
Watch and Match: Supercharging Imitation with
Regularized Optimal Transport

Siddhant Haldar
New York University
sh6474@nyu.edu

Denis Yarats
New York University

denisyarats@cs.nyu.edu

Lerrel Pinto
New York University
lerrel@cs.nyu.edu

Abstract

Imitation learning holds tremendous promise in learning policies efficiently for
complex decision making problems. Current state-of-the-art algorithms often use
inverse reinforcement learning (IRL), where given a set of expert demonstrations,
an agent alternatively infers a reward function and the associated optimal policy.
However, such IRL approaches often require substantial online interactions
particularly for complex control problems. In this work, we present Regularized
Optimal Transport (ROT), a new imitation learning algorithm that builds on recent
advances in optimal transport based state-matching. Our key technical insight is
that adaptively combining state-matching rewards with behavior cloning can sig-
nificantly accelerate imitation even without task-specific rewards. Our experiments
on 19 tasks across the DeepMind Control Suite, the OpenAI Robotics Suite, and
the Meta-World Benchmark, demonstrate an average of 7.8× faster imitation to
reach 90% of expert performance compared to prior state-of-the-art methods.

1 Introduction

Learning policies with the fewest possible interactions is a challenging problem in machine learning [1–
3]. Over the last few decades, research in Imitation Learning (IL) has shown that it is not only among
the most efficient learning methodologies, but can also operate without explicit reward functions. This
is especially true for practical applications ranging from self-driving [4] to robotic manipulation [5],
where online interactions are costly.

IL has a rich history that can be categorized into two broad paradigms, Behavior Cloning (BC) [1]
and Inverse Reinforcement Learning (IRL) [6]. BC uses supervised learning to obtain a policy that
maximizes the likelihood of taking the demonstrated action given an observation in the demonstration.
While this allows for training without online interactions, it suffers from distributional mismatch
during online rollouts [7]. IRL, on the other hand, infers the underlying reward function from the
demonstrated trajectories, followed by using RL to optimize a policy through online environment
rollouts. This results in a policy that can robustly solve demonstrated tasks even in the absence of
task-specific rewards [8, 9].

Although powerful, IRL methods suffer from a significant drawback – expensive and numerous
online interactions with the environment. There are three reasons for this: (a) The inferred reward
function is often highly non-stationary, which compromises the learning of the associated behavior
policy [9]. (b) Even when the rewards are stationary, policy learning still requires effective exploration
to maximize rewards [10]. (c) Third, when strong priors such as pretraining with BC are applied to
accelerate policy learning, ensuing updates to the policy cause a distribution shift that destabilizes
training [11, 12]. Combined, these issues manifest themselves on empirical benchmarks, where IRL
methods often have poorer efficiency than vanilla RL methods on hard control tasks [13]. Since this
defeats the very reason one may want to do imitation, it begs the question: How can we make IRL
more sample-efficient?

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

A
ge

nt
Ex

pe
rt

 πBC πROT

 πOT

 πBC

 πROT

OT
Rewards

Adaptive

Adaptive Reg.

No grad.

OT Computation

Environments

Environment
Interactions

Figure 1: We present ROT, an imitation learning algorithm that adaptively combines offline behavior
cloning with online Optimal Transport (OT) based IRL to achieve state-of-the-art imitation on a
variety of control and manipulation environments.

In this work, we present Regularized Optimal Transport (ROT) for imitation learning, a new method
that is conceptually simple, is compatible with high-dimensional observations, and requires minimal
additional hyperparameters compared to standard IRL approaches. To address the challenge of reward
non-stationarity in IRL, ROT builds on recent advances in using Optimal Transport (OT) [14, 15, 13]
for reward computation that use stationary trajectory-matching functions. To alleviate the challenge
of exploration, we pretrain the IRL behavior policy using BC on the expert demonstrations. This
reduces the need for our imitation agent to explore from scratch.

However, even with OT-based reward computation and pretrained policies, we only obtain marginal
gains in empirical performance. The key reason for this is that the high-variance of IRL policy gradi-
ents [16, 17] often wipe away the progress made by the offline BC pretraining. This phenomenon has
been observed in both online RL [18] and offline RL [11] methods that are guided by demonstrations.
Inspired by solutions presented in these works, we stabilize the online learning process by regularizing
the IRL policy to stay close to the pretrained BC policy. To enable this, we have developed a new and
simple adaptive weighing scheme called soft Q-filtering that automatically sets the regularization –
prioritizing to stay close to the BC policy in the beginning of training while prioritizing exploration
later on. In contrast to prior policy regularization schemes [18, 19], soft Q-filtering does not require
hand-specification of decay schedules.

To demonstrate the effectiveness of ROT, we run extensive experiments on 19 tasks across DM
Control [20], OpenAI Robotics [21], and Meta-world [22]. Our main findings can be summarized as:

1. ROT outperforms prior state-of-the-art imitation methods, reaching 90% of expert perfor-
mance 7.8× faster than our strongest baselines (Section 5.1).

2. On difficult control tasks, ROT exceeds the performance of state-of-the-art RL trained with
rewards, while coming close to methods that augment RL with demonstrations (Section 5.3).

3. Ablation studies demonstrate the importance of every component in ROT, particularly the
role that soft Q-filtering plays in stabilizing training (Section 5.4).

2 Background

Before describing our method, we first provide a brief background to imitation learning with optimal
transport, which serves as the backbone of our method. Formalism related to RL follows the
convention in prior work [10, 13] and is described in Appendix A.1.

Imitation Learning The goal of imitation learning is to learn a behavior policy πb given access
to either the expert policy πe or trajectories derived from the expert policy T e. While there are a
multitude of settings with differing levels of access to the expert [23], this work operates in the setting
where the agent only has access to observation-based trajectories, i.e. T e ≡ {(ot, at)Tt=0}Nn=0. Here
N and T denotes the number of trajectory rollouts and episode timesteps respectively. We choose this
specific setting since obtaining observations and actions from expert or near-expert demonstrators is
feasible in real-world settings [24, 25] and falls in line with recent work in this area [15, 8, 9].

