaptive
transport system designed to improve the performance of time-
varying cellular networks. Similar to AprilFEC, Sprout makes
stochastic forecasts of link quality and adjusts its transmission
strategies based on these estimates. In particular, Sprout varies
the rate at which it transmits packets in order to reduce self-
induced network congestion. The authors demonstrate that
Sprout can reliably support network-intensive tasks such as
video conferencing for mobile internet users.

Gu and Grossman [4] propose UDT, a high-performance
data transfer protocol designed for use over high-speed wide
area networks. Like AprilFEC, UDT is built on top of
UDP. To make UDP more reliable for the transport of large
quantities of data, UDT adds its own congestion control
and selective acknowledgments. UDT sends ACKs at a fixed
interval, so they consume very little overhead when data is
transferred at high-speed. However, for low-bandwidth traffic,
UDT acknowledges each packet individually, leading to poor
performance over lossy links.

Google introduces QUIC (Quick UDP Internet Connec-
tions) [13] as a reliable UDP-based replacement for TCP.
QUIC includes numerous enhancements such as decreased
latency in establishing connections, better congestion control,
and forward error correction. In contrast to AprilFEC, QUIC’s
FEC module does not estimate link quality or attempt to
vary redundancy levels, instead sending a small fixed ratio
of redundant data.

Mahajan et al. [7] present an FEC scheme that opportunis-
tically exploits spare network capacity through the application
of erasure codes. By estimating the instantaneous load on
the local network, the system is able to add redundancy
without hogging bandwidth needed for other transmissions.
The authors evaluate this technique on network-connected

vehicles and show significant improvement in throughput.

Much research has been devoted to improving the perfor-
mance of TCP under the moderate amounts of packet loss that
occur in traditional wireless networks. One of the best-known
examples is TCP Westwood [9], a variant of TCP intended
to improve throughput over wireless links. TCP Westwood
accomplishes this by using information from the ACK stream
to adapt the congestion control window parameters. Grieco and
Mascolo [3] show that TCP Westwood can improve utilization
of wireless links affected by losses not due to congestion. In a
similar vein, Bai et al. [1]] seek to improve the performance of
TCP over lossy links by distinguishing losses that occur due
to network congestion from those caused by data corruption.
To make this differentiation, the authors borrow a branch
prediction technique originally designed to mitigate control
hazards in CPUs.

III. FOUNTAIN CODE PRIMER

Understanding AprilFEC requires some background in the
fountain codes it is built upon. The papers of MacKay [6]]
and Qureshi et al. [11] have comprehensive treatments of
fountain codes. In this section, we briefly provide the reader
with an overview of fountain codes as well as introduce online
codes [10]], the specific fountain code variant employed by
AprilFEC.

Erasure codes are a type of forward error correction in
which data is fragmented into small chunks (symbols), and en-
coded to produce a new set of symbols containing redundancy
information about the original data. If some of the symbols are
lost during transmission or storage, the encoded symbols can
be used to recover the original data.

Erasure codes are parameterized by the number of input
data symbols k£ and the number of encoded output symbols n.
Fixed-rate erasure codes, the most well-known of which are
Reed-Solomon codes [12], are designed to operate with a fixed
code rate (i.e. fixed values of k£ and n). Varying the size of
the input or amount of redundancy requires the initialization
of a new code instance, or codec. As a consequence, inreasing
the code rate (e.g. to produce additional redundancy) for an
already encoded input requires replacing the set of existing
encoded symbols. A significant benefit of most fixed-rate
erasure codes is their optimality, meaning that any subset of
k encoded symbols can be used to recover all k£ of the input
symbols.

By comparison, rateless (fountain) codes operate on a fixed
input size but can efficiently produce an unlimited number of
encoded symbols from that input. In other words, a given foun-
tain codec has constant k but variable n. Fountain codes are
non-optimal, but the guaranteed recovery properties of fixed-
rate codes are replaced with probabilistic guarantees that the &
input symbols can be recovered from k' encoded symbols with
high probability, for &’ slightly larger than k. As &k’ increases,
the likelihood of decoding failure decreases exponentially.
Furthermore, fountain codes are locally encodable, meaning
that each encoded symbol only depends on a constant-sized
fraction of the input and not on any of the other encoded

symbols. In other words, the value of n does not have to be
fixed at the time of encoding, and additional encoded symbols
can be computed incrementally.

