
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IS YOUR PAPER BEING REVIEWED BY AN LLM?
BENCHMARKING AI TEXT DETECTION IN PEER RE-
VIEW

Anonymous authors
Paper under double-blind review

ABSTRACT

Peer review is a critical process for ensuring the integrity of published scientific
research. Confidence in this process is predicated on the assumption that experts in
the relevant domain give careful consideration to the merits of manuscripts which
are submitted for publication. With the recent rapid advancements in large language
models (LLMs), a new risk to the peer review process is that negligent reviewers
will rely on LLMs to perform the often time consuming process of reviewing a paper.
However, there is a lack of existing resources for benchmarking the detectability
of AI text in the domain of peer review. To address this deficiency, we introduce
a comprehensive dataset containing a total of 788,984 AI-written peer reviews
paired with corresponding human reviews, covering 8 years of papers submitted
to each of two leading AI research conferences (ICLR and NeurIPS). We use this
new resource to evaluate the ability of 18 existing AI text detection algorithms to
distinguish between peer reviews fully written by humans and different state-of-
the-art LLMs. Additionally, we explore a context-aware detection method called
Anchor, which leverages manuscript content to detect AI-generated reviews, and
analyze the sensitivity of detection models to LLM-assisted editing of human-
written text. Our work reveals the difficulty of identifying AI-generated text at
the individual peer review level, highlighting the urgent need for new tools and
methods to detect this unethical use of generative AI. To support future research
and reproducibility, we will publicly release our dataset upon publication.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have enabled their application to a broad
range of domains, where LLMs have demonstrated the ability to produce plausible and authoritative
responses to queries even in highly technical subject areas. These advancements have coincided with
a surge in interest in AI research, resulting in increased paper submissions to leading AI conferences
(Audibert et al., 2022). Consequently, workloads for peer reviewers have also increased significantly,
which could make LLMs an appealing tool for lessening the burden of fulfilling their peer review
obligations (Kuznetsov et al., 2024; Kousha & Thelwall, 2024; Zhuang et al., 2025).

Despite their impressive capabilities, the use of LLMs in the peer review process raises several ethical
and methodological concerns which could compromise the integrity of the publication process (Hos-
seini & Horbach, 2023; Latona et al., 2024; Seghier, 2024; Zhou et al., 2024). Reviewers are selected
based on their expertise in a technical domain related to a submitted manuscript, which is necessary
to critically evaluate the proposed research. Offloading this responsibility to an LLM circumvents the
role that reviewer selection plays in ensuring proper vetting of a manuscript. Furthermore, LLMs are
prone to hallucination and may not possess the ability to rigorously evaluate research publications.
Therefore, the use of LLMs in an undisclosed manner in peer review poses a significant ethical
concern that could undermine confidence in this important process.

Motivating the need for evaluation resources and detection tools to address this problem is the apparent
increase in AI-generated text among peer reviews submitted to recent AI research conferences. Prior
studies revealed an upward trend in AI-generated texts among peer reviews (Liang et al., 2024a;
Latona et al., 2024). This trend is particularly concerning given that evaluations from human and
AI reviewers are not aligned (Drori & Te’eni, 2024; Latona et al., 2024; Ye et al., 2024) and that
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Figure 1: Left panel: our data construction pipeline. Right panel: our context-aware detection method
(Anchor) specifically designed for AI-generated review detection evaluated in Section 4.1.

LLM-generated reviews lack robustness (Li et al., 2025), suggesting the unregulated and undisclosed
use of LLMs in peer review could undermine the integrity of the current system.

Despite the growing recognition of this problem, there is a lack of existing dataset resources for
comprehensively evaluating the performance of AI text detection methods in the domain of peer
review. To address this deficiency, we introduce the largest dataset to-date of parallel human-written
and LLM-written peer reviews for 8 years of papers submitted to two leading AI research conferences,
NeurIPS and ICLR (Figure 1). Our dataset consolidates human-written peer reviews from existing
sources with AI-written peer reviews that we generated for the same paper using five state-of-the-art
LLMs: GPT-4o Achiam et al. (2023), Claude Sonnet 3.5 Anthropic (2023), Gemini 1.5 pro Team et al.
(2023), Qwen 2.5 72b Bai et al. (2023), and Llama 3.1 70b Dubey et al. (2024). In total, our dataset
contains 788,984 peer reviews, evenly balanced between human-written reviews and AI-generated
peer reviews created by these five LLMs.

We use our dataset to investigate the suitability of various AI text detection methods for identifying
LLM generations in the peer review process. While limited prior work has analyzed the presence
of AI-generated text in peer reviews at the corpus level (Liang et al., 2024a) or has analyzed the
use of propriety solutions (Latona et al., 2024), our study is the first to investigate the detectability
LLM generations at the individual review level using synthetically generated AI samples, which
is necessary to address this problem in practice. Specifically, we evaluate 18 existing open-source
methods for AI text detection.

Our results show that most existing AI-text detection methods are limited in their ability to robustly
detect AI-generated reviews while maintaining a low number of false positives. Motivated by this
finding, we test an alternative approach which is specifically designed for AI text detection in the peer
review context. Leveraging the additional context available in the peer review setting, our method
detects AI-generated peer reviews by comparing the semantic similarity of a given review to a set
of reference AI-generated reviews for the same paper. We find that this simple yet effective method
surpasses the performance of all existing approaches in detecting GPT-4o and Claude written peer
reviews. Additionally, we conduct analyses to understand how different levels of AI use for editing
reviews impacts detectability and false positives, as well as the characteristics which distinguish
LLM-written peer reviews from those written by humans. Our work demonstrate the challenge of
detecting AI-written text in peer reviews and motivates the need for further research on methods to
address this unethical use of LLMs in the peer review process.

To summarize, our contributions are as follows: (1) We publicly release a dataset of 788,984 AI-
written peer reviews generated by five widely-used LLMs paired with human-written reviews for
the same papers, which is the largest resource to-date for studying AI text detection in peer review.
(2) Using our dataset, we benchmark 18 open-source AI text detection algorithms, finding that most
struggle to reliably detect fully AI-written peer reviews at low false positive rates. (3) We propose a
new context-aware detection method which compares the semantic similarity between a candidate
review and a reference LLM-generated review for the same paper, achieving strong performance
under strict FPR constraints. (4) We conduct analyses revealing key differences between human- and
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AI-written reviews, finding that AI-generated reviews are generally less specific, more favorable, and
more confident. (5) We evaluate how LLM-assisted editing in peer review affects detection rates.

2 RELATED WORK

AI text detection datasets Several datasets have been introduced to evaluate AI text detection
models. RAID-TD (Dugan et al., 2024) provides a large-scale benchmark designed to assess text
detection under adversarial conditions, ensuring robustness against manipulated AI-generated content.
The M4 Dataset (Wang et al., 2024) expands the scope by incorporating reviews from multiple LLMs
across different languages, offering a more diverse linguistic evaluation. The HC3 Dataset (Guo et al.,
2023) consists of responses from ChatGPT and human experts, covering specialized domains such as
finance, medicine, and law, in addition to general open-domain content. In contrast, the GPT Reddit
Dataset (GRiD) (Qazi et al., 2024) focuses on social media conversations, compiling a diverse set
of human- and AI-generated responses to Reddit discussions. Meanwhile, Beemo (Artemova et al.,
2024) introduces a benchmark of expert-edited machine-generated outputs, spanning creative writing,
summarization, and other practical applications. These benchmarks primarily evaluate AI-generated
text from a single model and do not address the domain of AI text in peer review. In contrast, our
dataset is larger than most existing datasets (788k generations) and is unique in its focus on AI text
detection in peer review.

AI-generated text detection AI-generated text detection has been framed as a binary classification
task to distinguish human-written from machine-generated text (Bakhtin et al., 2019; Jawahar et al.,
2020; Fagni et al., 2021; Mitchell et al., 2023b). Solaiman et al. (2019) used a bag-of-words model
with logistic regression for GPT-2 detection, while fine-tuned language models like RoBERTa (Liu
et al., 1907) improved accuracy (Zellers et al., 2019; Uchendu et al., 2020; Gehrmann et al., 2019).
Zero-shot methods based on perplexity and entropy emerged as alternatives (Ippolito et al., 2020;
Gehrmann et al., 2019). Other studies focused on linguistic patterns and syntactic features for
model-agnostic detection (Uchendu et al., 2020; Gehrmann et al., 2019). Watermarking techniques,
such as DetectGPT (Mitchell et al., 2023b), have also been proposed for proactive identification.
Centralized frameworks like MGTBench (He et al., 2023) and its refined version, IMGTB (Spiegel
& Macko, 2023), provide standardized evaluations for AI text detection. IMGTB categorizes methods
into model-based and metric-based approaches. Model-based methods leverage large language
models such as ChatGPT-turbo (OpenAI, 2023) and Claude (Anthropic, 2023). Metric-based
methods, including Log-Likelihood (Solaiman et al., 2019), Rank (Gehrmann et al., 2019), Entropy
(Gehrmann et al., 2019), DetectGPT (Mitchell et al., 2023b), and DetectLLM (Su et al.), rely on
log-likelihood and ranking for classification.

While there is some similarity between our Anchor approach and methods such as DetectLLM and
DNA-GPT (Yang et al., 2023), there are key differences in both the functionality and applicability
of our method relative to this prior work. DetectLLM assumes a white-box detection setting where
the detector has access to the LLM used to generate the evaluated text. Unfortunately this setting is
unrealistic for our task of detecting AI text in peer review because there is no way of knowing which
LLM was used to generate the review. Additionally, we view frontier commercial models as the most
likely to be used in practice due to their superior capabilities; since these models are only available
via an API, methods such as DetectLLM which require full access to the model are not compatible.

Another key difference between our Anchor method and both DetectLLM and DNA-GPT is that it
leverages additional context which is available in the peer review setting: the manuscript of the paper
which is being reviewed. In contrast, DNA-GPT truncates the middle of an evaluated text, regenerates
the remainder with an LLM, and then analyzes the difference between the original & regenerated
portions via n-gram analysis (in the black-box detection setting). This is unlikely to produce text
which is as representative of AI-generated reviews because it lacks grounding in the source content
(the paper). To the best of our knowledge, our anchor embedding approach is unique among AI text
detection methods in its use of the additional context available in the peer review setting.

AI-assisted peer review Recent studies have explored the role of LLMs in peer review, examining
their influence on reviewing practices (Liang et al., 2024a;b), simulating multi-turn interactions (Tan
et al., 2024), and assessing their reviewing capabilities (Zhou et al., 2024). Tools like OpenReviewer
(Tyser et al.) provide AI-assisted review improvements, while other works focus on LLM transparency
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(Kuznetsov et al., 2024) and distinguishing AI-generated content (Mosca et al., 2023). Recent studies
have investigated AI-driven review systems (Tyser et al., 2024), agentic frameworks (D’Arcy et al.,
2024), and comparative analyses of LLM-generated reviews (Liu & Shah, 2023), along with broader
explorations of LLMs’ roles and limitations in peer review (Jin et al., 2024; Santu et al., 2024;
Sukpanichnant et al., 2024; Liang et al., 2024b). While it is not the primary focus of our work, we
analyze the quality of LLM-generated peer reviews in Section 5.

3 DATASET CONSTRUCTION

3.1 HUMAN REVIEWS

We used the OpenReview API (OpenReview) to collect submitted manuscripts and their reviews for
the ICLR conferences from 2019 to 2024, as well as for NeurIPS conferences from 2021 to 20241.
Additionally, we used the ASAP dataset Yuan et al. (2022) to collect manuscripts and reviews for
ICLR 2017 to 2018 and NeurIPS 2016 to 2019.

3.2 AI REVIEWS

We generated 788,984 AI-generated reviews using five widely-used LLMs: GPT-4o, Claude Sonnet
3.5, Gemini 1.5 pro, Qwen 2.5 72b, and Llama 3.1 70b.