2

Inverse Reinforcement Learning (IRL) IRL [6, 26] tackles the IL problem by inferring the reward
function re based on expert trajectories T e. Then given the inferred reward re, policy optimization
is used to derive the behavior policy πb. Prominent algorithms in IRL [9, 8] requires alternating
the inference of reward and optimization of policy in an iterative manner, which is practical for
restricted model classes [26]. For compatibility with more expressive deep networks, techniques such
as adversarial learning [8, 9] or optimal-transport [14, 15, 13] are needed. Adversarial learning based
approaches tackle this problem by learning a discriminator that models the gap between the expert
trajectories T e and behavior trajectories T b. The behavior policy πb is then optimized to minimize
this gap through gap-minimizing rewards re. Such a training procedure is prone to instabilities since
re is updated at every iteration and is hence non-stationary for the optimization of πb.

Optimal Transport for Imitation Learning (OT) To alleviate the non-stationary reward problem
with adversarial IRL frameworks, a new line of OT-based approaches have been recently proposed [14,
15, 13]. Intuitively, the closeness between expert trajectories T e and behavior trajectories T b can be
computed by measuring the optimal transport of probability mass from T b → T e. Similar to [13],
we use the entropic Wasserstein distance with cosine cost as our OT metric, which for two discrete
distributions µb =

1
T

∑T
t=1 δxb

t
and µe =

1
T

∑T
t=1 δxe

t
is given by

W2(µb, µe) = min
µ∈M

T∑
t,t′=1

Ct,t′µt,t′ (1)

where M = {µ ∈ RT×T : µ1 = µT1 = 1
T 1} is the set of coupling matrices and Ct,t′ = c(obt , o

e
t′)

is the cost matrix obtained using a cost function c : O × O → R. Using the cost matrix C and
the optimal alignment µ∗ obtained by optimizing Eq. 1, a reward signal can be computed for each
observation using the equation

rOT (obt) = −
T∑

t′=1

Ct,t′µ
∗
t,t′

(2)

Intuitively, this reward encourages the imitating agent to produce trajectories that closely match
demonstrated trajectories. Since solving Eq. 1 is computationally expensive, approximate solutions
such as the Sinkhorn algorithm [27, 14] are used instead. Further details on the OT formulation for
IRL can be found in Appendix C.

Actor-Critic based reward maximization Given, rewards obtained through OT computation in
Eq. 9, efficient maximization of the reward can be achieved through off-policy actor-critic learning [9].
For this work, we use Deep Deterministic Policy Gradient (DDPG) [28] as our base RL optimizer
which is an actor-critic algorithm that concurrently learns a deterministic policy πϕ and a Q-function
Qθ. Vanilla DDPG uses Q-learning [29] to learn Qθ by minimizing a one step Bellman residual. To
accelerate learning we use a recent n-step version of DDPG from Yarats et al. [10].

3 Challenges in Online Finetuning from a Pretrained Policy

In this section, we study the challenges with finetuning a pretrained policy with online interactions in
the environment. Fig. 2 illustrates a task where an agent is supposed to navigate the environment
from the top left to the bottom right, while dodging obstacles in between. The agent has access to a
single expert demonstration, which is used to learn a BC policy for the task. Fig. 2 (a) shows that this
BC policy, though close to the expert demonstration, performs suboptimally due to accumulating
errors on out-of-distribution states during online rollouts [7]. Further, Fig. 2 (b) uses this BC policy
as an initialization and naively finetunes it with OT rewards (described in Section 2). Such naive
finetuning of a pretrained policy (or actor) with an untrained critic in an actor-critic framework
exhibits a forgetting behavior in the actor, resulting in performance degradation as compared to the
pretrained policy. This phenomenon has also been reported by Nair et al. [11] and we provide a
detailed discussion in Appendix B. In this paper, we propose ROT which addresses this issue by
adaptively keeping the policy close to the behavior data during the initial phase of finetuning and
reduces this dependence over time. Fig. 2 (c) demonstrates the performance of our approach on
such finetuning. It can be clearly seen that even though the BC policy is suboptimal, our proposed
adaptive regularization scheme quickly improves and solves the task by driving it closer to the expert

3

tim
es
te
ps

0

100k
(a) Task: Particle Reach (b) IRL Finetune w/o Reg. (c) ROT (d) ROT + random init.

Figure 2: Given a single demonstration to avoid the grey obstacle and reach the black square, BC is
unable to solve the task (a). Finetuning from this BC policy with OT-based reward also fails to solve
the task (b). ROT, with adaptive regularization of OT-based IRL with BC successfully solves the task
(c). Even when the ROT agent is initialized randomly, it is able to solve the task (d).

demonstration. In Fig. 2 (d), we demonstrate that even if the agent was initialized at points outside
the expert trajectory, the agent is still able to learn quickly and complete the task. This generalization
to starting states would not be possible with regular BC.

4 Regularized Optimal Transport

A fundamental challenge in imitation learning is to balance the ability to mimic demonstrated
actions along with the ability to recover from states outside the distribution of demonstrated states.
Behavior Cloning (BC) specializes in mimicking demonstrated actions through supervised learning,
while Inverse Reinforcement Learning (IRL) specializes in obtaining policies that can recover from
arbitrary states. Regularized Optimal Transport (ROT) combines the best of both worlds by adaptively
combining the two objectives. This is done in two phases. In the first phase, a randomly initialized
policy is trained using the BC objective on expert demonstrated data. This ‘BC-pretrained’ policy
then serves as an initialization for the second phase. In the second phase, the policy is allowed access
to the environment where it can train using an IRL objective. To accelerate the IRL training, the
BC loss is added to the objective with an adaptive weight. Details of each component are described
below, while the algorithm block can be found in Appendix D.

4.1 Phase 1: BC Pretraining

BC corresponds to solving the maximum likelihood problem shown in Eq. 3. Here T e refers to expert
demonstrations.

LBC = E(se,ae)∼T e∥ae − πBC(se)∥2 (3)

When parameterized by a normal distribution with fixed variance, the objective can be framed as a
supervised learning regression problem where, given inputs se, πBC needs to output ae. After training,
it enables πBC to mimic the actions corresponding to the observations seen in the demonstrations.
However, during rollouts in an environment, small errors in action prediction can lead to the agent
visiting states not seen in the demonstrations [7]. This distributional mismatch often causes πBC to
fail on empirical benchmarks [18, 13] (See Fig. 2 (a)).