Currently, most state-of-the-art fountain codes such as Rap-
tor Codes [[14] are covered by patents (e.g. [2]) that limit their
utility for the robotics research community. In an effort to
make AprilFEC useful to the community, we have selected
a fountain code variant, online codes [10], that we believe
is not patent-encumbered, though users should consult their
own expert legal advice. AprilFEC’s design depends very little
on the specific underlying fountain code, and its performance
could be improved if a more efficient fountain code were to
become available.

AprilFEC could also incorporate a fixed-rate code such as
Reed-Solomon for small data sizes and low packet loss rates.
This would decrease overhead added by the system but would
not scale to larger data sizes and high packet loss rates. In
this paper, we only consider an AprilFEC implementation with
fountain codes in order to transport large quantities of data.

IV. APPROACH

A naive application of fountain codes to the problem of
reliable transport might entail continually transmitting encoded
fragments until an ACK is received indicating that the trans-
mission should terminate. The analogy often referenced in
the fountain code literature is that of a bucket (the receiver)
placed under a fountain (the transmitter) that collects water
droplets until it is full (the original message can be decoded),
at which point the fountain can shut off. As we will show
in our evaluation (see Sec. [V), this naive fountain approach
represents an upper bound in terms of delivering data but leads
to prohibitive levels of overhead when applied to networks
with delay and packet loss.

In this section, we present AprilFEC, which refines the
naive fountain idea with packet loss estimates that inform
its decision of how much redundant data to transmit. Though
AprilFEC can use ACKs to improve efficiency, the channel es-
timate removes the system’s dependence on them. The overall
system improves reliability over lossy links with modest added
overhead.

A. System Overview

Once a user passes data into AprilFEC, the system splits
the data into smaller fragments suitable for transmission in the
payloads of UDP packets. Based on a conservative estimate
of the instantaneous packet loss rate, AprilFEC computes
and transmits a batch of encoded fragments. The system
momentarily pauses and waits to receive an acknowledgment
from the destination node, at which point it terminates the
transmission process. If no ACK is received, AprilFEC repeats
the process with a higher estimated packet loss rate. After sev-
eral iterations, AprilFEC concludes the transmission process,
even in the absence of any ACK. The AprilFEC transmission
procedure is given in Algorithm [I]

At the destination node, AprilFEC collects encoded frag-
ments and attempts to reconstruct the original message from

Algorithm 1 AprilFEC Transmission Procedure
function APRILFECTRANSMIT(data, f, C)
E' + (14 ¢)(1+0.55eq)k >eg e=01,¢=3

ng < 0
fort=1...T do
pt(—F_l(Ct)

ng < k' /(1 —py)

for i =n;_1...n; do
z < GENERATEFRAGMENT(data)
UDPTRANSMIT(2)

end for

WAIT(Winaz)

if ACKRECEIVED then return

end if

end for
end function

them. Once it is able recover the original data, AprilFEC
passes the data to the user and sends an ACK back to the
transmitting node.

B. Packet Loss Rate Estimation

AprilFEC’s estimate of the instantaneous packet loss rate
informs its decision on the amount of encoded fragments it
should transmit. The primary input to this estimation process
is a periodic link quality report fed back from the receiver
to the transmitter at a fixed rate. This feedback process is
based on sequence numbers contained within each transmitted
fragment. For a particular reporting period, the receiver tracks
the number of fragments it receives and estimates the number
of fragments transmitted by observing the largest and smallest
observed sequence numbers.

The packet loss rates reported by the receiver may vary
dramatically between intervals, especially as the signal-to-
noise ratio of the link diminishes and packet loss rates ex-
ceed nominal levels (see Fig. 2] for example measurements).
Because of this, single-hypothesis estimates (e.g. the one-
dimensional Kalman filter used in our previous paper [8]) have
difficulty predicting the true loss rate.

We instead utilize kernel density estimation to produce a
packet loss rate distribution. Specifically, we use a sliding
window of n observations as samples in the distribution

X

J) = oY R, 0

where K (u) is an Epanechnikov kernel given by

3 —Uu u
o= { o 1=t

In the absence of loss rate observations, we periodically
evolve the distribution f through the application of Brownian
motion.