Prompts. To control the content and structure of these AI-generated reviews, we included conference-
specific reviewer guidelines and review templates in the prompts. Note that review templates have
evolved significantly over time (Table S1), necessitating prompt adaptations for papers submitted in
different years. We additionally aligned the paper decisions by prompting the LLMs with specific
decisions derived from the corresponding human reviews (see Appendix E for complete prompt
details). This step is important, as we found that AI review content and recommendations vary
substantially depending on how input prompts are constructed. Thus, these measures represent our
efforts to control the influence of text prompts. Importantly, as we show later in Section 5.1, despite
using a consistent prompting strategy, our dataset remains robust to prompt variation and supports
generalizable detection performance across different prompting styles.

Throughout the course of our study, we evaluated multiple prompting strategies ranging from prompts
which produce fully AI-written reviews to ones which request varying levels of LLM editing of
human-written peer reviews (Section 5.2). Our primary focus is on the former scenario of detecting
fully AI-written peer review, which we believe to be the most pressing ethical problem. However, we
also included the LLM-edited human reviews (with varying levels of editing) from our analysis in
Section 5.2 in our released dataset.

Computation. We used Azure OpenAI Service, Amazon Web Services, and Google Cloud Platform
to generate GPT-4o, Claude, and Gemini reviews, respectively. For Qwen reviews, we used NVIDIA
RTX 6000 GPUs, and for Llama reviews, we used Intel Gaudi 2 accelerators.

3.3 DATASET STATISTICS

Table 1 provides complete statistics for our generated dataset (see Appendix B.4 for a breakdown by
conference year and review-generating LLM). We withheld a randomly sampled subset of reviews
to serve as a calibration set, which is used in our experiments to determine classification thresholds
for each evaluated method. This calibration set contains 75,824 AI-generated and human-generated
peer reviews, divided approximately evenly across all five LLMs. To construct the calibration set,
we randomly selected 500 papers from ICLR (2021, 2022) and NeurIPS (2021, 2022) and generated
AI reviews corresponding to the human reviews for each paper. Because our sampling was done
at the paper level rather than the review level, the number of reviews per paper—and consequently
per conference—varies slightly. To facilitate the evaluation of detection methods which are more
computationally expensive (e.g., methods which requires using LLMs as surrogates), we also withheld
a separate test set consisting of human reviews and those generated by all five LLMs for 500 randomly
sampled papers from each conference & year. This test split contains a total of 287,052 reviews
and is used throughout our main experimental results. A further 426,108 reviews were generated

1NeurIPS 2020 reviews are not publicly available
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Table 1: Dataset statistics. Each subset in the dataset is balanced, containing an equal number of
human-written and AI-generated peer reviews. The calibration and test sets include reviews generated
by five LLMs, whereas the extended set includes reviews generated by GPT-4o and Llama 3.1.

Calibration set Test set Extended set
ICLR NeurIPS ICLR NeurIPS ICLR NeurIPS

GPT-4o 7,710 7,484 27,342 30,212 121,278 91,994
Gemini 1.5 Pro 7,704 7,476 27,278 30,146 - -

Claude Sonnet 3.5 v2 7,672 7,484 27,340 30,208 - -
Llama 3.1 70b 7,708 7,472 27,284 30,086 121,130 91,706
Qwen 2.5 72b 7,662 7,452 27,190 29,966 - -

Total 75,824 287,052 426,108
Grand total 788,984

from GPT-4o and Llama 3.1 70b, which we designate as an extended set of reviews (additional
experimental results for the extended set are provided in Appendix C.4).

While we include reviews from post-ChatGPT2 conferences (ICLR 2023–2024 and NeurIPS
2023–2024), we note that the human-labeled reviews from these years may include LLM-assisted
texts. These reviews are retained to support broader research use cases, such as longitudinal analysis
of linguistic trends. However, we do not use them in our main experiments, which focus on pre-2023
data where we have higher confidence in the human-authored labels.

We note slight variations in sample sizes among the five LLMs. These differences stem from LLM-
specific factors such as context window limits, generation errors (e.g., malformed JSON or degenerate
outputs), and input prompt safety filters.

4 EXPERIMENTAL RESULTS

4.1 IMPROVING DETECTION OF AI-GENERATED PEER REVIEWS USING MANUSCRIPT CONTEXT

Unlike general AI text detection scenarios, peer review provides additional contextual information
for this problem: the manuscript being reviewed. With access to metadata connecting reviews to their
source manuscripts (as in platforms like OpenReview.net), we investigate whether leveraging the
manuscript can improve the detection of AI-generated peer reviews.

To test this idea, we introduce a method which utilizes the manuscript by comparing the semantic
similarity between a test reviews (TR) and a synthetic "Anchor Review" (AR) generated for the same
manuscript. The AR can be generated by any LLM. We use a simple, generic prompt (Appendix
E.2) to generate the AR without prior knowledge of the user prompts (i.e., the AR prompt differs
from those used to create reviews in the testing dataset). Once an AR is generated for a given paper
(Eq.1) and a testing review (TR) is provided, we obtain their embeddings using a text embedding
model (EM, Eqs.2 and 3). The semantic similarity between the embeddings of the AR and TR is then
computed via cosine similarity (Eq.4). Finally, this similarity score is compared against a learned
threshold (θ): if the score exceeds the threshold, the review is classified as AI-generated (Eq. 5).

(Formalization of Anchor Method)

AR = LLM(paper, PromptAR) (1)
EmbAR = EM(AR) (2)
EmbTR = EM(TR) (3)
Score = Cosine_similarity(EmbAR,EmbTR) (4)

Label =

{
1 if Score > θ,

0 otherwise.
(5)

In our study, we use OpenAI’s embedding model
(text-embedding-003-small). The threshold θ is
learned from the calibration set. Specifically, for
each review in the calibration data, we apply the
steps outlined in Eqs. 1 to 4. To handle cases
where the source LLM is unknown, we generate
multiple anchor reviews using different LLMs and
apply a voting scheme: if any anchor yields a
positive detection, the review is labeled as AI-
generated (see Appendix D.1 for details).

2ChatGPT was released on November 30, 2022.
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Figure 2: ROC plots computed from the combined GPT-4o, Gemini, and Claude review calibration
dataset, showing results for ICLR (left) and NeurIPS (right); AUC values are shown in parentheses.

4.2 FULLY AI-WRITTEN REVIEW DETECTABILITY

We compare our approach with 18 baseline methods using IMGTB (see Appendix A for details) and
utilize the calibration set to determine appropriate thresholds for the test data. To minimize the risk
of LLM-text contamination in human-written reviews, we only include reviews submitted before the
release of ChatGPT in late 2022 (i.e., NeurIPS 2016-2022 and ICLR 2017-2022 papers), when LLM
use rapidly became widespread. The threshold is then determined by setting a target False Positive
Rate (FPR), which is achieved by adjusting the threshold until the FPR equals the target value. We
focus on low FPR targets (e.g., 0.1%, 0.5%, and 1%) because false positive classifications—where
human-written reviews are mistakenly identified as AI-generated—carry high stakes, potentially
damaging an individual’s reputation. Additionally, we focus on AI review text samples generated by
three commercial LLMs (GPT-4o, Gemini, and Claude) because these models are more advanced,
making the AI text detection task harder. Many users are more likely to choose these models over
open-source LLMs due to their convenient user interfaces and limited access to the compute resources
required for running advanced open-source models.

AI text detection models can be calibrated for varying levels of sensitivity in order to balance the
trade-off between true positive and false positive detections. Receiver operating characteristic (ROC)
curves are therefore commonly used to compare different methods, as they provide a visualization
of the true-positive rate (TPR) which can be achieved by a model when its decision boundary is
calibrated for a range of different FPRs. Figure 2 provides the ROC curves for baseline methods,
calculated using our GPT-4o, Gemini, and Claude review calibration subset separately for reviews
submitted to ICLR 2021-2022 (left) and NeurIPS 2021-2022 (right). The area under the curve (AUC)
is provided for each method in the legend; higher values indicate better detection accuracy across the
entire range of FPR values. Among the 18 baseline models, Binoculars consistently performs the
best across the ROC curve, particularly excelling at maintaining a low FPR. Our task-specific anchor
method appears to perform strongly, but we will discuss its performance separately in Section 4.1;
here, we focus on analyzing the 18 existing detection methods.

Although ROC curves are useful for comparing the overall performance of different classifiers, only
the far left portion of these plots are typically relevant for practical applications of AI text detection
models. This is particularly true in the domain of peer review, where the cost of a false positive is
high. Reviewers volunteer their time and expertise to sustain this important process; false accusations
have the potential to further reduce the availability of reviewers due to disengagement and can also
lead to significant reputational harm. Therefore, it is vital that AI text detection systems for peer
review be calibrated for a low FPR in order to avoid such negative outcomes.

Prior work has shown that AUC is not necessarily reflective of how models perform at very
low FPR values (Yang et al., 2023; Krishna et al., 2024; Tufts et al.). Therefore, we also re-
port the actual TPR and FPR achieved by different detection methods at discrete low values
of target FPR (0.1%, 0.5%, and 1%), which we believe to be of greatest interest for practical
applications. The target FPR is used to calculate each method’s classification threshold using
our calibration dataset, with the actual TPR and FPR computed over the withheld test dataset.
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To simulate a more challenging evaluation setting where some of the test reviews are “out-of-
domain” in the sense that they come from a different conference than the calibration dataset, we
use only the ICLR reviews to calibrate each method (see Section C.2 for in-domain evaluations).

Table 2: Actual FPR and TPR calculated from the
withheld test dataset at varying detection thresh-
olds, which are calibrated using ICLR reviews
from our calibration set at different target FPRs.
Highest TPRs are in bold. The results are well
separated; see Table S5 for uncertainties estimated
via bootstrapping.

Target FPR: 0.1% 0.5% 1%

FPR TPR FPR TPR FPR TPR

G
PT

-4
o

R
ev

ie
w

s Anchor 0.1 63.5 0.5 83.7 1.0 88.8
Binoculars 0.2 17.1 0.6 33.6 1.0 45.2
MAGE-D 0.1 2.3 0.6 8.8 1.3 14.7
s5 0.1 0.1 0.9 7.2 1.7 17.5
MFD 0.2 0.1 0.8 6.0 1.6 15.6
GLTR 0.1 0.1 0.4 1.9 1.1 5.7
DetectGPT 0.1 0.1 0.6 1.1 1.2 2.3

G
em

in
iR

ev
ie

w
s

Anchor 0.2 59.7 0.8 80.3 1.3 86.5
Binoculars 0.2 61.5 0.6 78.0 1.0 85.5
s5 0.0 0.2 0.5 9.6 1.1 19.4
MFD 0.1 0.5 0.4 8.9 1.1 18.8
FastDetectGPT 0.1 1.1 0.5 5.8 1.1 10.3
GLTR 0.2 0.5 0.8 5.2 1.8 12.4
DetectGPT 0.1 0.4 0.5 3.5 1.2 7.0
MAGE-D 0.1 0.4 0.6 3.3 1.3 7.0
Loglikelihood 0.0 0.0 0.3 0.1 0.5 1.0

C
la

ud
e

R
ev

ie
w

s Anchor 0.1 59.6 0.5 75.8 1.0 81.8
Binoculars 0.2 43.5 0.6 65.8 1.0 77.0
s5 0.0 0.1 0.2 7.6 0.5 17.5
MFD 0.0 0.2 0.1 6.8 0.4 16.5
DetectGPT 0.1 0.5 0.6 5.3 1.2 11.1
GLTR 0.0 0.0 0.2 0.5 0.6 1.8

Table 2 provides these results separately for the
detection of GPT-4o, Gemini, and Claude re-
views (Llama and Qwen results are provided
in Appendix C.3). Other baseline methods that
failed achieve a TPR of at least 1% at a target
FPR of 1% (i.e., TPR < 1% at target FPR = 1%)
are omitted.