4.2 Phase 2: Online Finetuning with IRL

Given a pretrained πBC model, we now begin online ‘finetuning’ of the policy πb ≡ πROT in the
environment. Since we are operating without explicit task rewards, we use rewards obtained through
OT-based trajectory matching, which is described in Section 2. Given the OT-based rewards rOT

from Eq.9, we can use standard RL optimizers to maximize cumulative reward from πb ≡ πROT .
In this work we use n-step DDPG [28], a deterministic actor-critic based method that provides
high-performance in continuous control [10].

4

Finetuning with Regularization As seen in Fig. 2 (a), πBC is susceptible to distribution shift due
to accumulations of errors during online rollouts [7]. Directly finetuning πBC also leads to subpar
performance as seen in Fig. 2 (b). To address this, we build upon prior work in guided RL [18] and
offline RL [11], and regularize the training of πROT by combining it with a BC loss as seen in Eq. 4.

πROT = argmax
π

[
(1− λ1(i))E(s,a)∼Dβ

[Q(s, a)]− λ0λ1(i)LBC
]

(4)

Here, Q(s, a) represents the Q-value from the critic used in actor-critic policy optimization, while
LBC represents the BC loss obtained from Eq. 3. λ0 is a fixed weight, while λ1(i) is a time-varying
adaptive weight that controls the contributions of the two loss terms, where i denotes the cumulative
training time. Dβ refers to the replay buffer for online rollouts.

Adaptive Regularization with Soft Q-filtering While prior work [18, 19] use hand-tuned sched-
ules for λ1(i), we propose a new adaptive scheme that removes the need for tuning. This is done by
comparing the performance of the current policy πROT and the pretrained policy πBC on a batch of
data sampled from an expert replay buffer Dβ . More precisely, given a behavior policy πBC(s), the
current policy πROT (s), the Q-function Q(s, a) and the replay buffer Dβ , we set λ1(i) as:

λ1(i) = E(s,·)∼Dβ

[
1Q(s,πBC(s))>Q(s,πROT (s))

]
(5)

The strength of the BC regularization hence depends on the performance of the current policy with
respect to the behavior policy. This filtering strategy is inspired by Nair et al. [30], where we augment
binary hard assignment with a soft continuous weight. Experimental comparisons with hand-tuned
decay strategies are presented in Section 5.2.

4.3 Implementation details

Considerations for image-based observations Since we are interested in using ROT with high-
dimensional visual observations, additional machinery is required to ensure compatibility. Following
prior work in image-based RL and imitation [10, 13], we perform data augmentations on visual
observations and then feed it into a CNN encoder. Similar to Cohen et al. [13], we use a target encoder
with Polyak averaging to obtain representations for OT reward computation. This is necessary to
reduce the non-stationarity caused by learning the encoder alongside the ROT imitation process.

Algorithm and training procedure Our model consists of 3 primary neural networks - the encoder,
the actor and the critic. During the BC pretraining phase, the encoder and the actor are trained
using a mean squared error (MSE) on the expert demonstrations. Next, for finetuning, weights of
the pretrained encoder and actor are loaded from memory and the critic is initialized randomly. We
observed that the performance of the algorithm is not very sensitive to the value of λ0 and we set it
to 0.03 for all experiments in this paper. A copy of the pretrained encoder and actor are stored with
fixed weights to be used for computing λ1(i) for soft Q-filtering. More details on our implementation
can be found in Appendix D.

5 Experiments

Our experiments are designed to answer the following questions: (a) How efficient is ROT for
imitation learning? (b) Does soft Q-filtering improve imitation? (c) How does ROT compare to
standard RL? (d) How important are the IRL design choices in ROT?

Environments We experiment with 10 tasks from the DeepMind Control suite [20, 31], 3 tasks
from the OpenAI Robotics suite [32], and 6 tasks from the Meta-world suite [33]. Full environment
details can be found in Appendix E.

Expert demonstrations For DeepMind Control tasks, we train expert policies using DrQ-v2 [10]
and collect 10 demonstrations for each task using this policy. For OpenAI Robotics tasks, we train a
state-based DrQ-v2 with hindsight experience replay [34] and collect 50 demonstrations for each
task. For Meta-world tasks, we use a single hard-coded expert demonstration from their open-source

5

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_cheetah_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

1200

ep
iso

de
_r

ew
ar

d

dmc_finger_spin

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

100

200

300

ep
iso

de
_r

ew
ar

d

dmc_hopper_hop

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

ep
iso

de
_r

ew
ar

d

dmc_quadruped_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_walker_stand

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

ep
iso

de
_r

ew
ar

d

dmc_walker_run

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

fetch_push

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_pick_and_place

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_drawer_close

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_hammer

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge
metaworld_door_open

Expert BC OT DAC ROT (Ours)

Figure 3: Pixel-based continuous control learning on 12 selected environments. Shaded region
represents ±1 standard deviation across 5 seeds. We notice that ROT is significantly more sample
efficient compared to prior work.

implementation [33]. Details on the variations in demonstrations and initialization conditions can be
found in Appendix F.

Primary baselines We compare ROT with baselines against several prominent imitation learning
methods. While a full description of our baselines are in Appendix G, a brief description of the two
strongest ones are as follows:

(a) Adversarial IRL (DAC): Discriminator Actor Critic [9] is a state-of-the-art adversarial imitation
learning method [8, 35, 9]. Since DAC outperforms prior work such as GAIL [8] and AIRL [36]
it serves as our primary adversarial imitation baseline.

(b) State-matching IRL (OT): Sinkhorn Imitation Learning [14, 15] is a state-of-the-art state-
matching imitation learning method [37] that approximates OT matching through the Sinkhorn
Knopp algorithm. Since ROT is derived from similar OT-based foundations, we use SIL as our
primary state-matching imitation baseline.

6

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

100

200

300

ep
iso

de
_r

ew
ar

d

dmc_hopper_hop

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

ep
iso

de
_r

ew
ar

d

dmc_quadruped_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

ep
iso

de
_r

ew
ar

d

dmc_walker_run

Expert BC DAC OT ROT (Ours)

Figure 4: State-based continuous control learning on 3 representative environments. We observe
similar gains in performance as our image-based experiments.