2

100 T H
80

N

40t

T

N
0 200 400 600 800
Time (s)

% Packet Loss

n
1000 1200

Fig. 2.

100 T
80| m
60

40

(LY

0 200 400 600 800
Time (s)

% Packet Loss

il

1400

u 1
1000 1200

Time-series data of packet loss rates taken from mobile robotic network traces in indoor (left) and outdoor (right) environments. Note the frequent

and rapid fluctuations in loss rates as well as the outages and near outages that occur. In total, the two traces comprise nearly 50 minutes of real-world network

data.

C. Computing Redundancy Amounts

Given an estimate p of the instantaneous packet loss rate, a
decision must be made about the amount of encoded fragments
to transmit. This decision depends not only on the loss rate
distribution but also on the fountain code recovery properties.

Recall from the discussion of fountain codes in Sec. [l
that a message of k symbols can be recovered with high
probability from &’ encoded symbols for &’ slightly larger than
k. The particular value of &’ and its recovery characteristics
are properties of the specific fountain code in use.

In AprilFEC, we use the online codes of Maymounkov and
Mazieres [[10], which are parameterized by two values, € and
q. Conceptually, € determines the degree of suboptimality of
the code (i.e. the number of encoded symbols required for
recovery) while g affects the success probability of decoding.
Both parameters affect the complexity of decoding. In our
evaluation, we use the values ¢ = 0.1 and ¢ = 3.

As described by Maymounkov and Mazieres [10], an orig-
inal message of k& symbols can be recovered from any k'
encoded symbols with probability 1 — (5)77!, where

k' = (1+ €)(1 + 0.55¢q)k. 3)

This value of k' determines the number of encoded fragments
that must be received in order for the data fragments to be
recovered with high probability. For a link with estimated
packet loss rate p, we transmit n = k’/(1 — p) encoded
fragments.

D. Iterative Transmission

We combine the computations of the previous two sections
to yield the iterative transmission procedure given by Algo-
rithm [T} We begin the transmission process with the input data,
the instantaneous packet loss distribution f, and a set of non-
decreasing confidence interval values C, where ¢; € (0,1].
The transmission procedure alternates between sending a set of
encoded fragments and waiting for an ACK from the receiver.
At each iteration ¢, the procedure computes the value of the
quantile function F~! at the confidence level ¢; to yield an

estimated instantaneous loss rate p;. That is,
pr=F '(¢;) =min (z €[0,1] : ¢, < F(x)), 4)

where F' is the CDF corresponding to the packet loss rate
distribution f defined in (I). The system uses p; to deter-
mine the number of encoded fragments that would need to
be transmitted for a loss rate p,. The procedure generates
and transmits enough encoded fragments to account for the
incremental increase in loss rate from p,_; to p,. Finally,
the procedure waits for time w,,,, to determine whether an
ACK is returned by the receiver. If an ACK is received, the
transmission process terminates.

Note that this iterative transmission process is configurable
depending on application demands. The set of confidence val-
ues can by modified according to a user’s latency or overhead
tolerance. In the case that no added latency can be tolerated,
a single confidence value can be utilized, and AprilFEC will
terminate transmission after one iteration without waiting for
an ACK.

V. EVALUATION

In the sections that follow, we evaluate AprilFEC on the
task of continually delivering high-resolution image data over
a lossy wireless link. We show that AprilFEC significantly
outperforms TCP, successfully transporting data even as packet
loss rates reach as high as 90 percent.

A. Methodology Overview

As with many other areas of robotics research, designing
realistic and repeatable evaluation procedures for networks
remains a challenge. Simulators facilitate consistent measure-
ment but may fail to adequately model the spatiotemporal
complexities that affect a robotic network with mobile nodes.
Real-world experiments, though valuable for validation, do
not lend themselves to robust conclusions due to the cost of
conducting a significant number of trials.

