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ABSTRACT

We seek to characterize the learning tools (ie algorithmic components) used in
biological neural networks, in order to port them to the machine learning context.
In particular we address the regime of very few training samples.
The Moth Olfactory Network is among the simplest biological neural systems that
can learn. We assigned a computational model of the Moth Olfactory Network the
task of classifying the MNIST digits. The moth brain successfully learned to read
given very few training samples (1 to 20 samples per class). In this few-samples
regime the moth brain substantially outperformed standard ML methods such as
Nearest-neighbors, SVM, and CNN.
Our experiments elucidate biological mechanisms for fast learning that rely on
cascaded networks, competitive inhibition, sparsity, and Hebbian plasticity. These
biological algorithmic components represent a novel, alternative toolkit for build-
ing neural nets that may offer a valuable complement to standard neural nets.

1 INTRODUCTION

Neural net (NN) architectures have achieved strong success in a wide array of machine learning
(ML) tasks [Schmidhuber (2015)]. But they are also known to fail on critical tasks such as learning
from few samples. We seek to improve NN performance on such tasks by characterizing mecha-
nisms of biological neural networks (BNNs) involved in learning.

The Moth Olfactory Network is among the simplest BNNs that can learn [Riffell et al. (2012)], yet it
contains key features widespread in BNNs: High noise [Galizia (2014)], random connections [Caron
et al. (2013)], Hebbian synaptic growth [Cassenaer & Laurent (2007)], high-dimensional sparse
layers [Campbell & Turner (2010)], large dimension shifts between layers [Ganguli & Sompolinsky
(2012)], and generalized stimulation of neurons during learning [Hammer & Menzel (1995)].

[Delahunt et al. (2018)] developed an end-to-end computational model, MothNet, of the Manduca
sexta moth olfactory network. The model is closely based on known biophysical structure, is consis-
tent with in vivo firing rate data, and incorporates learning dynamics. We gave MothNet the classic
ML task of identifying the handwritten digits of the MNIST dataset [LeCun & Cortes (2010)]. Moth-
Net routinely achieved 75% to 85% accuracy classifying test digits after training on 1 to 20 samples
per class. In this few-samples regime it substantially out-performed standard ML methods such as
Nearest-neighbors, SVM, and CNN (Fig 2). The results demonstrate that even very simple biolog-
ical architectures hold novel and effective algorithmic tools applicable to ML tasks, in particular
tasks constrained by few training samples or the need to add new classes without full retraining.

2 METHODS

MothNet model: The feed-forward moth olfactory system (schematic Fig 1) involves two inter-
acting networks, the noisy antennal lobe (AL) and the sparse mushroom body (MB) [Wilson (2008);
Campbell & Turner (2010)]. The AL contains 60 processing units, onto which atomic olfactory
features map one-to-one. Competitive inhibition between these units decorrelates input class signa-
tures by sharpening contrasts between input projections onto the AL. Learning occurs when a re-
ward (sugar) induces an overall increase in excitation in the AL via the neuromodulator octopamine
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Figure 1: Network schematic. Green lines show excitatory connections, red lines show inhibitory con-
nections. Light blue ovals show plastic connections into and out of the MB. The processing units in the AL
competitively inhibit each other. Global inhibition from the lateral horn induces sparsity on MB responses. The
ENs give the final, actionable readouts of the system’s response to a stimulus.

[Dacks et al. (2012)]. This induces Hebbian updates to weights in the plastic MB, i.e. modulating
one network rewires another. Sparsity in the MB controls plasticity by filtering noise and thus fo-
cuses training gains on relevant signals. In combination, these features enable rapid and effective
learning, expressed as modulated readout neuron responses. Details in [Delahunt et al. (2018)].

The MothNet model closely follows the moth’s olfactory architecture in terms of connections, num-
bers of neurons in each layer, etc. Neural firing rates are modeled with integrate-and-fire dynamics
[Dayan & Abbott (2005)] evolved as stochastic differential equations (SDEs) [Higham. (2001)]:

τ
dx

dt
= −x+ s(Σwiui) = −x+ S(w · u) + dW, (1)

where x(t) = firing rate (FR) for a neuron, w = connection weights, u = upstream neuron FRs, S()
is a sigmoid function or similar, and W (t) = a brownian motion process. Hebbian plasticity governs
synaptic weight updates [Hebb (1949)]:

∆wab(t) = γfa(t)fb(t) (2)
where fa(t), fb(t) are firing rates of neurons a, b at time t; wab is the synaptic weight between them;
and γ is a growth rate parameter. Inactive MB→EN weights are subject to proportional decay:

∆wab(t) = δwab(t), if fa(t)fb(t) = 0. (3)
where δ is a decay parameter. There are two layers of plastic synaptic weights: AL→MB, and
MB→ENs (ie pre- and post-MB), both controlled by sparsity in the MB.