The results in Table 2 show that among the
18 baselines, Binoculars generally achieves the
best performance overall. For example, its TPR
reaches 45–85% at a 1% target FPR, while other
models reach only up to 19% TPR. However,
even with the best-performing Binoculars, per-
formance drops significantly at more stringent
FPR levels—for instance, it achieves only 17%
TPR at 0.1% FPR for GPT-4o reviews. These
results highlight a key challenge in AI-generated
peer review detection: the difficulty of robustly
identifying AI-written text at the level of individ-
ual peer reviews. At the same time, they point to
the need for new methods that can improve accu-
racy and robustness under low-FPR constraints.
To this end, we also evaluate a purpose-built de-
tection method (Anchor) as described previously
in Section 4.1, which leverages additional con-
text specific to the peer review detection task.

Compared to the 18 baseline models, our An-
chor approach consistently achieves the highest
AUC for AI peer review (Figure 2) and outper-
forms other baseline methods overall (Table 2). The performance gap is especially notable for GPT-4o,
which is generally harder to detect; for example, at a target FPR of 0.1%, the anchor embedding
method achieves a TPR of 63.5% for GPT-4o reviews, compared to 17.1% for the next-best method
(Binoculars), which is an absolute improvement of 46.4%. This indicates that the anchor embedding
approach is particularly effective for the most challenging review samples. On Gemini reviews,
where baseline methods already perform well, the anchor embedding method performs similarly to
Binoculars. These results suggest that leveraging the context of the submitted manuscript through
anchor embeddings offers substantial benefits for high-risk, low-FPR detection tasks, especially when
reviews are written by the most advanced LLMs.

5 ANALYSIS

5.1 IS AI PEER REVIEW DETECTION ROBUST TO PROMPT VARIATIONS?

A potential limitation in constructing AI-generated datasets is the reliance on a fixed prompt, which
may constrain stylistic diversity or lead to overfitting of downstream detection models. Moreover,
such fixed prompting may not reflect real-world use cases, where different users are likely to employ
varied and personalized prompts when generating reviews. While our primary prompt is designed to
be semantically grounded—using the paper content and a human reviewer’s overall score to guide
generation—it is important to evaluate whether this design leads to narrow outputs or brittle detection
performance. To assess the impact of prompt variation, we conducted a prompt sensitivity analysis
using an alternative prompting strategy that simulates diverse reviewer archetypes (e.g., "balanced,"
"conservative," "innovative," and "nitpicky"; see Appendix E.4 for the exact prompts we used). For
this analysis, we generated 1,921 GPT-4o reviews for papers corresponding to the ICLR 2021 test set.
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Cross-Prompt Detection Robustness We evaluated whether prompt-induced shifts in review style
affect the robustness of AI text detectors. Specifically, we applied detection models calibrated on the
main (i.e., score-aligned) prompt and evaluated them on reviews generated using the archetype-based
prompt. Table S10 reports the TPRs at multiple target FPRs for a range of baseline detection methods.
Across all settings, we observe that TPRs under cross-prompt testing remain largely consistent with
those under in-prompt testing, with minimal change in detection performance. This result suggests
that, despite changes in prompt framing, the core distributional properties of the AI-generated reviews
are sufficiently stable for detection models to generalize. Overall, these findings indicate that the
utility of our dataset is not overly sensitive to prompt selection.

Embedding-Based Style Consistency We also investigated prompt-induced variation using
sentence-level embedding analysis. Figure S2 visualizes a t-SNE projection of review embed-
dings from two groups: (i) AI-generated reviews using the primary score-aligned prompt and (ii)
AI-generated reviews using the archetype prompt. No meaningful separation emerged between
these two review types, suggesting they share broadly similar linguistic and semantic characteristics.
This finding reinforces the robustness of our prompting strategy and implies that moderate prompt
variation does not lead to drastic stylistic shifts in model outputs.

Evaluation on Agent-Based and Structured Generation Pipelines To assess whether more
complex prompting strategies fundamentally alter the detectability of AI-generated peer reviews,
we evaluated Binoculars on reviews generated by several recent agent-based or structured LLM
review systems: AI Scientist (Lu et al., 2024), AgentReview (Jin et al., 2024), and DeepReview
(Zhu et al., 2025). These systems incorporate features like multi-step workflows, reviewer personas,
and self-reflection. We paired these AI-generated reviews with human-written reviews from ICLR
2022 and measured detectability using AUROC (full results in Appendix D.3). Despite the increased
sophistication of these generation pipelines, we found Binoculars consistently achieve high AUROC
(0.99), which is ∼0.03 larger than its performance on our own GPT-4o-generated baseline. This sug-
gests that such advanced prompting or agentic strategies do not fundamentally degrade detectability,
supporting the broader applicability of our benchmark.

5.2 CAN DETECTION MODELS DISTINGUISH HUMAN REVIEWS EDITED BY LLMS?

LLMs are widely used for writing assistance tasks such as grammar correction and fluency enhance-
ment Laban et al. (2024); Raheja et al. (2024), especially benefiting non-native speakers. However,
excessive reliance on LLMs can lead to substantial rewriting, blurring the line between human-
and AI-authored reviews. To simulate this scenario, we took human-written peer reviews from the
ICLR 2021 GPT-4o test subset and generated AI-edited versions at four increasing levels of editing:
Minimum, Moderate, Extensive, and Maximum (see Appendix E.3 for prompts). To validate that the
edits are semantically distinct, we measured cosine similarity between the original and edited reviews
using a sentence embedding model. As shown in Table S14, similarity scores decrease as the level of
editing increases.

We evaluate detection models on two fronts: (i) their ability to flag edited reviews as AI-generated,
and (ii) their ability to rank the reviews by degree of AI involvement using Normalized Discounted
Cumulative Gain (NDCG) Järvelin & Kekäläinen (2002). Table 3 compares our anchor embedding
method with Binoculars, the strongest-performing baseline from previous experiments (as shown in
Table 2). Both models achieve high NDCG scores (0.90 for Anchor, 0.86 for Binoculars), indicating
that they can generally rank reviews according to the degree of AI editing. However, their flagging
behavior differs. At the 0.1% FPR threshold, both models rarely flag minimally to extensively edited
reviews as AI-generated (≤2.5%), but diverge sharply at the Maximum level: Anchor flags 60.8% of
these reviews, compared to just 9.2% for Binoculars. This trend persists at the 1% FPR threshold,
with generally higher flagging rates across all levels. These results suggest that the Anchor method
is more sensitive to high levels of AI involvement, whereas Binoculars is more conservative at the
upper end.

Overall, these results suggest that high-performing detection models can distinguish varying levels
of AI editing in human-written reviews. However, lightly edited texts remain difficult to detect,
highlighting a challenge for future work on identifying hybrid human–AI content. Additionally, the
inverse of this analysis (i.e., “human revises AI draft”) could be a promising direction to investigate
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Table 3: NDCG and the proportion of reviews flagged as AI-written for different levels of editing.
Flagging rates are shown for two different thresholds (0.1% and 1% target FPRs), adapted from those
used in Table 2.

Method NDCG Threshold: 0.1%FPR) Threshold: 1%FPR)

Minimum Moderate Extensive Maximum Minimum Moderate Extensive Maximum

Anchor 0.90 0.4 0.7 1.9 60.8 2.6 4.9 9.7 82.3
Binoculars 0.86 0.6 1.4 2.5 9.2 2.7 5.3 9.4 26.4

in future work; we expect to see an inverse relationship in this setting as our "AI edits human draft"
results, where greater levels of human editing will reduce the likelihood of the review being flagged
as AI-written.

5.3 DETECTABILITY OF MIXED-AUTHORSHIP PEER REVIEWS

In addition to investigating the detectability of human-written and LLM-edited peer reviews, we also
conducted an analysis of a different mixed-authorship scenario where AI peer reviews are generated
from bullet points (see Lee et al. (2024) for related approaches). Specifically, we aimed to simulate
the scenario of a human drafting bullet points and using an LLM to assist with writing the full
review. We did this by first asking an LLM (GPT-4.1) to condense a human-written peer review
into a series of bullet points which capture the core points of the review using the following prompt:
Given a peer review for an academic research paper, condense the core points of the review into
bullet points. Output only the bullet points with no additional commentary or formatting. We then
prompted GPT-4.1 to generate a review solely from the resulting bullet points (which themselves
were derived from human-written reviews sampled from the ICLR 2021 test set) using the following
prompt: Given a set of bullet points describing a peer review of an academic research paper, write
the full text of the peer review.

Table 4: Anchor detectability results for
AI reviews generated from bullet points

Target FPR Actual FPR Actual TPR

0.1% 0.2% 5.8%
0.5% 0.8% 14.4%
1.0% 2.2% 18.6%

The Anchor embedding method detection results for the
500 AI reviews generated from bullet points are pro-
vided in Table 4. Consistent with our previous analysis
of mixed-authorship generation settings (AI editing of
human-written peer reviews), we find that these reviews
which are generated from the core points of human-written
peer reviews are much more challenging to detect. This
generation setting could be viewed as a legitimate use case
for LLMs in the peer review process because the core
points and ideas of the review are still originating from a human, with the LLM serving as a writing
assistant. Our main focus is the identification of unethical uses of LLMs in the peer review process
(i.e., when it is used to fully generate the peer review); these results demonstrate how our Anchor
method performs well at detecting such uses while having relatively low detection rates for cases
where LLMs are primarily used for writing assistance.

5.4 HOW DO HUMAN-WRITTEN AND AI-GENERATED PEER REVIEWS DIFFER?

To better understand the characteristics which differentiate peer reviews written by humans and
LLMs, we conducted a quantitative analysis of 32 reviews authored by humans and GPT-4o for
5 papers submitted to ICLR 2021. Specifically, we read an equal number of human and GPT-4o
written reviews for each paper and noted differences in the content between them. A distinguishing
characteristic of the analyzed human reviews was that they usually contained details or references to
specific sections, tables, figures, or results in the paper. In contrast, peer reviews authored by GPT-4o
lacked such specific details, instead focusing on higher-level comments. Another key difference
identified in our qualitative analysis was the lack of any specific references to prior or related work in
peer reviews generated by GPT-4o. Human-authored peer reviews often point out missing references,
challenge the novelty of the paper by referencing related work, or suggest specific baselines with
references that should be included in the study. In contrast, none of the analyzed GPT-4o reviews
contained such specific references to related work. Finally, we found that the vast majority of GPT-4o
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reviews mentioned highly similar generic criticisms which were not found in human-authored reviews
for the same paper. Examples of these issues are provided in Table S12 in Appendix D.4.

Prior work has shown that peer reviews written by GPT-4 and humans have a level of semantic
similarity which is comparable to that between different human-authored peer reviews, which has
been used to advocate for the usefulness of feedback from GPT-4 in the paper writing process (Liang
et al., 2024b). In our qualitative analysis, we found that GPT-4 does indeed generate similar higher-
level comments as human reviewers, which could account for this semantic similarity. Despite being
generic in nature, we would agree that such feedback could be useful to authors seeking to improve
their manuscripts. Nevertheless, we believe that the lack of specificity, detail, and consideration of
related work in peer reviews authored by GPT-4 demonstrates that it is not suitable for replacing
human domain experts in the peer review process.

A natural concern is that the deficiencies of AI peer reviews (e.g., lack of references, generic feedback)
could be artifacts of prompting, potentially affecting detectability. We tested this by generating 6,000
reviews with prompts updated to incorporate our findings above, explicitly instructing models to avoid
typical AI review characteristics and to mimic more human-like reviews (Appendix E.5). Detection
performance was essentially unchanged (AUROC differences ≤ 0.01), suggesting that (1) the gap
between human and AI reviews is systematic rather than prompt-dependent, and (2) our results are
consistent with the prompt-robustness analysis in Section 5.1.

5.5 DO AI-GENERATED REVIEWS ASSIGN HIGHER SCORES THAN HUMAN REVIEWS?

In addition to qualitative differences in the content of human and AI-written reviews, we also observe
a divergence in numeric scores assigned as part of the review. Figure S3 in Appendix D.6 provides
histograms depicting the distribution of score differences for soundness, presentation, contribution,
and confidence, which are computed by subtracting scores assigned for each category by human
reviewers from those assigned by AI reviewers. AI-written peer reviews were matched with their
corresponding human review (aligned by paper ID and overall recommendation) to compute the score
differences. Confidence scores range from 1 to 5, while all other categories of scores range from 1 to
4. In the following discussion, We focus on reviews from NeurIPS 2022, which were produced prior
to the release of ChatGPT. This provides greater confidence that the human-labeled reviews were
indeed written by humans, with little to no potential AI influence.