We borrow a hybrid technique from the networking com-
munity (e.g. [15]) to promote realistic and repeatable net-
work evaluation in the field of robotics. Namely, we collect
network condition data during real-world field robotics tests

0.9 — T T T 0.9 — T T T
0.8 | 0.8 |
o o o
© © 0.7} 1
« 0.7} i o
s s
ﬁ g 0.6} E
€ 0.6 4 €
% o § 0.5} .
F 05 —$ 1 F
2 S o04f © o |
@) . @ . . ©
@ 0.4F $=¢ Naive Fountain 1 o 0.3 é&—& Naive Fountain
o . o 0.3} . E
3 é—¢ AprilFEC 3 é—¢ AprilFEC
03} §4 TCP o 02| &% TCP o
&6 UDP o0 UDP
0.2 L L L L L L L L
200 500 1000 2000 200 500 1000 2000
Image Size (KB) Image Size (KB)
Fig. 3. Proportion of successful transmissions during trace-driven simulations in the indoor (left) and outdoor (right) environments. AprilFEC significantly

outperforms TCP, the traditional reliable delivery protocol. Though a naive fountain approach has a higher proportion of successful transmissions, the overhead

it incurs on the network is prohibitive (see Fig. .

and then use the resulting network traces to drive a local
network emulator. Such an evaluation approach represents a
reasonable compromise between the realism of field tests and
the repeatability of simulations.

B. Network Trace Collection

We collected network traces from a real-world mobile
robotic system operating in indoor and outdoor environments.
The trace collection runs consisted of a single point-to-point
link between one mobile node and one stationary node (an
“operator station”), both equipped with an OpenMesh OM2P-
HS router. The routers run a stock version of OpenWRT 15.05,
which implements IEEE 802.11s.

The network traces consist of the instantaneous packet
loss rate and transmission bitrate measured on the link at a
frequency of 1 Hz. To measure packet loss rates, we developed
a custom tool that continually transmits UDP packets at a
target bandwidth (e.g. 10 Mbps) and uses sequence numbers
to track which packets are received or lost. We obtained the
bitrate data by querying the operating system with netlink
sockets.

We conducted two trace collection tests, one in an indoor
office environment and one in an outdoor environment with
various line-of-sight obstructions, including trees, hills, and
small buildings. Both environments were slightly larger than
the effective range of the routers, and the mobile node operated
without consideration for the status of the network. As a
result, the traces contain a wide range of network conditions,
including some outages. In total, these traces comprise nearly
50 minutes of real-world network data. We visualize the packet
loss rates of the network traces in Fig. [2}

C. Trace-Driven Simulations

We used these network traces to drive simulations conducted
locally on a single host. The trace data served as input
to periodic calls to netem [3], a utility that manipulates
Linux traffic control facilities to emulate various network

0.9
[AprilFEC

08¢ mm TCP

0.7 R

0.6 B

0.4} .

0.3 R

Transmission Success Rate

0.2 B

0.0
00

0 407

oA 02

03080802508 0T 108 509 410

o
Packet loss rate

Fig. 4. Average proportion of successful transmissions of 1MB image on
the indoor trace as a function of packet loss rate. We observe that even as
loss rates increase, AprilFEC continues to deliver images, with its relative
performance advantage over TCP being largest in high packet loss regimes.

conditions, such as delay, packet loss, or bitrate. For each
tested protocol (UDP, TCP, AprilFEC, and the naive fountain
disussed in Sec.[[V), a transmitting application passed images
of varying sizes across the local network. At a rate of 1Hz,
netem modified network properties according to the statistics
contained in the trace.

D. Image Delivery Results

The primary metric we use to evaluate the performance of
the various protocols is the average proportion of successful
transmissions during each simulated trial. We tested each
protocol on images ranging in size from 200KB to 2MB.
For each protocol and parameter setting, we conducted 10

independent trials. Note that all error bars in the figures
correspond to one standard error on the mean.

Fig. [3] shows the results of these experiments on the indoor
and outdoor traces. In both experiments, the naive fountain
approach serves as an upper bound on performance at each
image size. This result is unsurprising since the naive fountain
transmits as many encoded fragments as possible, making no
attempt to minimize overhead. In the following section we will
explore the prohibitive cost of the apparent high performance
of the naive fountain.

As a more practical protocol, AprilFEC consistently out-
performs TCP across all image sizes, averaging between 8
and 54 percent more successful transmissions per trial. Fig.]
breaks these successful transmissions down by the ground-
truth packet loss rate. We observe that even as loss rates
climb to severe levels, AprilFEC continues to deliver images
successfully. AprilFEC’s advantage over TCP is most distinct
at these high loss rates. For example, when the loss rate is
between 40 and 50 percent, AprilFEC averages nearly 5 times
more successful transmissions compared to TCP.