0 100000 200000 300000 400000 500000
frame

0

200

400

600

800

ep
iso

de
_r

ew
ar

d

dmc_walker_run

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.0

0.4

0.8

1.2
su

cc
es

s_
pe

rc
en

ta
ge

metaworld_hammer

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.0

0.4

0.8

1.2

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_door_open

Expert BC Finetune with fixed weight Finetune with fixed schedule ROT (Ours)

Figure 5: Effect of varying BC regularization schemes on 3 selected environments. We observe that
our adaptive soft-Q filtering regularization is more stable compared to prior hand-tuned regularization
schemes.

5.1 How efficient is ROT for imitation learning?

Performance of ROT for image-based imitation is depicted on select environments in Fig. 3. On all
but one task, ROT trains significantly faster than prior work. To reach 90% of expert performance,
ROT is on average 8.7× faster on DeepMind Control tasks, 2.1× faster on Fetch Robotics tasks, and
8.9× faster on Meta-world tasks. We also find that the improvements of ROT are most apparent on the
harder tasks (rightmost column in Fig. 3). Finally, the improvements from ROT hold on state-based
observations as well (see Fig. 4). Learning curves for all tasks are depicted in Appendix H.

5.2 Does soft Q-filtering improve imitation?

To understand the importance of soft Q-filtering, we compare ROT against two variants of our
proposed regularization scheme: (a) A tuned fixed BC regularization weight (ignoring λ1(i) in Eq. 4);
(b) A carefully designed linear-decay schedule for λ1(i), where it varies from 1.0 to 0.0 in the first
20000 environment steps [18]. As demonstrated in Fig. 5, ROT is on par and in some cases exceeds
the efficiency of a hand-tuned decay schedule, while not having to hand-tune its regularization weights.
We hypothesize this improvement is primarily due to the better stability of adaptive weighing as seen
in the significantly smaller standard deviation on the Meta-world tasks.

5.3 How does ROT compare to standard reward-based RL?

We compare the performance of ROT against DrQ-v2 [10], a state-of-the-art algorithm for image-
based RL. As opposed to the reward-free setting ROT operates in, DrQ-v2 has access to environments
rewards. We also compare against a demo-assisted variant of DrQ-v2 agent using the same pretraining
and regularization scheme as ROT (which we refer to as Demo-DrQ-v2). The results in Fig. 6 show
that ROT method handily outperforms DrQ-v2. This clearly demonstrates the usefulness of imitation
learning in domains where expert demonstrations are available over reward-based RL. Interestingly,
we also find that our soft Q-filtering based regularization can accelerate learning of RL with task
rewards, which can be seen in the high performance of Demo-DrQ-v2.

7

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_walker_run

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_pick_and_place

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_hammer

Expert BC OT DrQ-v2(RL) Demo-DrQ-v2 ROT (Ours)

Figure 6: Comparison of ROT against DrQ-v2, a reward-based RL method. Here we see that ROT
can outperform plain RL that requires explicit task-reward. However, we also observe that this RL
method combined with our regularization scheme provides strong results.

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_walker_run

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge
fetch_pick_and_place

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_hammer

Expert BC DAC OT DAC+BC Reg. ROT (Ours)

Figure 8: Ablation analysis on the choice of base IRL method. We find that although adversarial
methods benefit from regularized BC, the gains seen are smaller compared to ROT.

5.4 How important are the design choices in ROT?

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

ep
iso

de
_r

ew
ar

d

dmc_walker_run

BC ROT (Ours) OT
BC+OT OT+BC Reg.

Figure 7: Comparison between ablated
versions of ROT on the Walker Run task.

Importance of pretraining and regularizing the IRL
policy Fig. 7 compares the following variants of ROT on
the DeepMind Control Walker Run task: (a) Training the
IRL policy from scratch (OT); (b) Finetuning a pretrained
BC policy without BC regularization (BC+OT); (c) Train-
ing the IRL policy from scratch with BC regularization
(OT+BC Reg.). We observe that pretraining the IRL policy
(BC+OT) does not provide a significant difference without
regularization. This can be attributed to the ‘forgetting
behavior’ of pre-trained policies, studied in Nair et al.
[11]. Interestingly, we see that even without BC pretrain-
ing, keeping the policy close to a behavior distribution
(OT+BC Reg.) can yield improvements in efficiency over
vanilla training from scratch. Our key takeaway from these
experiments is that both pretraining and BC regularization
are required to obtain sample-efficient imitation learning.

Choice of IRL method In ROT, we build on OT-based IRL instead of adversarial IRL. This is
because adversarial IRL methods require iterative reward learning, which produces a highly non-
stationary reward function for policy optimization. In Fig. 8, we compare ROT with adversarial IRL
methods that use our pretraining and adaptive BC regularization technique (DAC+BC Reg.). We find
that our soft Q-filtering method does improve prior state-of-the-art adversarial IRL (DAC+BC Reg.
vs. DAC in Fig. 8). However, our OT-based approach (ROT) is more stable and on average leads to
more efficient learning.

8

6 Related Work

Imitation Learning (IL) IL refers to the setting where agents learn from demonstrations without
access to environment rewards. IL can be broadly categorized into Behavior Cloning (BC) [1, 23]
and Inverse Reinforcement Learning (IRL) [6, 26]. BC solely learns from offline demonstrations
but suffers on out-of-distributions samples [7] whereas IRL focuses on learning a robust reward
function through online interactions but suffers from sample inefficiency [9]. Deep IRL methods can
be further divided into two categories: (1) adversarial learning [38] based methods, and (2) state-
matching [39, 40] based methods. GAIL [8] is an adversarial learning based formulation inspired
by maximum entropy IRL [41] and GANs [38]. There has been a significant body of work built up
on GAIL proposing alternative losses [36, 42, 35], and enhancing its sample efficiency by porting
it to an off-policy setting [9]. There have also been visual extensions of these adversarial learning
approaches [43–45, 13]. In this work, we find that although adversarial methods produce competent
policies, they are inefficient due to the non-stationarity associated with iterative reward inference.