All LLMs produce higher scores than human reviews with a high degree of statistical significance,
assessed using a two-sided Wilcoxon signed-rank test (see legend for p-values in Figure S3). While
the difference between human and AI confidence scores are relatively consistent across all three
LLMs, Claude exceeds human scores by the greatest magnitude for soundness, presentation, and
contribution. GPT-4o and and Gemini exceed human scores by a similar magnitude for presentation
and contribution, while GPT-4o exhibits a greater divergence for soundness scores. Overall these
results indicate that AI-generated peer reviews are more favorable w.r.t. assigned scores than human-
written peer reviews, which raises fairness concerns as scores are highly correlated with acceptance
decisions. Our findings are consistent with prior work which has shown that papers reviewed by
LLMs have a higher chance of acceptance (Drori & Te’eni, 2024; Latona et al., 2024; Ye et al.,
2024).

6 CONCLUSION

In this work, we introduced a new large-scale dataset of parallel human-written and AI-generated
peer reviews for identical papers submitted to leading AI research conferences. Our evaluations
show that existing open-source methods for AI text detection struggle in the peer review setting,
where high detection rates often come at the cost of falsely flagging human-written reviews—an
outcome that must be minimized in practice. We demonstrate that leveraging manuscript context is
a promising strategy for improving detection accuracy while maintaining a low false positive rate.
In addition, AI-generated reviews tend to be less specific and less grounded in the manuscript than
human-written ones. We also find that AI-generated reviews consistently assign higher scores, raising
fairness concerns in score-driven decision-making processes. We hope our results motivate further
research on responsible detection of AI-generated content in scientific review workflows, and that our
dataset provides a valuable resource for advancing this goal.
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7 ETHICS STATEMENT

Our work adheres to ethical AI principles. Peer review plays a critical role in advancing scientific
discovery; however, the misuse of AI tools by reviewers to generate reviews without proper diligence
can compromise the integrity of the review process. Furthermore, consistent with previous studies, we
have observed that AI-generated reviews tend to be overly generic, often failing to provide actionable
feedback for authors. Additionally, AI reviewers generally assign higher scores compared to human
reviewers, raising concerns that AI-assisted reviews could contribute to the acceptance of work that
may not meet established human evaluation standards. By developing methods to detect AI-generated
reviews, our work seeks to mitigate the misuse of AI tools in peer review and promote a more rigorous
and fair scientific review process.

We utilize a wide range of diverse prompts throughout our work in order to systematically evaluate
how different prompting strategies may impact the detectability of AI-generated peer reviews. Nev-
ertheless, the potential set of real-world prompts that could be used to produce AI peer reviews is
vast and undefined; it is therefore impossible to construct a dataset with complete coverage of all
possible prompting strategies. A user study could be valuable for further characterizing the range of
prompts which could be employed in practice to produce AI-generated peer reviews. However, we
note that recruiting participants for such a study presents ethical challenges because our main focus is
specifically on detecting unethical applications of LLMs in the peer review process. Therefore, the
target population for participants in this study would be individuals who are willing to (1) admit that
they engage in unethical behavior that violates the review policies of most major conferences, and (2)
are willing to share the prompts that they use to engage in such behavior with researchers who are
actively working to detect it. Addressing these challenges in characterizing how humans are utilizing
LLMs to write peer reviews remains a valuable direction of study for future work.

8 REPRODUCIBILITY STATEMENT

A subset of our dataset is included in the supplementary materials, with the full dataset to be released
upon publication. All baselines are implemented using public codebases (IMGTB), and our Anchor
method and prompting setup are described in detail in the main text and appendix.
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A BASELINE METHODS

We compare our approach to 18 baseline methods from IGMBT3 (released under MIT license) with
its default setting (Spiegel & Macko, 2023), which are categorized into metric-based and pretrained
model-based methods. The metric-based methods include Binoculars Hans et al. (2024), DetectLLM-
LLR Su et al., DNAGPT Yang et al. (2023), Entropy Gehrmann et al. (2019), FastDetectGPT Bao
et al. (2023), GLTR Gehrmann et al. (2019), LLMDeviation Wu & Xiang (2023), Loglikelihood
Solaiman et al. (2019), LogRank Mitchell et al. (2023a), MFD Wu & Xiang (2023), Rank Gehrmann
et al. (2019), and S5 Spiegel & Macko (2023). The model-based methods include NTNU-D Sivesind
& Winje (2023), ChatGPT-D Guo et al. (2023), OpenAI-D Solaiman et al. (2019), OpenAI-D-lrg
Solaiman et al. (2019), RADAR-D Solaiman et al. (2019), and MAGE-D Li et al. (2024).

A.1 METRIC BASED METHODS

A.1.1 BINOCULARS

Binoculars Hans et al. (2024) analyzes text through two perspectives. First, it calculates the log per-
plexity of the text using an observer LLM. Then, a performer LLM generates next-token predictions,
whose perplexity is evaluated by the observer—this metric is termed cross-perplexity. The ratio of
perplexity to cross-perplexity serves as an indicator for detecting LLM-generated text.

A.1.2 DNAGPT

DNAGPT Yang et al. (2023) is a training-free detection method designed to identify machine-
generated text. Unlike conventional approaches that rely on training models, DNAGPT uses Divergent
N-Gram Analysis (DNA) to detect discrepancies in text origin. The method works by truncating
a given text at the midpoint and using the preceding portion as input to an LLM to regenerate the
missing section. By comparing the regenerated text with the original through N-gram analysis (black-
box) or probability divergence (white-box), DNAGPT reveals distributional differences between
human and machine-written text, offering a flexible and explainable detection strategy.

A.1.3 ENTROPY

Similar to the Rank score, the Entropy score for a text is determined by averaging the entropy values
of each word, conditioned on its preceding context Gehrmann et al. (2019).

A.1.4 GLTR

The Entropy score, like the Rank score, is computed by averaging the entropy values of each word
within a text, considering the preceding context Gehrmann et al. (2019).

A.1.5 MFD

The Multi-Feature Detection (MFD) method Wu & Xiang (2023) detects AI-generated text using
four features: log-likelihood, log-rank, entropy, and LLM deviation.

A.1.6 LOGLIKELIHOOD

This method utilizes a language model to compute the token-wise log probability. Specifically, given
a text, the log probability of each token is averaged to produce a final score. A higher score indicates
a greater likelihood that the text is machine-generated Solaiman et al. (2019).

A.1.7 LOGRANK

Unlike the Rank metric, which relies on absolute rank values, the Log-Rank score is derived by
applying a logarithmic function to the rank value of each word Mitchell et al. (2023a).

3https://github.com/kinit-sk/IMGTB
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A.1.8 RANK

The Rank score is calculated by determining the absolute rank of each word in a text based on its
preceding context. The final score is obtained by averaging the rank values across the text. A lower
score suggests a higher probability that the text was machine-generated Gehrmann et al. (2019).

A.1.9 DETECTLLM-LLR

This approach integrates Log-Likelihood and Log-Rank scores, leveraging their complementary
properties to analyze a given text Su et al..

A.1.10 FASTDETECTGPT

This method assesses changes in a model’s log probability function when small perturbations are
introduced to a text. The underlying idea is that LLM-generated text often resides in a local optimum
of the model’s probability function. Consequently, minor perturbations to machine-generated text
typically result in lower log probabilities, whereas perturbations to human-written text may lead to
either an increase or decrease in log probability Mitchell et al. (2023a).

A.2 MODEL-BASED METHODS

A.2.1 NTNU-D

It is a fine-tuned classification model based on the RoBERTa-base model, and three sizes of the
bloomz-models Sivesind & Winje (2023)

A.2.2 CHATGPT-D

The ChatGPT Detector Guo et al. (2023) is designed to differentiate between human-written text
and content generated by ChatGPT. It is based on a RoBERTa model that has been fine-tuned for
this specific task. The authors propose two training approaches: one that trains the model solely on
generated responses and another that incorporates both question-answer pairs for joint training. In
our evaluation, we adopt the first approach to maintain consistency with other detection methods.

A.2.3 OPENAI-D AND RADAR-D

OpenAI Detector Solaiman et al. (2019) is a fine-tuned RoBERTa model designed to identify outputs
generated by GPT-2. Specifically, it was trained using text generated by the largest GPT-2 model
(1.5B parameters) and is capable of determining whether a given text is machine-generated.

A.2.4 MAGE-D

MAGE (MAchine-GEnerated text detection) Li et al. (2024) is a large-scale benchmark designed
for detecting AI-generated text. It compiles human-written content from seven diverse writing tasks,
including story generation, news writing, and scientific writing. Corresponding machine-generated
texts are produced using 27 different LLMs, such as ChatGPT, LLaMA, and Bloom, across three
representative prompt types.

B DATASET DETAILS

B.1 DATASET

A subset of our dataset is included as part of the supplementary materials in a zipped file. The full
dataset will be released publicly upon publication under a permissive research-use license.

B.2 DATASET FILE STRUCTURE

The calibration, test, and extended sets are in separate directories. Each directory contains subdirecto-
ries for different models that were used to generate AI peer review samples. In each model’s subdirec-
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tory, you will find multiple CSV files, with each file representing peer review samples of a specific con-
ference. Each file follows the naming convention: "<conference>.<subset>.<LLM>.csv".
The directory and file structure are outlined below.

|-- calibration
|-- gpt4o

|-- ICLR2017.calibration.gpt-4o.csv
|-- ...
|-- ICLR2024.calibration.gpt-4o.csv
|-- NeurIPS2016.calibration.gpt-4o.csv
|-- ...
|-- NeurIPS2024.calibration.gpt-4o.csv

|-- claude
|-- ...

|-- gemini
|-- ...

|-- llama
|-- ...

|-- qwen
|-- ...

|-- extended
|-- gpt4o

|-- ICLR2018.extended.gpt-4o.csv
|-- ...
|-- ICLR2024.extended.gpt-4o.csv
|-- NeurIPS2016.extended.gpt-4o.csv
|-- ...
|-- NeurIPS2024.extended.gpt-4o.csv

|-- llama
|-- ...

|-- test
|-- gpt4o

|-- ICLR2017.test.gpt-4o.csv
|-- ...
|-- ICLR2024.test.gpt-4o.csv
|-- NeurIPS2016.test.gpt-4o.csv
|-- ...
|-- NeurIPS2024.test.gpt-4o.csv

|-- claude
|-- ...

|-- gemini
|-- ...

|-- llama
|-- ...

|-- qwen
|-- ...

B.3 CSV FILE CONTENT

CSV files may differ in their column structures across conferences and years. These differences are
due to updates in the required review fields over time as well as variations between conferences. See
Table S1 for review fields of individual conferences.
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Table S1: Required fields in the review templates for each conference.

Conference Required Fields

ICLR2017 review, rating, confidence
ICLR2018 review, rating, confidence
ICLR2019 review, rating, confidence
ICLR2020 review, rating, confidence, experience assessment, checking correctness of derivations and

theory, checking correctness of experiments, thoroughness in paper reading
ICLR2021 review, rating, confidence
ICLR2022 summary of the paper, main review, summary of the review, correctness, technical novelty

and significance, empirical novelty and significance, flag for ethics review, recommendation,
confidence

ICLR2023 summary of the paper, strength and weaknesses, clarity quality novelty and reproducibility,
summary of the review, rating, confidence

ICLR2024 summary, strengths, weaknesses, questions, soundness, presentation, contribution, flag for
ethics review, rating, confidence

NeurIPS2016 review, rating, confidence
NeurIPS2017 review, rating, confidence
NeurIPS2018 review, overall score, confidence score
NeurIPS2019 review, overall score, confidence score, contribution
NeurIPS2021 summary, main review, limitations and societal impact, rating, confidence, needs ethics

review, ethics review area
NeurIPS2022 summary, strengths and weaknesses, questions, limitations, ethics flag, ethics review area,

rating, confidence, soundness, presentation, contribution
NeurIPS2023 summary, strengths, weaknesses, questions, limitations, ethics flag, ethics review area,

rating, confidence, soundness, presentation, contribution
NeurIPS2024 summary, strengths, weaknesses, questions, limitations, ethics flag, ethics review area,

rating, confidence, soundness, presentation, contribution

B.4 DATASET SAMPLE NUMBERS PER CONFERENCE YEAR

In this section, we present further breakdowns of sample numbers by conference, year, and LLM, as
shown in Table 1.