Ten readout neurons (ENs) are randomly assigned to target particular digits 0 to 9. Training is
supervised: When a digit of class j is presented, only MB→ENj connections are updated, where
ENj is the EN assigned to class j. That is, the moth knows the class of the training sample, for the
purposes of post-MB updates. Training rapidly tailors these weights to their target digits.

Training data: The MNIST dataset consists of grey-scale thumbnails, 28 x 28 pixels, of hand-
written digits 0 - 9. We used pixels of the thumbnails as input features to the MothNet classifier.
These provide a good test of whether a system can effectively learn to discriminate classes given
inputs with high inter-class correlations.

In the moth, input features map one-to-one into 60 AL processing units. To reduce the number
of pixels to this scale, we (i) downsampled by 2; (ii) subtracted a population mean; (iii) killed
negative values; (iv) then selected only the most-generally-active pixels. This gave thumbnails with
83 retained pixels. Each pixel was a feature that fed into one processing unit of MothNet’s AL.
Thumbnails for each experimental stage (mean-subtraction, pre-training baseline, training, post-
training test set) were randomly chosen without replacement from non-intersecting pools.

Classifier: System readout units (ENs) are silent absent any input sample, and they consistently
respond, more or less strongly, to input samples. We classified test digits using a summed log-
likelihood over the distributions of responses to each digit class in each EN:

ŝ = min
j∈J
{
∑
i∈J

(
Ei(s)− µEij

σEij
)4)}, where (4)

2



Workshop track - ICLR 2018

ŝ = predicted class of sample s; Ei(s) = response of the ith EN to s; µEij = mean(Ei(t)|t ∈ V, t ∈
class j); σEij = std dev(Ei(t)|t ∈ V, t ∈ class j); j ∈ J are the classes (0-9); V is a reference set
(eg a validation set). Roughly, j is a strong candidate for ŝ if each EN’s response to s is close to that
EN’s expected response to class j. The use of the 4th power is a sharpener that penalizes outliers.

3 RESULTS

MothNet learning behavior: Moths randomly generated from MothNet templates responded con-
sistently well to training by differentiating their various EN responses to different digit classes.
Training caused EN responses to diverge from baseline and from each other, such that each EN
responded most strongly to its assigned digit. “Natural” moths routinely achieved 75% to 85% ac-
curacy given 15 - 20 training samples. “Fast” moths, ie with Hebbian growth rate parameters “turned
up to 11”, achieved 70% accuracy given just one training sample, but with no further gains (Fig 2).

Comparison to standard ML methods: As baseline we used three standard ML methods
(Nearest-neighbors, SVM, and CNN), optimized for each number-of-training-samples case. While
these ML methods can attain over 99% accuracy on the full MNIST training set (6000 samples per
class) [LeCun et al. (1995)], the few-samples regime is fundamentally different, and standard ML
methods are not well suited to it, compared to biological systems. This few-samples regime can be
roughly visualized, for MNIST, as follows: First throw away 99.9% of the usual training data; then
begin training.

In this few-samples regime, MothNet substantially out-performed the three ML methods. Given≤ 5
training samples, MothNet had roughly double the accuracy of ML methods. To reach equivalent
accuracy, ML methods required between 2x and 10x more training data than the “natural moth”, and
between 20x to 50x more training data than the “fast moth”. Mean trained accuracies of the various
methods are plotted in Fig 2, vs number of training samples per class (log scale).

Figure 2: Mean post-training accuracy for fast-learning and natural MothNet moths, as well as for Nearest-
neighbors, SVM, and CNN, vs number of training samples (log scale). In the few-training-samples regime (1
to 20 per class), MothNet substantially outperformed standard ML methods. N = 11 per data point.

4 DISCUSSION

In order to learn new odors, the moth olfactory network uses just a few core tools: A noisy pre-amp
network with competitive inhibition; Hebbian plasticity controlled by a high-dimensional sparse
layer; and generalized (global) stimulation during training. Our key finding is that the simplest of
BNNs (an insect brain), built with this biological toolkit, can succeed at a general learning task, and
in fact can out-perform standard ML methods.

The biological tools analyzed here are well-suited to being combined and stacked into larger, deeper
neural nets, just as convolutional kernels, maxpool, etc, are combined to build current DNNs. The
success of live BNNs at a wide range of tasks argues for the potential of NNs built with a biological
toolkit to succeed at ML tasks.
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