Optimal Transport (OT) OT [39, 40] is a tool for comparing probability measures while including
the geometry of the space. In the context of IL, OT computes an alignment between a set of agent
and expert observations using distance metrics such as Sinkhorn [46], Gromov-Wasserstein [47],
GDTW [48], CO-OT [49] and Soft-DTW [50]. For many of these distance measures, there is
an associated IL algorithm, with SIL [14] using Sinkhorn, PWIL [15] using greedy Wasserstein,
GDTW-IL [48] using GDTW, and GWIL [51] using Gromov-Wasserstein. Recent work from Cohen
et al. [13] demonstrates that the Sinkhorn distance [14] produces the most efficient learning among
the discussed metrics. They further show that SIL is compatible with high-dimensional visual
observations and encoded representations. Inspired by this, ROT adopts the Sinkhorn metric for its
OT reward computation, and improves upon SIL through adaptive behavior regularization.

Behavior Regularized Control Behavior regularization is a widely used technique in offline
RL [52] where explicit constraints are added to the policy improvement update to avoid bootstrapping
on out-of-distribution actions [53–58]. In an online setting with access to environment rewards,
prior work [18, 12] has shown that behavior regularization can be used to boost sample efficiency by
finetuning a pretrained policy via online interactions. For instance, Jena et al. [19] demonstrates the
effectiveness of behavior regularization to enhance sample efficiency in the context of adversarial
IL. ROT builds upon this idea by extending to visual observations, OT-based IL, and adaptive
regularization, which leads to improved performance (see Section 5.4). We also note that the idea
of using adaptive regularization has been previously explored in RL [30]. However, ROT uses a
soft, continuous adaptive scheme, which on initial experiments provided significantly faster learning
compared to hard assignments.

7 Conclusion and Limitations

In this work, we propose Regularized Optimal Transport (ROT), a new imitation learning algorithm
that alleviates the challenge of exploration and significantly improves sample efficiency by using
a pretrained policy in conjunction with an adaptive regularization scheme for online finetuning.
Although we demonstrate superior performance compared to prior work on a varied set of simulated
environments, there are a few limitations in this work: (a) Since our OT-based approach aligns agents
with demonstrations without task-specific rewards, it relies on the demonstrator being an ‘expert’.
Extending ROT to suboptimal demonstrations would be an exciting future direction. (b) Performing
BC pretraining and BC-based regularization requires access to expert actions, which may not be
present in real-world demonstrations from humans. Recent work on using inverse models to infer
actions given observational data could alleviate this challenge [59]. (c) While we show substantially
better performance on simulated control tasks, the true test for ROT will be its applicability to
real-world control problems. Given our results on simulated robotic problems, where ROT can learn
policies with arbitrary environment initialization from visual observations, we look forward to future
work that extends ROT to real versions of these simulated problems.

9

References
[1] D Pomerleau. An autonomous land vehicle in a neural network. Advances in Neural Information

Processing Systems, 1, 1998. 1, 9

[2] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-
Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

[3] Petter N Kolm and Gordon Ritter. Modern perspectives on reinforcement learning in finance.
Modern Perspectives on Reinforcement Learning in Finance (September 6, 2019). The Journal
of Machine Learning in Finance, 1(1), 2020. 1

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016. 1

[5] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter
Abbeel. Deep imitation learning for complex manipulation tasks from virtual reality teleopera-
tion. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 1–8.
IEEE, 2018. 1

[6] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, page 2, 2000. 1, 3, 9

[7] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011. 1, 3, 4, 5, 9

[8] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016. 1, 2, 3, 6, 9, 18

[9] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan
Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in
adversarial imitation learning. arXiv preprint arXiv:1809.02925, 2018. 1, 2, 3, 6, 9, 14, 18

[10] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021. 1, 2, 3, 4, 5, 7, 14, 15, 16, 17, 18

[11] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020. 1, 2, 3, 5,
8, 14

[12] Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon,
Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning.
arXiv preprint arXiv:2204.02372, 2022. 1, 9, 14

[13] Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, and
Denis Yarats. Imitation learning from pixel observations for continuous control, 2022. URL
https://openreview.net/forum?id=JLbXkHkLCG6. 1, 2, 3, 4, 5, 9, 14, 16

[14] Georgios Papagiannis and Yunpeng Li. Imitation learning with sinkhorn distances. arXiv
preprint arXiv:2008.09167, 2020. 2, 3, 6, 9, 15, 18

[15] Robert Dadashi, Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal wasserstein
imitation learning. arXiv preprint arXiv:2006.04678, 2020. 2, 3, 6, 9, 18

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 2

10

https://openreview.net/forum?id=JLbXkHkLCG6

[17] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387–395. PMLR, 2014. 2, 14, 15

[18] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017. 2, 4, 5, 7, 9, 14

[19] Rohit Jena, Changliu Liu, and Katia Sycara. Augmenting gail with bc for sample efficient
imitation learning. arXiv preprint arXiv:2001.07798, 2020. 2, 5, 9, 14

[20] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018. 2, 5, 17

[21] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 2

[22] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning, pages 1094–1100. PMLR, 2020. 2

[23] Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from
observation. arXiv preprint arXiv:1905.13566, 2019. 2, 9

[24] Albert Zhan, Philip Zhao, Lerrel Pinto, Pieter Abbeel, and Michael Laskin. A framework for
efficient robotic manipulation. arXiv preprint arXiv:2012.07975, 2020. 2

[25] Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, and Lerrel
Pinto. Visual imitation made easy. arXiv preprint arXiv:2008.04899, 2020. 2

[26] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.
3, 9

[27] Philip A Knight. The sinkhorn–knopp algorithm: convergence and applications. SIAM Journal
on Matrix Analysis and Applications, 30(1):261–275, 2008. 3, 15

[28] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015. 3, 4, 14

[29] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.
3

[30] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Overcoming exploration in reinforcement learning with demonstrations. In 2018 IEEE inter-
national conference on robotics and automation (ICRA), pages 6292–6299. IEEE, 2018. 5,
9

[31] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012. 5, 17

[32] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal
reinforcement learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464, 2018. 5, 17

[33] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/
1910.10897. 5, 6, 17

11

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

[34] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. Advances in neural information processing systems, 30, 2017. 5, 17

[35] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion. arXiv preprint arXiv:1807.06158, 2018. 6, 9, 18

[36] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv preprint arXiv:1710.11248, 2017. 6, 9, 18

[37] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence mini-
mization perspective on imitation learning methods. In Conference on Robot Learning, pages
1259–1277. PMLR, 2020. 6, 18

[38] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014. 9

[39] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009. 9

[40] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019. 9

[41] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.
9

[42] Huang Xiao, Michael Herman, Joerg Wagner, Sebastian Ziesche, Jalal Etesami, and Thai Hong
Linh. Wasserstein adversarial imitation learning. arXiv preprint arXiv:1906.08113, 2019. 9

[43] Edoardo Cetin and Oya Celiktutan. Domain-robust visual imitation learning with mutual
information constraints. arXiv preprint arXiv:2103.05079, 2021. 9

[44] Sam Toyer, Rohin Shah, Andrew Critch, and Stuart Russell. The magical benchmark for robust
imitation. Advances in Neural Information Processing Systems, 33:18284–18295, 2020.