Table S2: Entire set sample size, including both human and AI reviews. They are exactly balanced.

Conference gpt4o llama

ICLR2017 2926 2918
ICLR2018 5460 5434
ICLR2019 9414 9378
ICLR2020 15426 15366
ICLR2021 18786 18768
ICLR2022 20042 20026
ICLR2023 28562 28560
ICLR2024 55714 55672
NeurIPS2016 6296 6284
NeurIPS2017 3848 3774
NeurIPS2018 5990 5938
NeurIPS2019 8444 8398
NeurIPS2021 21170 21164
NeurIPS2022 20472 20408
NeurIPS2023 30264 30194
NeurIPS2024 33206 33104
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Table S3: Test set sample size, including both human and AI reviews. They are exactly balanced.

Conference gemini claude qwen gpt4o llama

ICLR2017 2924 2926 2918 2926 2918
ICLR2018 3000 3004 2988 3004 2992
ICLR2019 3002 3010 3000 3010 2998
ICLR2020 3016 3022 3000 3022 3010
ICLR2021 3840 3842 3830 3842 3838
ICLR2022 3896 3900 3838 3900 3898
ICLR2023 3816 3816 3816 3816 3814
ICLR2024 3784 3820 3800 3822 3816
NeurIPS2016 5522 5534 5534 5536 5526
NeurIPS2017 2854 2858 2850 2858 2812
NeurIPS2018 3000 3006 2916 3006 2982
NeurIPS2019 2930 2938 2922 2940 2928
NeurIPS2021 3884 3884 3884 3884 3884
NeurIPS2022 3606 3622 3598 3622 3610
NeurIPS2023 4436 4440 4382 4440 4432
NeurIPS2024 3914 3926 3880 3926 3912

Table S4: Calibration set sample size, including both human and AI reviews. They are exactly
balanced.

Conference gemini claude qwen gpt4o llama

ICLR2021 3826 3828 3802 3828 3828
ICLR2022 3878 3844 3860 3882 3880
NeurIPS2021 3828 3830 3818 3830 3828
NeurIPS2022 3648 3654 3634 3654 3644

C ADDITIONAL RESULTS

C.1 UNCERTAINTY ESTIMATES VIA BOOTSTRAP RESAMPLING

To estimate the uncertainty of our main experimental results (TPR and FPR reported in Table 2),
we perform bootstrap resampling with replacement using N = 100 resamples. For each method
and evaluation setting, we compute the standard deviation (SD) of the TPR and FPR across the 100
bootstrap replicates. While 100 resamples provide only a coarse estimate of variability, this level
of resampling was chosen to balance computational cost with the need to quantify uncertainty. As
shown in Table S5, the standard deviations are small relative to the large performance gaps between
methods, indicating the robustness of our main findings.

C.2 CALIBRATION USING ICLR + NEURIPS REVIEWS

Our main results in Table 2 of Section 4.2 utilized ICLR review from our calibration set to calibrate
each detection method. This simulates the scenario in which some of the reviews in the test set are
"out-of-domain" in the sense that they belong to a different conference than the reviews used for
calibration. In Table S6, we provide additional results for the same evaluation setting as before, but
using both ICLR and NeurIPS reviews for calibration (i.e., fully “in domain”). We generally see
similar trends regarding relative performance between methods as before, with the exception that
the Binoculars method achieves slightly higher detection rates than our Anchor method for Gemini
reviews. This suggests that existing methods such as Binoculars may be more sensitive to the use of
in-domain data during calibration.
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Table S5: Actual true positive rate (TPR) and false positive rate (FPR), ± their standard deviation,
computed over 100 bootstrap resamples corresponding to the main results in Table 2.

Target FPR: 0.1% 0.5% 1%

FPR TPR FPR TPR FPR TPR

G
PT

-4
o

R
ev

ie
w

s Anchor 0.1 ± 0.02 63.5 ± 0.34 0.5 ± 0.03 83.7 ± 0.33 1.0 ± 0.04 88.8 ± 0.31
Binoculars 0.2 ± 0.03 17.1 ± 0.25 0.6 ± 0.05 33.6 ± 0.31 1.0 ± 0.06 45.2 ± 0.34
MAGE-D 0.1 ± 0.03 2.3 ± 0.11 0.6 ± 0.05 8.8 ± 0.21 1.3 ± 0.07 14.7 ± 0.24
s5 0.1 ± 0.03 0.1 ± 0.02 0.9 ± 0.07 7.2 ± 0.20 1.7 ± 0.09 17.5 ± 0.29
MFD 0.2 ± 0.03 0.1 ± 0.02 0.8 ± 0.07 6.0 ± 0.15 1.6 ± 0.09 15.6 ± 0.24
GLTR 0.1 ± 0.02 0.1 ± 0.02 0.4 ± 0.05 1.9 ± 0.08 1.1 ± 0.08 5.7 ± 0.14
DetectGPT 0.1 ± 0.02 0.1 ± 0.02 0.6 ± 0.05 1.1 ± 0.07 1.2 ± 0.08 2.3 ± 0.10

G
em

in
iR

ev
ie

w
s

Anchor 0.2 ± 0.01 59.7 ± 0.32 0.8 ± 0.03 80.3± 0.33 1.3 ± 0.04 86.5 ± 0.31
Binoculars 0.2 ± 0.03 61.5 ± 0.32 0.6 ± 0.05 78.0 ± 0.28 1.0 ± 0.07 85.5 ± 0.23
s5 0.0 ± 0.01 0.2 ± 0.03 0.5 ± 0.04 9.6 ± 0.21 1.1 ± 0.08 19.4 ± 0.27
MFD 0.1 ± 0.02 0.5 ± 0.04 0.4 ± 0.05 8.9 ± 0.17 1.1 ± 0.07 18.8 ± 0.25
FastDetectGPT 0.1 ± 0.02 1.1 ± 0.08 0.5 ± 0.04 5.8 ± 0.18 1.1 ± 0.06 10.3 ± 0.21
GLTR 0.2 ± 0.03 0.5 ± 0.04 0.8 ± 0.06 5.2 ± 0.13 1.8 ± 0.09 12.4 ± 0.23
DetectGPT 0.1 ± 0.02 0.4 ± 0.05 0.5 ± 0.05 3.5 ± 0.12 1.2 ± 0.08 7.0 ± 0.18
MAGE-D 0.1 ± 0.03 0.4 ± 0.04 0.6 ± 0.06 3.3 ± 0.12 1.3 ± 0.08 7.0 ± 0.17
Loglikelihood 0.0 ± 0.01 0.0 ± 0.00 0.3 ± 0.04 0.1 ± 0.02 0.5 ± 0.05 1.0 ± 0.07

C
la

ud
e

R
ev

ie
w

s Anchor 0.1 ± 0.02 59.6 ± 0.34 0.5 ± 0.04 75.8 ± 0.34 1.0 ± 0.05 81.8 ± 0.32
Binoculars 0.2 ± 0.04 43.5 ± 0.33 0.6 ± 0.05 65.8 ± 0.33 1.0 ± 0.07 77.0 ± 0.29
s5 0.0 ± 0.01 0.1 ± 0.02 0.2 ± 0.03 7.6 ± 0.18 0.5 ± 0.05 17.5 ± 0.23
MFD 0.0 ± 0.01 0.2 ± 0.03 0.1 ± 0.03 6.8 ± 0.18 0.4 ± 0.05 16.5 ± 0.24
DetectGPT 0.1 ± 0.02 0.5 ± 0.05 0.6 ± 0.05 5.3 ± 0.16 1.2 ± 0.06 11.1 ± 0.22
GLTR 0.0 ± 0.01 0.0 ± 0.01 0.2 ± 0.03 0.5 ± 0.05 0.6 ± 0.05 1.8 ± 0.10
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Table S6: Actual FPR and TPR calculated from the withheld test dataset at varying detection
thresholds, which are calibrated using ICLR and NeurIPS reviews from our calibration set at different
target FPRs. Best TPRs are in bold.

Target FPR: 0.1% 0.5% 1%

FPR TPR FPR TPR FPR TPR

G
PT

-4
o

R
ev

ie
w

s

Anchor 0.1 61.4 0.3 80.1 0.8 87.4
Binoculars 0.3 18.8 0.7 37.5 1.2 49.3
MAGE-D 0.1 2.3 0.7 9.6 1.3 14.5
s5 0.3 0.7 1.0 8.0 1.6 16.3
MFD 0.3 0.9 0.9 7.8 1.6 14.9
GLTR 0.1 0.1 0.5 2.4 1.2 5.9
DetectGPT 0.1 0.2 0.6 1.1 1.0 2.1
Loglikelihood 0.1 0.0 0.3 0.2 0.6 1.0

G
em

in
iR

ev
ie

w
s

Binoculars 0.3 63.8 0.7 80.9 1.1 87.6
Anchor 0.2 57.2 0.5 75.5 1.1 84.2
MFD 0.1 1.9 0.6 11.0 1.0 18.1
s5 0.1 1.4 0.5 10.5 1.0 18.3
GLTR 0.2 0.6 1.0 6.3 1.8 12.9
FastDetectGPT 0.1 1.1 0.4 4.9 0.9 8.9
MAGE-D 0.1 0.4 0.7 3.8 1.3 6.9
DetectGPT 0.1 0.5 0.5 3.2 1.1 6.3
Loglikelihood 0.1 0.0 0.3 0.2 0.6 1.6
NTNU-D 11.5 0.0 21.8 0.0 26.3 0.1

C
la

ud
e

R
ev

ie
w

s Anchor 0.1 53.8 0.3 72.6 0.8 80.0
Binoculars 0.3 46.4 0.7 70.2 1.1 80.0
MFD 0.0 1.0 0.2 8.7 0.4 15.9
s5 0.0 0.7 0.2 8.4 0.4 16.4
DetectGPT 0.1 0.6 0.5 4.9 1.0 10.1
GLTR 0.0 0.0 0.3 0.7 0.6 1.9
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C.3 ADDITIONAL LLAMA AND QWEN DETECTION RESULTS

Table S7 is organized similarly to Table 2, but presents results for Llama and Qwen reviews. Both
tables use the same set of thresholds for each method, which were calibrated using ICLR reviews
generated by GPT-4o, Gemini, and Claude along with their matching human-written reviews.

Reviews generated by open-source LLMs (Table S7) show somewhat different trends compared to
reviews generated by commercial LLMs (Table 2). For both Llama and Qwen reviews, the Binoculars
method achieves near-perfect detection performance. While the Anchor method ranks second for
Qwen reviews, it is not as performant on Llama reviews. This is surprising, as Llama reviews appear
easier to detect. For instance, at a target FPR of 0.1%, more than 6.5 times as many methods achieve
a TPR above 10% compared to GPT-4o, Gemini, and Claude reviews, and about twice as many
compared to Qwen reviews. One possibility is that the semantic similarity between the three anchor
reviews generated by higher-quality LLMs (GPT-4o, Gemini, and Claude) and Llama reviews is low
enough to overlap with that between the anchor reviews and human reviews, potentially blurring the
decision boundary. Although the underlying causes of these differences warrant further investigation,
these findings are less central to our study since most LLM users are likely to rely on commercial
models due to their ease of use and superior capabilities.

Table S7: Actual FPR and TPR calculated from the withheld test dataset at varying detection
thresholds, which are calibrated using ICLR reviews from our calibration set at different target FPRs.
Best TPRs are in bold. Detection methods are ordered by their TPR at a target FPR of 0.1%, and
those that failed to achieve 10% TPR at a target FPR of 1% are omitted.