During some portions of the simulated trials, TCP actually
performs worse than UDP, a consequence of the statefulness
of TCP. A TCP connection that has stalled during a network
outage may take time to recover even once link quality
improves. In contrast, the stateless UDP is able to complete
transmissions successfully as soon as packet loss rates drop
back to 0.

E. Overhead Results

For any protocol employing forward error correction there
exists a tradeoff between the reliability of the protocol and
the overhead it imposes on the network. We have designed
AprilFEC to be a reasonable compromise between these two
factors. Note that we measure overhead from the perspective of
the receiver, that is, how many encoded fragments are received
compared to the number of data fragments comprising the
input message. There may be many more encoded fragments
transmitted, but this type of overhead is the unavoidable cost
of mitigating packet loss. We focus our attention here on
overhead that is potentially avoidable, counting the number
of encoded fragments received beyond the original number of
data fragments.

In our evaluation, we explore two different types of over-
head added by a fountain code-based system.

1) Code Overhead: The code overhead ratio is the ratio of
the number of encoded fragments required for decoding, K,
to the number of original data fragments, k. This ratio is a
function of the type of erasure code used and its parameters
and is independent of the transport protocol. A value of 1.0
corresponds to an optimal erasure code such as Reed-Solomon,
whereas all fountain codes have values greater than 1.0.

Fig. 5] shows a CDF of the code overhead ratio across all
trials. We observe that the mean value of this distribution is
22 percent, with the 15* and 99*" percentiles being 17 percent
and 29 percent, respectively. These values could be improved

1.0

0.8
_ 06}
=
z
a
© o4t
0.2
0.0 ‘ ‘ ‘ ‘ ‘ ‘
1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30
Code Overhead Ratio
Fig. 5. CDF of the overhead added by the fountain codes themselves.

For example, a code overhead ratio of 1.25 means that the decoding process
succeeded once the number of encoded fragments received was 25 percent
more than the number of data fragments. The overhead level is a function of
the particular fountain code variant (online codes [10] in this case) and could
be improved if a more efficient code was available.

1.0

0.8}

0.6

CDF(r/)

0.2
= AprilFEC
= Naive Fountain

0.0
1

10 100
System Overhead Ratio

Fig. 6. CDF of the overhead added by the AprilFEC and naive fountain
protocols. The overhead levels added by the systems are not comparable,
with AprilFEC averaging only 8 percent overhead compared to the naive
fountain’s 646 percent. This prohibitive overhead level makes the naive
fountain approach impractical for real-world applications.

if a more efficient fountain code were available (see discussion
of code selection in Sec. [I).

2) System Overhead: The system overhead ratio compares
the number of encoded fragments actually received, r, to the
number of fragments needed for decoding, k’. A protocol
could achieve a system overhead ratio of 1.0 only if it perfectly
estimates the number of fragments it needs to transmit.

Fig. [6] shows a CDF of the system overhead ratio for
AprilFEC and the naive fountain. This plot illustrates the
impracticality of the naive fountain approach for most appli-
cations. Because it makes no attempt to estimate the number
of fragments to transmit, the naive fountain is entirely reliant
on ACKs sent by the receiver to cut off its transmission. These
ACKs are always subject to some delay and may be lost in
transmission, in which case the transmission continues until
a time limit is reached. This leads to an average overhead

level of 646 percent. In contrast, AprilFEC adds very little
system overhead, averaging only 8 percent. The 15 and 99"
percentiles are 0 percent and 60 percent, respectively.

The code and system overhead of AprilFEC combine for
an average overall overhead of about 32 percent. The 15! and
99" percentiles of the combined overhead are 19 percent and
94 percent, respectively.