[45] Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Visual adversarial imitation
learning using variational models. Advances in Neural Information Processing Systems, 34,
2021. 9

[46] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013. 9

[47] Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel
and distance matrices. In International Conference on Machine Learning, pages 2664–2672.
PMLR, 2016. 9

[48] Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, and Marc Deisenroth. Aligning
time series on incomparable spaces. In International Conference on Artificial Intelligence and
Statistics, pages 1036–1044. PMLR, 2021. 9

[49] Ievgen Redko, Titouan Vayer, Rémi Flamary, and Nicolas Courty. Co-optimal transport. arXiv
preprint arXiv:2002.03731, 2020. 9

[50] Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for time-series. In
International conference on machine learning, pages 894–903. PMLR, 2017. 9

[51] Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos. Cross-domain imitation
learning via optimal transport. arXiv preprint arXiv:2110.03684, 2021. 9

[52] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020. 9

[53] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021. 9

12

[54] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[55] Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. {OPAL}:
Offline primitive discovery for accelerating offline reinforcement learning. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=V69LGwJ0lIN.

[56] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy q-learning via bootstrapping error reduction. Advances in Neural Information Processing
Systems, 32, 2019.

[57] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

[58] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019. 9

[59] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation
learning for dexterous manipulation. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 7865–7871. IEEE, 2020. 9

[60] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679–684, 1957. 14

[61] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018. 14

[62] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.
14

13

https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=V69LGwJ0lIN

A Background

A.1 Reinforcement Learning (RL)

We study RL as a discounted infinite-horizon Markov Decision Process (MDP) [60, 61]. For pixel
observations, the agent’s state is approximated as a stack of consecutive RGB frames [62]. The
MDP is of the form (O,A, P,R, γ, d0) where O is the observation space, A is the action space,
P : O × A → ∆(O) is the transition function that defines the probability distribution over the
next state given the current state and action, R : O × A → R is the reward function, γ is the
discount factor and d0 is the initial state distribution. The goal is to find a policy π : O → ∆(A) that
maximizes the expected discount sum of rewards Eπ[Σ

∞
t=0γ

tR(ot,at)], where o0 ∼ d0, at ∼ π(ot)
and ot+1 ∼ P (.|ot,at).

B Issue with Fine-tuning Actor-Critic Frameworks

In this paper, we use n-step DDPG proposed by Yarats et al. [10] as our RL optimizer for actor-
critic based reward maximization. DDPG [28] concurrently learns a deterministic policy πϕ using
deterministic policy gradients (DPG) [17] and a Q-function Qθ by minimizing a n-step Bellman
residual (for n-step DDPG). For a parameterized actor network πϕ(s) and a critic function Qθ(s, a),
the deterministic policy gradients (DPG) for updating the actor weights is given by

∇ϕJ ≈ Est∼ρβ

[
∇ϕ Qθ(s, a)|s=st,a=πϕ(st)

]
= Est∼ρβ

[
∇a Qθ(s, a)|s=st,a=πϕ(st)

∇ϕ πϕ(s)|s=st

] (6)

Here, ρβ refers to the state visitation distribution of the data present in the replay buffer at time
t. From Eq. 6, it is clear that the policy gradients in this framework depend on the gradients with
respect to the critic value. Hence, as mentioned in [11, 12], naively initializing the actor with a
pretrained policy while using a randomly initialized critic results in the untrained critic providing an
exceedingly poor signal to the actor network during training. As a result, the actor performance drops
immediately and the good behavior of the informed initialization of the policy gets forgotten. In this
paper, we propose an adaptive regularization scheme that permits finetuning a pretrained actor policy
in an actor-critic framework. As opposed to Rajeswaran et al. [18], Jena et al. [19] which employ
on-policy learning, our method is off-policy and aims to leverage the sample efficient characteristic
of off-policy learning as compared to on-policy learning [9].

C Optimal Transport (OT) Formulation

The policy πϕ encompasses a feature preprocessor fϕ which transforms observations into informative
state representations. Some examples of a preprocessor function fϕ are an identity function, a
mean-variance scaling function and a parametric neural network. In this work, we use a parametric
neural network as fϕ. Given a cost function c : O × O → R defined in the preprocessor’s output
space and an OT objective g, the optimal alignment between an expert trajectory oe and a behavior
trajectory ob can be computed as

µ∗ ∈ arg min
µ∈M

g(µ, fϕ(ob), fϕ(oe), c) (7)

where M = {µ ∈ RT×T : µ1 = µT1 = 1
T 1} is the set of coupling matrices and the cost c can be

the Euclidean or Cosine distance. In this work, inspired by [13], we use the entropic Wasserstein
distance with cosine cost as our OT metric, which is given by the equation

g(µ, fϕ(ob), fϕ(oe), c) =W2(fϕ(ob), fϕ(oe))

=

T∑
t,t′=1

Ct,t′µt,t′
(8)

14

where the cost matrix Ct,t′ = c(fϕ(ob), fϕ(oe)). Using Eq. 8 and the optimal alignment µ∗ obtained
by optimizing Eq. 7, a reward signal can be computed for each observation using the equation

rOT (obt) = −
T∑

t′=1

Ct,t′µ
∗
t,t′

(9)

Intuitively, maximizing this reward encourages the imitating agent to produce trajectories that closely
match demonstrated trajectories. Since solving Eq. 7 is computationally expensive, approximate
solutions such as the Sinkhorn algorithm [27, 14] are used instead.