Target FPR: 0.1% 0.5% 1%

FPR TPR FPR TPR FPR TPR

L
la

m
a

R
ev

ie
w

s

Binoculars 0.2 98.4 0.6 99.0 1.0 99.2
MAGE-D 0.1 63.8 0.7 91.8 1.3 95.7
MFD 0.0 57.6 0.1 81.9 0.1 87.4
GLTR 0.1 55.4 0.2 75.2 0.3 81.7
FastDetectGPT 0.1 54.7 0.5 73.8 1.2 80.6
s5 0.0 53.5 0.1 83.2 0.1 88.0
OpenAI-D 0.2 38.8 0.6 48.3 1.6 57.1
LLMDeviation 0.0 37.0 0.0 37.0 0.0 37.0
ChatGPT-D 0.0 26.4 0.0 26.4 0.0 26.4
DetectLLM-LLR 0.0 19.3 0.0 19.3 0.0 19.3
LogRank 0.0 18.2 0.0 18.2 0.0 18.2
Loglikelihood 0.0 13.4 0.3 76.0 0.5 85.5
Anchor 0.1 13.6 0.5 28.5 1.0 36.8
DetectGPT 0.1 1.7 0.7 10.8 1.3 19.7
RADAR-D 0.9 0.0 2.6 1.6 4.2 12.5

Q
w

en
R

ev
ie

w
s Binoculars 0.2 99.4 0.6 99.8 1.0 99.9

Anchor 0.2 72.5 0.8 88.4 1.3 92.1
FastDetectGPT 0.1 54.3 0.5 77.6 1.1 85.4
MFD 0.1 37.6 0.4 73.0 0.6 82.3
s5 0.1 34.7 0.4 76.0 0.6 83.9
MAGE-D 0.1 33.2 0.7 73.6 1.3 86.2
GLTR 0.1 31.1 0.3 64.7 0.6 77.4
Loglikelihood 0.0 0.5 0.3 30.8 0.5 56.6

C.4 EXPERIMENTAL RESULTS FOR FULL DATASET

We test existing AI text generation text detection models on our entire dataset (i.e., the test set + the
extended set). Results are provided in Tables S8 and S9 for ICLR and NeurIPS reviews (rspeectively).
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Table S8: Actual FPR and TPR calculated from the ICLR reviews at varying detection thresholds,
which are calibrated using the ICLR calibration dataset at different target FPRs.

Target FPR: 0.1% 0.5% 1%

FPR TPR FPR TPR FPR TPR

G
PT

Binoculars 0.8% 23.4% 1.5% 41.7% 2.2% 54.2%
GLTR 0.7% 3.3% 2.1% 12.0% 3.8% 21.0%

L
la

m
a Binoculars 0.8% 98.9% 1.5% 99.4% 2.2% 99.6%

GLTR 0.4% 80.6% 1.0% 92.5% 1.6% 95.3%

Table S9: Actual FPR and TPR calculated from the NeurIPS reviews at varying detection thresholds,
which are calibrated using the ICLR calibration dataset at different target FPRs.

Target FPR: 0.1% 0.5% 1%

FPR TPR FPR TPR FPR TPR

G
PT

Binoculars 0.3% 26.1% 0.6% 45.3% 0.9% 54.1%
GLTR 0.3% 1.3% 5.1% 31.9% 10.6% 52.6%

L
la

m
a Binoculars 0.3% 98.9% 0.6% 99.3% 0.9% 99.4%

GLTR 0.3% 76.3% 0.9% 91.0% 1.4% 93.9%

C.5 COMPUTATION TIME

We report the computation time of each detection method. Each method was evaluated on 100 samples
using a single NVIDIA RTX A6000 GPU, repeated 20 times to compute the mean and standard
deviation. The Anchor method is an exception: it does not use a GPU and relies on sequential
API calls to the OpenAI service, which could potentially be optimized for faster execution (e.g.,
parallelizing API calls). Figure S1 summarizes the results.

Figure S1: Computation time (in seconds) for processing 100 samples. Each method was repeated 20
times to compute the mean and standard deviation. All methods were run on a single NVIDIA RTX
A6000 GPU, except for Anchor, which used sequential API calls without GPU acceleration.
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D ADDITIONAL ANALYSES

D.1 VOTING MECHANISM FOR THE ANCHOR EMBEDDING METHOD

Intuitively, the anchor approach performs best when the anchor embeddings are generated using the
same model that produced the test review (source LLM). However, in real-world scenarios, the source
LLM is typically unknown (a situation commonly referred to as “black-box” detection scenario).
To address this challenge, we propose a voting-based technique. Specifically, we generate multiple
anchor embeddings using different types of LLMs (anchor LLMs). For each anchor embedding, we
compute the Score (Eq.4) and derive the corresponding label assignment (Eq.5). If at least one anchor
embedding assigns a positive label, the final label is positive. Otherwise, the final label is negative. In
our experiments, we used three anchor reviews for voting—each generated by GPT-4o, Gemini, and
Claude, respectively.

D.2 ASSESSING DATASET ROBUSTNESS TO PROMPT VARIATION

This appendix provides supporting materials for the prompt sensitivity analysis described in Section
5.1 of the main text. The results presented here include quantitative evaluations of detection perfor-
mance under prompt variation (Table S10) and a visualization of review embeddings to assess stylistic
consistency across prompt types (Figure S2). Together, these results support the conclusion that our
prompting strategy yields stable and generalizable outputs across different prompt formulations.

Table S10: Actual FPR and TPR on the withheld ICLR2021 test set. The upper section shows results
for reviews generated using the score-aligned prompt (used in our main dataset), and the lower section
shows results for reviews generated using the alternative, archetype-based prompt. In both cases, the
same set of thresholds, calibrated on the calibration set, is applied. Detection performance remains
largely consistent across prompt styles, indicating that prompt variation does not substantially degrade
model effectiveness.

Target FPR: 0.1% 0.5% 1%

FPR TPR FPR TPR FPR TPR

Sc
or

e-
al

ig
ne

d Anchor 0.2 86.9 0.8 96.4 1.6 98.1
Binoculars 0.1 7.6 0.3 21.9 0.6 32.6
s5 0.1 0.0 0.7 3.8 1.6 12.5
MFD 0.1 0.0 0.8 2.8 1.5 10.8
MAGE-D 0.0 0.0 0.1 1.1 0.3 2.4
GLTR 0.1 0.0 0.4 0.3 1.1 1.8

A
rc

he
ty

pe

Anchor 0.2 83.4 0.8 94.8 1.6 96.8
Binoculars 0.1 7.8 0.3 18.1 0.6 27.5
s5 0.1 0.0 0.8 6.2 1.6 14.9
MFD 0.1 0.0 0.8 4.5 1.7 12.8
MAGE-D 0.0 0.1 0.1 0.6 0.3 1.7
GLTR 0.1 0.0 0.3 0.0 0.8 0.8

D.3 ASSESSING DATASET ROBUSTNESS TO AGENT-BASED AND STRUCTURED GENERATION
PIPELINES

To assess whether AI-generated reviews produced via more complex prompting pipelines differ in
detectability, we evaluated Binoculars on reviews generated by recent agent-based and structured
LLM systems. These include:

• AI Scientist (Lu et al., 2024): Combines self-reflection, ensembling, and few-shot prompting
to generate reviews with both simple and complex reasoning flows.

• AgentReview (Jin et al., 2024): Uses GPT-4 agents simulating different reviewer archetypes
(e.g., knowledgeable, irresponsible) in multi-turn interactions.

• DeepReview (Zhu et al., 2025): Uses a structured, multi-stage pipeline with separate
modules for scoring, justification, and recommendations.
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Figure S2: t-SNE visualization of sentence embeddings from AI-generated reviews in the ICLR2021
test set. Blue points represent reviews generated using the main score-aligned prompt, and orange
points represent those from the alternative archetype-based prompt. The substantial overlap between
the two distributions suggests that prompt variation does not cause major shifts in model outputs.
Embeddings were computed using OpenAI’s text-embedding-3-small model; t-SNE was performed
with 2 output dimensions and a perplexity of 30.

These datasets only contain LLM-generated reviews. To compare them against human-written
reviews, we paired them with our ICLR 2022 human review samples. Due to resource constraints and
to minimize experimental overhead, we focus this test on Binoculars, the top-performing baseline
amongst the existing AI text detection methods. As a control, we included samples from our own
GPT-4o-generated reviews (ICLR 2022).

Table S11: AUROC of Binoculars on reviews from agent-based and structured LLM pipelines, paired
with ICLR 2022 human-written reviews. The control row includes GPT-4o-generated reviews from
our dataset for the same year. Variants of each review generation pipeline are indicated in parentheses.
Mean, minimum, and maximum values are computed via bootstrapping (n=1,000).

Source Mean AUROC Min Max

AI Scientist (simple) 0.9955 0.9936 0.9975
AI Scientist (complex) 0.9973 0.9933 0.9992
AgentReview (baseline) 0.9953 0.9935 0.9964
AgentReview (benign) 0.9984 0.9974 0.9990
AgentReview (responsible) 0.9983 0.9976 0.9991
AgentReview (irresponsible) 0.9984 0.9975 0.9991
AgentReview (knowledgeable) 0.9982 0.9974 0.9990
AgentReview (unknowledgeable) 0.9985 0.9977 0.9991
DeepReview (fast) 0.9937 0.9918 0.9954
DeepReview (best) 0.9929 0.9914 0.9950

Control (GPT-4o) 0.9647 0.9604 0.9686

Across all agentic and structured generation pipelines tested, Binoculars consistently achieved high
AUROC — often outperforming its results on our own GPT-4o samples (Table S11). This suggests
that the detectability of AI-generated peer reviews is not fundamentally diminished by the use
of agent-based workflows, CoT prompting, or structured review pipelines. While we limit this
evaluation to one method due to computational constraints, the results strengthen the conclusion that
our benchmark remains robust and relevant, even as more complex AI reviewing systems emerge.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.4 EXAMPLES FROM HUMAN ANALYSIS OF DIFFERENCES BETWEEN HUMAN AND
AI-WRITTEN PEER REVIEWS

Table S12 provides examples of the issues identified in our qualitative analysis of human and AI-
written peer reviews. In general, we observe that GPT-4o reviews lack references to specific details in
the paper, lack references to specific prior work, and contain overly generic criticisms. See Section 5.4
for additional discussion.

Table S12: Examples of differences identified in human analysis of human and AI-written peer
reviews

Category Human review example GPT-4o review examples

References to spe-
cific details in the
paper

“Table 2 confirms that MDR outper-
forms Graph Rec Retriever (Asai et
al.). This result shows the feasibil-
ity of a more accurate multi-hop QA
model without external knowledge
such as Wikipedia hyperlinks.”

“The paper extensively evaluates on
multiple datasets and situates the con-
tributions clearly within existing liter-
ature, substantiating claims with thor-
ough quantitative analysis.”

Specific refer-
ences to prior
work

“My only serious concern is the de-
gree of novelty with respect to (Yuan
et al., 2020), which was published
at ECCV 2020. The main differ-
ence seems to be that in the proposed
method the graph is dynamic (i.e., it
depends on the input sentences), in-
stead in (Yuan et al., 2018) the graph
is learned but fixed for all the input
samples.”

“The novelty of the TDM is not
strong enough relative to prior work.”

