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ABSTRACT

As the complexity of deep neural networks (DNNs) trends to grow to absorb the
increasing sizes of data, memory and energy consumption has been receiving
more and more attentions for industrial applications, especially on mobile devices.
This paper presents a novel structure based on homologically functional hashing
to compress DNNs, shortly named as HFH. For each weight entry in a deep
net, HFH uses multiple low-cost hash functions to fetch values in a compression
space, and then employs a small reconstruction network to recover that entry. The
compression space is homological because all layers fetch hashed values from it.
The reconstruction network is plugged into the whole network and trained jointly.
On several benchmark datasets, HFH demonstrates high compression ratios with
little loss on prediction accuracy. Particularly, HFH includes the recently proposed
HashedNets (Chen et al., 2015a) as a degenerated scenario and shows significantly
improved performance. Moreover, the homological hashing essence facilitates us
to efficiently figure out one single desired compression ratio, instead of exhaustive
searching throughout a combinatory space configured by all layers.

1 INTRODUCTION

Deep Neural networks (DNNs) have been receiving ubiquitous success in wide applications, ranging
from computer vision (Krizhevsky et al., 2012), to speech recognition (Hinton et al., 2012), natural
language processing (Collobert et al., 2011), and domain adaptation (Glorot et al., 2011). As the
sizes of data mount up, people usually have to increase the number of parameters in DNNs so as to
absorb the vast volume of supervision. High performance computing techniques are studied to speed
up training, concerning optimization algorithms, parallel synchronisations on clusters w/o GPUs, and
stochastic binarization/ternarization, etc (Courbariaux et al., 2015; Dettmers, 2016; Lin et al., 2016).

On the other hand the memory and energy consumption is usually, if not always, constrained in
industrial applications (Kim et al., 2016; Yang et al., 2015). For instance, for commercial search
engines (e.g., Google and Baidu) and recommendation systems (e.g., NetFlix and YouTube), the ratio
between the increased model size and the improved performance should be considered given limited
online resources. Compressing the model size becomes more important for applications on mobile
and embedded devices (Han et al., 2016; Kim et al., 2016). Having DNNs running on mobile apps
owns many great features such as better privacy, less network bandwidth and real time processing.
However, the energy consumption of battery-constrained mobile devices is usually dominated by
memory access, which would be greatly saved if a DNN model can fit in on-chip storage rather than
DRAM storage (c.f. Han et al. (2016) for details).

A recent trend of studies are thus motivated to focus on compressing the size of DNNs while mostly
keeping their predictive performance (Han et al., 2016; Kim et al., 2016; Yang et al., 2015). With
different intuitions, there are mainly two types of DNN compression methods, which could be used
in conjunction for better parameter savings. The first type tries to revise the training target into more
informative supervision using dark knowledge. In specific, Hinton et al. (2014) suggested to train a
large network ahead, and distill a much smaller model on a combination of the original labels and the
soft-output by the large net. The second type observes the redundancy existence in network weights
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(Chen et al., 2015a; Denil et al., 2013), and exploits techniques to constrain or reduce the number of
free-parameters in DNNs during learning. This paper focuses on the latter type.

To constrain the network redundancy, several efforts (Denil et al., 2013; Le et al., 2013; Yang
et al., 2015) formulated an original weight matrix into either low-rank or fast-food decompositions.
Moreover Han et al. (2015) and Han et al. (2016) proposed a simple-yet-effective pruning-retraining
iteration during training, followed by quantization and fine-tuning. An adaptive pruning strategy
was further studied recently in (Guo et al., 2016) under the name of dynamic network surgery. Chen
et al. (2015a) proposed HashedNets to efficiently implement parameter sharing prior to learning, and
showed notable compression with much less loss of accuracy than low-rank decomposition. More
precisely, prior to training, a hash function is used to randomly group (virtual) weights into a small
number of buckets, so that all weights mapped into one hash bucket directly share a same value.
HashedNets was further deliberated in frequency domain for compressing convolutional NNs in Chen
et al. (2015b). It should be noted that, these approaches are not completely conflicted, and methods
based on different assumptions may be used jointly for a better compression.