D Algorithmic Details

Algorithm 1 ROT: Regularized Optimal Transport
Require:
Expert Demonstrations T e ≡ {(ot, at)Tt=0}Nn=0
Pretrained policy πBC

Replay buffer D, Training steps T , Episode Length L
Task environment env
Parametric networks for RL backbone (e.g., the encoder, policy and critic function for DrQ-v2)
A discriminator D for adversarial baselines

Algorithm:
πROT ← πBC ▷ Initialize with pretrained policy
for each timestep t = 1...T do

if done then
r1:L = rewarderOT (episode) ▷ OT-based reward computation
Update episode with r1:L and add (ot, at, ot+1, rt) to D
ot = env.reset(), done = False, episode = []

end if
at = πROT (ot)
ot+1, done = env.step(at)
episode.append([ot, at, ot+1])
Update backbone-specific networks and reward-specific networks using D

end for

D.1 Implementation

Algorithm 1 describes our proposed algorithm, Regularized Optimal Transport (ROT), for sample
efficient imitation learning for continuous control tasks. Further implementation details are as follows:

Actor-critic based reward maximization We use a recent n-step DDPG proposed by Yarats et al.
[10] as our RL backbone. The deterministic actor is trained using deterministic policy gradients
(DPG) [17] given by Eq. 6. The critic is trained using clipped double Q-learning similar to Yarats
et al. [10] in order to reduce the overestimation bias in the target value. This is done using two
Q-functions, Qθ1 and Qθ2. The critic loss for each critic is given by the equation

Lθk = E(s,a)∼Dβ

[
(Qθk(s, a)− y)2

]
∀ k ∈ {1, 2} (10)

where Dβ is the replay buffer for online rollouts and y is the target value for n-step DDPG given by

y =

n−1∑
i=0

γirt+i + γnmin
k=1,2

Qθ̄k(st+n, at+n) (11)

Here, γ is the discount factor, r is the reward obtained using OT-based reward computation and θ̄1,
θ̄2 are the slow moving weights of target Q-networks.

15

Target feature processor to stabilize OT rewards The OT rewards are computed on the output
of the feature processor fϕ which is initialized with a parametric neural network. Hence, as the
weights of fϕ change during training, the rewards become non-stationary resulting in unstable training.
In order to increase the stability of training, the OT rewards are computed using a target feature
processor fϕ′ [13] which is updated with the weights of fϕ every Tupdate environment steps. For
state-based observations, fϕ corresponds to a ’trunk’ network which is a single layer neural network.
For pixel-based observations, fϕ includes DrQ-v2’s encoder followed by the ’trunk’ network.

D.2 Hyperparameters

The complete list of hyperparameters is provided in Table 1. Similar to Yarats et al. [10], there is
a slight deviation from the given setting for the Walker Stand/Walk/Run task from the DeepMind
Control suite where we use a mini-batch size of 512 and a n-step return of 1.

Method Parameter Value

Common Replay buffer size 150000

Learning rate 1e−4

Discount γ 0.99

n-step returns 3

Action repeat 2

Seed frames 12000

Mini-batch size 256

Agent update frequency 2

Critic soft-update rate 0.01

Feature dim 50

Hidden dim 1024

Optimizer Adam

ROT Exploration steps 0

DDPG exploration schedule 0.1

Target feature processor update frequency(steps) 20000

Reward scale factor 10

Fixed weight λ0 0.03

Linear decay schedule for λ1(i) linear(1,0.1,20000)

OT Exploration steps 2000

DDPG exploration schedule linear(1,0.1,500000)

Target feature processor update frequency(steps) 20000

Reward scale factor 10

DAC Exploration steps 2000

DDPG exploration schedule linear(1,0.1,500000)

Gradient penalty coefficient 10

Table 1: List of hyperparameters.

16

E Environments

Table 2 lists the different tasks that we experiment with from the DeepMind Control suite [20, 31],
OpenAI Robotics suite [32] and the Meta-world suite [33] along with the number of training steps
and the number of demonstrations used. For the tasks in the OpenAI Robotics suite, we fix the goal
while keeping the initial state randomized. No modifications are made in case of the DeepMind
Control suite and the Meta-world suite. The episode length for all tasks in DeepMind Control is 1000
steps, for OpenAI Robotics is 50 steps and Meta-world is 125 steps (except bin picking which runs
for 175 steps).

Suite Tasks Allowed Steps # Demonstrations

DeepMind Control Acrobot Swingup 2× 106 10

Cartpole Swingup

Cheetah Run

Finger Spin

Hopper Stand

Hopper Hop

Quadruped Run

Walker Stand

Walker Walk

Walker Run

OpenAI Robotics Fetch Reach 1.5× 106 50

Fetch Push

Fetch Pick and Place

Meta-World Hammer 1× 106 1

Drawer Close

Door Open

Bin Picking

Button Press Topdown

Door Unlock.

Table 2: List of tasks used for evaluation.

F Demonstrations

For DeepMind Control tasks, we train expert policies using pixel-based DrQ-v2 [10] and collect
10 demonstrations for each task using this expert policy. The expert policy is trained using a stack
of 3 consecutive RGB frames of size 84× 84 with random crop augmentation. Each action in the
environment is repeated 2 times. For OpenAI Robotics tasks, we train a state-based DrQ-v2 with
hindsight experience replay [34] and collect 50 demonstrations for each task. The state representation
comprises the observation from the environment appended with the desired goal location. For this, we
did not do frame stacking and action repeat was set to 2. For Meta-World tasks, we use a single expert
demonstration obtained using the task-specific hard-coded policies provided in their open-source
implementation [33].

17

G Baselines

Throughout the paper, we compare ROT with several prominent imitation learning and reinforcement
learning methods. Here, we give a brief description of each of the baseline models that have been
used.

(a) Expert: For each task, the expert refers to the expert policy used to generate the demonstrations
for the task (described in Appendix F).

(b) Behavior Cloning (BC): This refers to the behavior cloned policy trained on expert demonstra-
tions.

(c) Adversarial IRL (DAC): Discriminator Actor Critic [9] is a state-of-the-art adversarial imitation
learning method [8, 35, 9]. Since DAC outperforms prior work such as GAIL[8] and AIRL[36],
it serves as our primary adversarial imitation baseline.

(d) State-matching IRL (OT): Sinkhorn Imitation Learning [14, 15] is a state-of-the-art state-
matching imitation learning method [37] that approximates OT matching through the Sinkhorn
Knopp algorithm. Since ROT is derived from similar OT-based foundations, we use SIL as our
primary state-matching imitation baseline.