VI. CONCLUSION

In this paper, we introduce AprilFEC, a system designed
to mitigate the significant and unpredictable packet loss that
occurs in robotic networks. AprilFEC adaptively applies for-
ward error correction to input data to increase the likelihood
of successful transmission while minimizing added overhead.
AprilFEC enables reliable transport of large quantities of data
across lossy, time-varying wireless links. We have shown that
AprilFEC outperforms TCP by as much as 54 percent at the
task of periodically delivering image files during simulated
multi-robot trials while adding nominal amounts of overhead
to the network.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No. DGE 1256260. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] H. Bai, D. Lilja, and M. Atiquzzaman. Improving TCP
throughput over lossy links using protocol-level specula-
tions. In International Conference on Wireless Networks,
Communications and Mobile Computing, pages 1557—
1562.

[2] W. Gao. Decoding| of raptor codes, February 2009. US
Patent App. 12/223,641.

[3] Luigi A. Grieco and Saverio Mascolo. [Performance
Evaluation and comparison of Westwood+, New Reno,
and Vegas TCP congestion control. ACM SIGCOMM
Computer Communication Review, 34(2):25-38, April
2004.

[4] Yunhong Gu and Robert Grossman. [UDT: UDP-based
data transfer for high-speed wide area networks. Com-
puter Networks, 51(7):1777-1799, 2006.

[5] S. Hemminger. Network emulation with NetEm. In Linux
Conf AU, pages 18-23, 2005.

[6] D.J.C. MacKay. Fountain codes,
Communications, 152(6):1062, 2005.

[7] Ratul Mahajan, Jitendra Padhye, Sharad Agarwal, and
Brian Zill. High performance vehicular connectivity
with opportunistic erasure coding. In Proceedings of the
2012 USENIX Annual Technical Conference, pages 22—
22, 2012.

[8] R.J. Marcotte and E. Olson. |Adaptive forward error
correction with adjustable-latency QoS for robotic net-
works. In Proceedings of the 2016 IEEE International
Conference on Robotics and Automation, pages 5283—
5288, May 2016.

[9] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y.
Sanadidi, and Ren Wang. TCP Westwood. In Pro-
ceedings of the 7th Annual International Conference
on Mobile Computing and Networking, pages 287-297,
2001.

[10] P. Maymounkov and D. Mazieres. Rateless codes and
big downloads. Peer-to-Peer Systems II, pages 247-255,
2003.

[11] Jalaluddin Qureshi, Chuan Heng Foh, and Jianfei Cai.

Primer and Recent Developments on Fountain Codes.

Recent Advances in Communications and Networking

Technology, 2(1):2-11, 2013.

Irving S Reed and Gustave Solomon. Polynomial| codes

over certain finite fields. Journal of the Society for In-

dustrial and Applied Mathematics, 8(2):300-304, 1960.

[13] Jim Roskind. QUIC (Quick UDP Internet Connections):

Multiplexed stream transport over UDP. Technical report,

Google, 2013.

Amin Shokrollahi. Raptor codes. IEEE Transactions on

Information Theory, 52(6):2551-2567, 2006.

A. Winstein, K. Sivaraman and H. Balakrishnan. Stochas-

tic forecasts achieve high throughput and low delay

over cellular networks. In Proceedings of the 10th

USENIX Symposium on Networked Systems Design and

Implementation, pages 459-471, April 2013.

IEE Proceedings -

[12]

[14]

[15]

https://dx.doi.org/10.1109/WIRLES.2005.1549645
https://www.google.com/patents/US20090055705
https://dx.doi.org/10.1145/997150.997155
https://dx.doi.org/10.1145/997150.997155
https://dx.doi.org/10.1016/j.comnet.2006.11.009
http://dx.doi.org/10.1049/ip-com:20050237
https://dx.doi.org/10.1109/ICRA.2016.7487739
https://dx.doi.org/10.1145/381677.381704
https://dx.doi.org/10.1007/978-3-540-45172-3_23
https://doi.org/10.1137/0108018
https://doi.org/10.1109/TIT.2006.874390
http://dl.acm.org/citation.cfm?id=2482626.2482670
http://dl.acm.org/citation.cfm?id=2482626.2482670

	Introduction
	Related Work
	Fountain Code Primer
	Approach
	System Overview
	Packet Loss Rate Estimation
	Computing Redundancy Amounts
	Iterative Transmission

	Evaluation
	Methodology Overview
	Network Trace Collection
	Trace-Driven Simulations
	Image Delivery Results
	Overhead Results
	Code Overhead
	System Overhead

	Conclusion