Generic criticisms N/A “Lack of clarity” (without pointing
to specific statements in the paper
which need clarification); “lack of
discussion of limitations or compu-
tational considerations”; “need more
discussion of hyperparameter sensi-
tivity”; “need comparisons to more
datasets” (without suggesting any in
particular); “technical language used
in the paper may be difficult to fol-
low for unfamiliar readers”

D.5 PROMPT ENRICHMENT EXPERIMENT

In Section 5.4, we identified several characteristic deficiencies of AI peer reviews compared to
human-written ones, such as a lack of references to specific details in the paper, limited engagement
with related work, and reliance on generic or boilerplate phrasing. One natural question is whether
whether these deficiencies could be artifacts of the original prompting strategy, and whether updating
the prompts to explicitly address them might close the gap with human-authored reviews. To test
this, we added an extra prompt to the original one that incorporated our findings from Section 5.4,
instructing models to avoid these AI-like characteristics and to produce reviews that more closely
resemble human ones. The following is the added prompt:

Do the following:
- Reference specific elements from the paper (e.g., particular sections,
tables, figures, equations, or experimental results).
- Engage with related work: mention missing citations, suggest relevant
prior studies, and evaluate the paper’s novelty in the context of
existing literature.
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- Provide paper-specific, varied feedback rather than relying on
template-like language.
- Balance high-level assessments with detailed, grounded observations.

Do NOT do the following:
- Do not give only vague or generic comments without specific evidence
from the paper.
- Do not recycle identical phrasing or boilerplate critiques across
reviews.
- Do not omit discussion of related work or novelty considerations.
- Do not provide feedback that could apply equally to almost any paper;
make each review unique and tailored.

Using this revised prompt, we generated 1,000 reviews for papers in our calibration set across four
conference-year pairs (ICLR and NeurIPS 2021–2022) using the same three commercial LLMs from
our study (GPT-4o, Gemini, Claude). With matching human reviews, this produced a total of 6,000
reviews. We then compared the detection performance of the top two performing methods (Anchor
and Binoculars) between the original and enriched prompt settings.

Detector Original Prompt Enriched Prompt

Anchor 0.995 0.997
Binoculars 0.982 0.977

Table S13: Detection performance (AUROC) under original and enriched prompting strategies.

As shown in Table S13, detection performance remained virtually unchanged (AUROC differences
within 0.01), indicating that (1) the distinction between human- and AI-written reviews reflects a
systematic gap rather than a prompt artifact, and (2) the outcome aligns with the prompt-robustness
analysis in Section 5.1.

D.6 COMPARISON OF NUMERIC SCORES ASSIGNED BY HUMAN AND AI REVIEWERS

While Section 5.5 focused on the misalignment between human and AI peer reviews from three
commercial LLMs (GPT-4o, Gemini, and Claude) from the NeurIPS2022 review samples, this
section presents the corresponding results for two open-source LLMs (Llama and Qwen), as shown
in Figure S3. The main findings from GPT-4o, Gemini, and Claude also hold for these two open-
source models, with one notable difference: Llama and Qwen exhibit an even larger divergence in
Presentation scores than Claude, the most overly-positive one amongst the commercial LLMs across
all categories. In terms of Contribution scores, the evaluations from Llama and Qwen were similar to
those of Claude.

In addition, we examine data from three other conferences (NeurIPS2023, NeurIPS2024, and
ICLR2024). Although the results from these conferences are slightly less reliable—given that
human reviews may have been influenced by AI use following the release of ChatGPT—the overall
trend persists: LLMs tend to inflate the quality of papers compared to human reviewers.

D.7 VALIDATION OF AI-EDITED REVIEWS

To simulate varying degrees of LLM-assisted editing, we took human-written reviews and generated
AI-edited versions at four levels of modification: Minimum, Moderate, Extensive, and Maximum (see
Appendix E.3 for the editing prompts used). To validate that these prompts produce meaningfully
distinct levels of change, we computed cosine similarity scores between each AI-edited review and its
original human version using text embeddings. As shown in Table S14, similarity scores progressively
decrease with greater editing intensity, confirming that the levels are semantically distinguishable.

D.8 SENSITIVITY OF ANCHOR EMBEDDING DETECTABILITY PERFORMANCE TO EMBEDDING
MODEL
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NeurIPS2022

NeurIPS2023

NeurIPS2024

ICLR2024

Figure S3: Difference between AI and human scores. For each matched review (aligned by paper ID
and recommendation), score differences were computed and displayed as histograms. Scores range
from 1 to 4 for all metrics except Confidence, which ranges from 1 to 5. Statistical significance was
assessed using a two-sided Wilcoxon signed-rank test, with p-values shown in the legend. This figure
includes only NeurIPS2022–2024 and ICLR2024, because they are the onyl conferences that required
reviewers to submit these scores in their review templates.

In addition to the OpenAI embedding model used for our main Anchor embedding results, we
conducted experiments using two other embeddings models: one based on a traditional encoder
architecture (Jina AI embedding model v3 (Sturua et al., 2024)), and another based on a decoder
architecture (Intfloat e5-mistral-7b-instruct (Wang et al., 2023; 2022)). We picked these based on
their popularity (assessed via hugging face downloads) and their ability to accommodate long context
lengths. The evaluation results for the Anchor embedding method when used with these models
on the test set are provided in Table S15. While we observe that the performance of the anchor
embedding approach is lower using these alternative embedding models than when utilizing the
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Table S14: Similarity score of edited reviews and original human-written reviews using different
prompts.

Minimum Moderate Extensive Maximum

0.9841 0.9261 0.8616 0.6799

Table S15: Anchor method detectability results using other embedding models

Embedding Model Test Reviews Target FPR Actual FPR Actual TPR

Jina GPT-4o 0.1% 0.2% 50.5%
Jina GPT-4o 0.5% 0.7% 64.8%
Jina GPT-4o 1.0% 1.1% 71.4%
Jina Gemini 0.1% 0.2% 29.7%
Jina Gemini 0.5% 0.7% 46.2%
Jina Gemini 1.0% 1.1% 53.1%
Jina Claude 0.1% 0.2% 22.0%
Jina Claude 0.5% 0.7% 36.9%
Jina Claude 1.0% 1.1% 45.1%

e5-mistral GPT-4o 0.1% 0.1% 26.0%
e5-mistral GPT-4o 0.5% 0.4% 41.7%
e5-mistral GPT-4o 1.0% 0.8% 48.4%
e5-mistral Gemini 0.1% 0.1% 26.4%
e5-mistral Gemini 0.5% 0.4% 40.8%
e5-mistral Gemini 1.0% 0.8% 47.4%
e5-mistral Claude 0.1% 0.1% 26.6%
e5-mistral Claude 0.5% 0.4% 43.9%
e5-mistral Claude 1.0% 0.8% 51.9%

OpenAI embedding model, its performance is still comparable to that of Binoculars. These results
illustrate how the choice of the embedding model can impact detection performance of the Anchor
approach.

D.9 IMPACT OF FINETUNING SUPERVISED CLASSIFIERS ON AI PEER REVIEW DATASET

Our main results in Table 2 showed that existing detection methods which are based on finetuned
classifiers perform poorly at detecting AI text in peer reviews. One reason for this could be due to
a mismatch between the domain of text used to train these classifiers and our task of detecting AI
text in the peer review domain. Therefore, we conducted experiments where we finetuned supervised
classifiers on our dataset of paired human & AI-written peer reviews.

As the existing methods based supervised classifiers are all finetuned variants of RoBERTa, we
similarly trained a RoBERTa classifier separately on peer reviews generated by GPT-4o, Claude, and
Gemini to assess their out-of-domain detection accuracy. To maintain a fair comparison, we used the
exact same calibration dataset (consisting of GPT-4o, Claude, and Gemini reviews) to calibrate the
classification threshold as was used for our anchor embedding approach. The performance of the
resulting classifiers is summarized in Table S16.

When tested on AI reviews generated by the same LLM as was used to construct the training dataset,
we observe that these classifiers achieve near 100% TPR at an FPR < 1%. However, when evaluated
on out-of-domain test data (i.e., peer reviews generated by LLMs other than the one used to construct
the training dataset), the performance is highly variable and inconsistent. Thus, the performance of
supervised methods is dependent upon the training dataset including samples from the same LLM
which was used to generate the evaluated text.

Using the same calibration dataset as these supervised finetuning experiments, our Anchor embedding
approach achieves overall strong performance across reviews generated by all LLMs without requiring
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Table S16: Performance of RoBERTa classifiers trained & tested on different subsets of AI-generated
peer reviews from our dataset

Train Reviews Test Reviews Target FPR Actual FPR Actual TPR

GPT-4o GPT-4o 0.1% 0.3% 100%
GPT-4o GPT-4o 0.5% 0.6% 100%
GPT-4o GPT-4o 1.0% 0.9% 100%
GPT-4o Gemini 0.1% 0.3% 83.5%
GPT-4o Gemini 0.5% 0.6% 92.0%
GPT-4o Gemini 1.0% 0.9% 95.8%
GPT-4o Claude 0.1% 0.3% 44.9%
GPT-4o Claude 0.5% 0.6% 59.1%
GPT-4o Claude 1.0% 0.9% 70.4%

Gemini GPT-4o 0.1% 0.4% 99.9%
Gemini GPT-4o 0.5% 0.8% 99.6%
Gemini GPT-4o 1.0% 1.4% 99.9%
Gemini Gemini 0.1% 0.4% 100%
Gemini Gemini 0.5% 0.8% 100%
Gemini Gemini 1.0% 1.4% 100%
Gemini Claude 0.1% 0.4% 41.7%
Gemini Claude 0.5% 0.8% 49.8%
Gemini Claude 1.0% 1.4% 60.2%

Claude GPT-4o 0.1% 0.5% 95.9%
Claude GPT-4o 0.5% 0.7% 97.6%
Claude GPT-4o 1.0% 0.9% 98.3%
Claude Gemini 0.1% 0.5% 2.7%
Claude Gemini 0.5% 0.7% 3.0%
Claude Gemini 1.0% 0.9% 3.5%
Claude Claude 0.1% 0.5% 100%
Claude Claude 0.5% 0.7% 100%
Claude Claude 1.0% 0.9% 100%
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any separate training. We also note that training supervised classifiers to achieve competitive
performance in this task would not be possible without our paired human & AI-written peer review
dataset, which is a core contribution of our work. Therefore, the improved performance of supervised
methods when trained on our dataset (relative to their baseline implementations trained on general
texts) can be viewed as further evidence of our dataset’s value.

D.10 TOPIC DISTRIBUTION OF PAPERS FOR EVALUATED REVIEWS

We analyzed the keywords associated with 500 papers from our ICLR 2021 test set using metadata
available for each paper in OpenReview. The statistic of the topics is given below.

1. Uncategorized: 19.5%

2. Deep Learning Foundations: 17.5%

3. Reinforcement Learning: 12.9%

4. Robustness & Adversarial M: 11.2%

5. Representation Learning: 8.0%

6. Optimization & Training: 8.0%

7. NLP & Multimodal: 6.0%

8. Computer Vision: 5.7%

9. Meta-Learning: 4.6%

10. Theory & Interpretability: 3.7%

11. Model Efficiency: 2.6%

This breakdown indicates that our benchmark is not dominated by any single domain, and therefore
the observed differences between human-written and LLM-generated reviews cannot be attributed to
a narrow topical bias in the underlying papers.

D.11 HOW DO COMMON FACTORS WHICH ARE CHARACTERISTIC OF AI PEER REVIEWS
IMPACT DETECTABILITY?

Building upon our analysis of how human and AI-written peer reviews differ (Section 5.4 and
Appendix D.4), we analyzed AI-written reviews from the ICLR 2021 test set for the presence of three
common factors that we previously identified as characteristic of AI reviews: (1) a lack of references
to prior work, (2) a lack of references to specific details in the paper, and (3) overly generic criticisms.
We used an LLM-as-a-judge approach with GPT-4.1 to quantify which of these issues were present
across the 500 analyzed reviews.

The most commonly identified factor among this set of reviews was the lack of references to prior
work, which was present in over 99% of the cases where the review was flagged as AI-written by
the Anchor method. The next most common factor was the lack of references to specific details in
the paper, which was flagged in 26% of papers which were detected as AI-written. Finally, 22% of
papers classified as AI-generated were determined to have overly generic criticisms. These results
indicate that a lack of reference to prior work is the most prevalent factor present among AI-generated
reviews.