(e) Finetune with fixed weight: This is similar to ROT where instead of using a time-varying
adaptive weight λ(i), only the fixed weight λ0 is used. λ0 is set to a fixed value of 0.03.

(f) Finetune with fixed schedule: This is similar to ROT that uses both the fixed weight λ0 and
the time-varying adaptive weight λ1(i). However, instead of using Soft Q-filtering to compute
λ1(i), a hand-coded linear decay schedule is used.

(g) DrQ-v2 (RL): DrQ-v2 [10] is a state-of-the-art algorithm for pixel-based RL. DrQ-v2 is assumed
to have access to environment rewards as opposed to ROT which computes the reward using
OT-based techniques.

(h) Demo-DrQ-v2: This refers to DrQ-v2 but with access to both environment rewards and expert
demonstrations. The model is initialized with a pretrained BC policy followed by RL finetuning
with an adaptive regularization scheme like ROT. During RL finetuning, this baseline has access
to environment rewards.

(i) BC+OT: This is the same as the OT baseline but the policy is initialized with a pretrained BC
policy. No adaptive regularization scheme is used while finetuning the pretrained policy.

(j) OT+BC Reg.: This is the same as the OT baseline with randomly initialized networks but during
training, the adaptive regularization scheme is added to the objective function.

(k) DAC+BC Reg.: This is the same as ROT, but instead of using state-matching IRL (OT),
adversarial IRL (DAC) is used.

H Training curve

H.1 Additional Experimental Results for ROT

Fig. 9 and Fig. 10 show the performance of ROT for pixel-based imitation on 10 tasks from the
DeepMind Control suite, 3 tasks from the OpenAI Robotics suite and 6 tasks from the Meta-world
suite. On all but one task, ROT is significantly more sample efficient than prior work. Fig. 11 provides
additional results exhibiting similar improvements on state-based observations.

H.2 Importance of pretraining and regularizing the IRL policy

Extending the results shown in Fig. 7, we provide training curves from representative tasks in each
suite in Fig. 13, thus demonstrating the need for pretraining and BC regularization in tandem for
sample-efficient imitation learning.

18

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

100

200

300

400

ep
iso

de
_r

ew
ar

d

dmc_acrobot_swingup

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_cartpole_swingup

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

1200

ep
iso

de
_r

ew
ar

d

dmc_finger_spin

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_cheetah_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

200

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_hopper_stand

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

100

200

300

ep
iso

de
_r

ew
ar

d

dmc_hopper_hop

0.0 0.5 1.0 1.5 2.0
frame 1e6

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_walker_stand

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_walker_walk

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800
ep

iso
de

_r
ew

ar
d

dmc_walker_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

ep
iso

de
_r

ew
ar

d

dmc_quadruped_run

Expert BC OT DAC ROT (Ours)

Figure 9: Pixel-based continuous control learning on 10 DMC environments. Shaded region represents
±1 standard deviation across 5 seeds. We notice that ROT is significantly more sample efficient
compared to prior work.

19

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

fetch_push

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_pick_and_place

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_hammer

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_drawer_close

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_door_open

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_bin_picking

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_button_press_topdown

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_door_unlock

Expert BC OT DAC ROT (Ours)

Figure 10: Pixel-based continuous control learning on 3 OpenAI Gym Robotics and 6 Meta-World
tasks. Shaded region represents ±1 standard deviation across 5 seeds. We notice that ROT is
significantly more sample efficient compared to prior work.

20

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

100

200

300

400

500

ep
iso

de
_r

ew
ar

d

dmc_acrobot_swingup

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_cartpole_swingup

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_finger_spin

0.0 0.5 1.0 1.5 2.0
frame 1e6

200

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_hopper_stand

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

100

200

300
ep

iso
de

_r
ew

ar
d

dmc_hopper_hop

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

1200

ep
iso

de
_r

ew
ar

d

dmc_walker_stand

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_walker_walk

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

ep
iso

de
_r

ew
ar

d

dmc_walker_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

ep
iso

de
_r

ew
ar

d

dmc_quadruped_run

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_hammer

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_drawer_close

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_door_open

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_bin_picking

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_button_press_topdown

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_door_unlock

Expert BC OT DAC ROT (Ours)

Figure 11: State-based continuous control learning on DMC and Meta-World tasks. We notice that
ROT is significantly more sample efficient compared to prior work.

21

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_finger_spin

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_cheetah_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_walker_run

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_push

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_pick_and_place

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_door_open

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_bin_picking

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_hammer

Expert BC OT DrQ-v2(RL) Demo-DrQ-v2 ROT (Ours)

Figure 12: Pixel-based ablation analysis on the performance comparison of ROT against DrQ-v2,
a reward-based RL method. Here we see that ROT can outperform plain RL that requires explicit
task-reward. However, we also observe that this RL method combined with our regularization scheme
provides strong results.

22

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

1200

ep
iso

de
_r

ew
ar

d

dmc_finger_spin

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800
ep

iso
de

_r
ew

ar
d

dmc_cheetah_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

ep
iso

de
_r

ew
ar

d

dmc_walker_run

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

fetch_push

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_pick_and_place

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_door_open

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_bin_picking

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_button_press_topdown

BC ROT (Ours) OT BC+OT OT+BC Reg.

Figure 13: Pixel-based ablation analysis on the importance of pretraining and regularizing the IRL
policy. The key takeaway from these experiments is that both pretraining and BC regularization are
required to obtain sample-efficient imitation learning.

23

0.0 0.5 1.0 1.5 2.0
frame 1e6

250

0

250

500

750

1000

1250

ep
iso

de
_r

ew
ar

d

dmc_finger_spin

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000
ep

iso
de

_r
ew

ar
d

dmc_cheetah_run

0.0 0.5 1.0 1.5 2.0
frame 1e6

0

200

400

600

800

1000

ep
iso

de
_r

ew
ar

d

dmc_walker_run

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

su
cc

es
s_

pe
rc

en
ta

ge

fetch_push

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

fetch_pick_and_place

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_door_open

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_bin_picking

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s_

pe
rc

en
ta

ge

metaworld_button_press_topdown

Expert BC DAC OT DAC+BC Reg. ROT (Ours)

Figure 14: Pixel-based ablation analysis on the choice of base IRL method. We find that although
adversarial methods benefit from regularized BC, the gains seen are smaller compared to ROT.

24