Interestingly, we do not observe a correlation between the presence of these factors in an AI-generated
review and the detection accuracy of the Anchor embedding method. This could be due to the already
strong detection accuracy of the Anchor method which limits the number of false negatives (only
14.4% of AI-generated reviews were classified as human-written at a calibrated FPR of 0.1%). An
alternative explanation could be that the Anchor embedding method relies on other, more nuanced
linguistic differences than the factors which humans identify as being characteristic of AI-generated
reviews (e.g., lack of references, generic criticisms).
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E PROMPTS

This section includes the prompts we used to generate AI peer review texts. Due to space limitations,
we provide only the ICLR2022 review guideline and review template here. Those for other years and
other conferences (e.g., NeurIPS) are available on the respective conference official websites4.

E.1 PROMPTS FOR GENERATING REVIEWS

System prompt:

You are an AI researcher reviewing a paper submitted to a prestigious AI
research conference.
You will be provided with the manuscript text, the conference's reviewer
guidelines, and the decision for the paper.
Your objective is to thoroughly evaluate the paper, adhering to the
provided guidelines, and return a detailed assessment that supports the
given decision using the specified response template.
Ensure your evaluation is objective, comprehensive, and aligned with the
conference standards.

{reviewer_guideline}

{review_template}

User prompt:

Here is the paper you are asked to review. Write a well-justified review
of this paper that aligns with a '{human_reviewer_decision}' decision.

```
{text}
```

ICLR2022 Reviewer Guideline
({reviewer_guideline} in the system prompt):

## Reviewer Guidelines

1. Read the paper: It’s important to carefully read through the entire
paper, and to look up any related work and citations that will help you
comprehensively evaluate it. Be sure to give yourself sufficient time for
this step.

2. While reading, consider the following:
- Objective of the work: What is the goal of the paper? Is it to
better address a known application or problem, draw attention to a
new application or problem, or to introduce and/or explain a new
theoretical finding? A combination of these? Different objectives
will require different considerations as to potential value and
impact.
- Strong points: is the submission clear, technically correct,
experimentally rigorous, reproducible, does it present novel findings
(e.g. theoretically, algorithmically, etc.)?
- Weak points: is it weak in any of the aspects listed in b.?
- Be mindful of potential biases and try to be open-minded about the
value and interest a paper can hold for the entire ICLR community,
even if it may not be very interesting for you.

3. Answer three key questions for yourself, to make a recommendation to
Accept or Reject:

4https://icml.cc/Conferences/{2016..2024}
and https://neurips.cc/Conferences/{2016..2024}
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- What is the specific question and/or problem tackled by the paper?
- Is the approach well motivated, including being well-placed in the
literature?
- Does the paper support the claims? This includes determining if
results, whether theoretical or empirical, are correct and if they
are scientifically rigorous.

4. Write your initial review, organizing it as follows:
- Summarize what the paper claims to contribute. Be positive and
generous.
- List strong and weak points of the paper. Be as comprehensive as
possible.
- Clearly state your recommendation (accept or reject) with one or
two key reasons for this choice.
- Provide supporting arguments for your recommendation.
- Ask questions you would like answered by the authors to help you
clarify your understanding of the paper and provide the additional
evidence you need to be confident in your assessment.
- Provide additional feedback with the aim to improve the paper. Make
it clear that these points are here to help, and not necessarily part
of your decision assessment.

5. General points to consider:
- Be polite in your review. Ask yourself whether you’d be happy to
receive a review like the one you wrote.
- Be precise and concrete. For example, include references to back up
any claims, especially claims about novelty and prior work
- Provide constructive feedback.
- It’s also fine to explicitly state where you are uncertain and what
you don’t quite understand. The authors may be able to resolve this
in their response.
- Don’t reject a paper just because you don’t find it “interesting”.
This should not be a criterion at all for accepting/rejecting a paper.
The research community is so big that somebody will find some value
in the paper (maybe even a few years down the road), even if you
don’t see it right now.

ICLR2022 Review Template
({reviewer_template} in the system prompt):

## Response template (JSON format)

Provide the review in valid JSON format with the following fields. Ensure
all fields are completed as described below. The response must be a valid
JSON object.

- "summary_of_the_paper": Briefly summarize the paper and its
contributions. This is not the place to critique the paper; the authors
should generally agree with a well-written summary. You may use
paragraphs and bulleted lists for formatting, but ensure that the content
remains a single, continuous text block. Do not use nested JSON or
include additional fields.

- "main_review": "Provide review comments as a single text field (a
string). Consider including assessment on the following dimensions: a
comprehensive list of strong and weak points of the paper, your
recommendation, supporting arguments for your recommendation, questions
to clarify your understanding of the paper or request additional evidence,
and additional feedback with the aim to improve the paper. You may use
paragraphs and bulleted lists for formatting, but ensure that the content
remains a single, continuous text block. Do not use nested JSON or
include additional fields."
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- "summary_of_the_review": Concise summary of 'main_review'. You may use
paragraphs and bulleted lists for formatting, but ensure that the content
remains a single, continuous text block. Do not use nested JSON or
include additional fields.

- "correctness": A numerical rating on the following scale to indicate
that the claims and methods are correct. The value should be between 1
and 4, where:

- 1 = The main claims of the paper are incorrect or not at all
supported by theory or empirical results.
- 2 = Several of the paper’s claims are incorrect or not
well-supported.
- 3 = Some of the paper’s claims have minor issues. A few statements
are not well-supported, or require small changes to be made correct.
- 4 = All of the claims and statements are well-supported and
correct.

- "technical_novelty_and_significance": A numerical rating on the
following scale to indicate technical novelty and significance. The value
should be between 1 and 4, where:

- 1 = The contributions are neither significant nor novel.
- 2 = The contributions are only marginally significant or novel.
- 3 = The contributions are significant and somewhat new. Aspects of
the contributions exist in prior work.
- 4 = The contributions are significant and do not exist in prior
works.

- "empirical_novelty_and_significance": A numerical rating on the
following scale to indicate empirical novelty and significance. The value
should be between 1 and 4, or -999 if not applicable, where:

- 1 = The contributions are neither significant nor novel.
- 2 = The contributions are only marginally significant or novel.
- 3 = The contributions are significant and somewhat new. Aspects of
the contributions exist in prior work.
- 4 = The contributions are significant and do not exist in prior
works.
- -999 = Not applicable.

- "flag_for_ethics_review": A boolean value (`true` or `false`) indicating
whether there are ethical concerns in the work.

- "recommendation": A string indicating the final decision, which must
strictly be one of the following options: 'strong reject', 'reject, not
good enough', 'marginally below the acceptance threshold', 'marginally
above the acceptance threshold', 'accept, good paper', or 'strong accept,
should be highlighted at the conference'.

- "confidence": A nuemrical values to indicate how confident you are in
your evaluation. The value should be between 1 and 5, where:

- 1 = You are unable to assess this paper and have alerted the ACs to
seek an opinion from different reviewers.
- 2 = You are willing to defend your assessment, but it is quite
likely that you did not understand the central parts of the
submission or that you are unfamiliar with some pieces of related
work. Math/other details were not carefully checked.
- 3 = You are fairly confident in your assessment. It is possible
that you did not understand some parts of the submission or that you
are unfamiliar with some pieces of related work. Math/other details
were not carefully checked.
- 4 = You are confident in your assessment, but not absolutely
certain. It is unlikely, but not impossible, that you did not
understand some parts of the submission or that you are unfamiliar
with some pieces of related work.
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- 5 = You are absolutely certain about your assessment. You are very
familiar with the related work and checked the math/other details
carefully.

E.2 ANCHOR REVIEW GENERATION PROMPT

System prompt:

You are an AI research scientist tasked with reviewing paper submissions
for a top AI research conference. Carefully read the provided paper, then
write a detailed review following a common AI conference review format
(e.g., including summary, strengths and weakness, limitations, questions,
suggestions for improvement). Make sure to include recommendation for the
paper, either 'Accept' or 'Reject'. Your review should be fair and
objective.

User prompt:

Here is the paper you are asked to review:
```
{text}
```

E.3 EDITING PROMPTS

Minimal Editing:

Please proofread my review for typos and grammatical errors without
altering the content. Keep the original wordings as much as you can,
except for typo or grammatical error.

Moderate Editing:

Please polish my review to improve sentence structure and readability
while keeping the original intent clear.

Extensive Editing:

Please rewrite my review into a polished, professional piece that
effectively communicates its main points.

Maximum Editing:

Please transform my review into a high quality piece, using professional
language and a polished tone. Please also extend my review with
additional details from the oringial paper.

E.4 ARCHETYPE PROMPTS

"Balanced":

You provide fair, balanced, thorough, and constructive feedback,
objectively highlighting both the strengths and weaknesses of the paper.
You maintain a high standard for research in your decision-making process.
However, even if your decision is to reject, you offer helpful
suggestions for improvement.}

"Conservative":
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You generally prefer established methods and are skeptical of unproven
(that is, new or unconventional) approaches. While you maintain high
standards and rigor, you are critical of papers presenting new ideas
without extensive evidence and thorough validation against established
baselines. You place significant emphasis on methodological soundness and
are cautious about endorsing innovations that haven't been rigorously
tested.}

"Innovative":

You highly value novelty and bold approaches, often prioritizing novel
ideas over methodological perfection. While you maintain high standards,
you are willing to overlook minor flaws or incomplete validations and may
accept the paper, if the paper introduces a significant new concept or
direction. Conversely, you tend to be less enthusiastic about papers that,
despite thorough methodology and analysis, offer only incremental
improvements, and may recommend rejection for such submissions.}

"Nitpicky":

You are a perfectionist who meticulously examines every aspect of the
paper, including minor methodological details, technical nuances, and
formatting inconsistencies. Even if a paper presents novel ideas or
significant contributions, you may still recommend rejection if you
identify a substantial number of minor flaws. Your stringent attention to
detail can sometimes overshadow the broader significance of the work in
your decision-making process.}

F ARTIFACT USE CONSISTENT WITH INTENDED USE

In our work, we ensured that the external resources we utilized were applied in a manner that aligns
with their intended purposes. We used several LLMs (including GPT-4o, Gemini, Claude, Qwen, and
Llama) as well as an open-source package, IMGTB, with a focus on advancing research in a non-
commercial, open-source context. The artifacts from our work will be non-commercial, for-research,
and open-sourced.

G LIMITATIONS

Our dataset primarily focuses on two conferences, both within the computer science domain. To
broaden its applicability and relevance, incorporating additional conferences from diverse research
areas would be beneficial. While we designed our prompting strategy to encourage stylistic diversity,
prompt choice still influences generation, and real-world use cases may involve a wider range of
prompting styles than those tested. We conducted a prompt sensitivity analysis (Section 5.1) to
evaluate the robustness of our dataset under prompt variation, though broader coverage remains an
open direction. Our study also includes detection scenarios where LLMs revise or extend human-
written reviews ("AI-edits-human"), but does not simulate the reverse case—where a human revises
an AI-generated draft—due to the difficulty of sourcing domain experts to perform such edits at
scale. We consider this an important direction for future work. Lastly, our main results are based
on evaluations of three commercial LLMs. Given the rapid emergence of new models, conducting
comprehensive experiments across all available LLMs is infeasible. In addition, we leverage an
open-source platform to run baseline experiments, where performance may vary depending on the
choice of surrogate models. However, given the large number of baselines we evaluate, performing an
exhaustive search for the optimal surrogate model for each method would be prohibitively expensive.
Therefore, we use the default settings.

While our anchor embedding method shows promising results, it is not without limitations. It is
task-specific by design and is therefore unsuitable as a general-purpose AI text detection model.
Additionally, its reliance on commercial LLM APIs may introduce challenges w.r.t. computational
cost and scalability. The method’s performance can also be sensitive to the choice of anchor LLMs.
This is not specific to Anchor but reflects a general challenge in black-box detection settings where
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the source LLM is unknown. Acknowledging these limitations, our findings nonetheless highlight
how leveraging manuscript context as auxiliary information can significantly improve the accuracy
and robustness of AI-generated peer review detection, especially under low-FPR constraints.

H USE OF AI TOOL

GitHub Copilot and ChatGPT were used to aid in coding for analysis and in editing text for clarity.
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