To obtain a desired compression in applications, one key question of most existing compression
approaches is how to appropriately choose the compression ratios. Usually, people have to search
within finite choices either heuristically or in a Bayesian manner. The searching procedure becomes
more and more exhaustive as the network depth increases, since usually compression ratios are
various for different (kinds of) layers (Han et al., 2015; Guo et al., 2016). Moreover, we observe
HashedNets compresses model sizes greatly at marginal loss of accuracy for many situations, whereas
significantly loses accuracy for others. After revisiting its mechanism, we conjecture this instability
comes from at least three factors. First, hashing and training are disjoint in a two-phase manner, i.e.,
once inappropriate collisions exist, there may be no much optimization room left for training. Second,
one single hash function is used to fetch a single value in the compression space, whose collision risk
is larger than multiple hashes (Broder & Karlin, 1990). Third, parameter sharing within a buckets
implicitly uses identity mapping from the hashed value to the virtual entry in HashedNets.

This paper proposes the homologically functional hashing (HFH) to relieve these problems. Specifi-
cally, we use multiple hash functions to map per virtual entry into multiple values in the compression
space. Inspired from the “homology” in biology (Williams & Forey, 2004), the compression space
is a homological space, meaning that it is accessed by all entries from all (kinds of) layers in a
DNN. Then an additional network plays in a mapping function role from these hashed values to
the virtual entry (before hashing), which can be also regarded as “reconstructing” the virtual entry
from its multiple hashed values. Plugged into and jointly trained within the original network, the
reconstruction network is of a comparably ignorable size, i.e., at low memory cost.

The homologically functional hashing structure includes HashedNets as a degenerated special case,
and facilitates less value collisions and better value reconstruction. Moreover, the homology essence
favors high efficiency during searching appropriate compression ratios, because the only value we
have to determine is a scalar, i.e., the size of the homological compression space. Since HFH imposes
no restriction on other network design choices (e.g. dropout and weight sparsification), it can be
considered as a standard tool for DNN compression, and provably used jointly with other compression
techniques for a even better compression. Experiments on several datasets demonstrate significantly
larger reduction of model sizes and/or less loss on prediction accuracy, compared with HashedNets.

2 BACKGROUND

Notations. Throughout this paper we express scalars in regular (A or b), vectors in bold (x), and
matrices in capital bold (X). Furthermore, we use xi to represent the i-th dimension of vector x, and
use Xij to represent the (i, j)-th entry of matrix X. Occasionally, [x]i is also used to represent the
i-th dimension of vector x for specification clarity . Notation E[·] stands for the expectation operator.

Feed Forward Neural Networks. We define the forward propagation of the `-th layer as

a`+1
i = f(z`+1

i ), with z`+1
i = b`+1

i +

d`∑
j=1

V `
ija

`
j , for ∀i ∈ [1, d`+1]. (1)

For each `-th layer, d` is the output dimensionality, b` is the bias vector, and V` is the (virtual)
weight matrix in the `-th layer. Vectors z`,a` ∈ Rd`

denote the units before and after the activation
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function f(·). Typical choices of f(·) include rectified linear unit (ReLU) (Nair & Hinton, 2010),
sigmoid and tanh (Bishop, 1995).

Feature Hashing has been studied as a dimension reduction method for reducing model storage size
without maintaining the mapping matrices like random projection (Shi et al., 2009; Weinberger et al.,
2009). Briefly, it maps an input vector x ∈ Rn to a much smaller feature space via φ : Rn → RK

with K � n. Following the definition in Weinberger et al. (2009), the mapping φ is a composite
of two approximate uniform hash functions h : N→ {1, . . . ,K} and ξ : N→ {−1,+1}. The j-th
element of φ(x) is defined as:

[φ(x)]j =
∑

i:h(i)=j

ξ(i)xi. (2)

As shown in (Weinberger et al., 2009), a key property is its inner product preservation, which we
quote and restate below.

Lemma [Inner Product Preservation of Original Feature Hashing] With the hash defined by Eq. (2),
the hash kernel is unbiased, i.e., Eφ[φ(x)

>φ(y)] = x>y. Moreover, the variance is varx,y =
1
K

∑
i 6=j

(
x2i y

2
j + xiyixjyj

)
, and thus varx,y = O( 1

K ) if ||x||2 = ||y||2 = const.

HashedNets in (Chen et al., 2015a). As illustrated in Figure 1(a), HashedNets randomly maps
network weights into a smaller number of groups prior to learning, and the weights in a same group
share a same value thereafter. A naive implementation could be trivially achieved by maintaining
a secondary matrix that records the group assignment, at the expense of additional memory cost
however. HashedNets instead adopts a hash function that requires no storage cost with the model.
Assume there is a finite memory budge K` per layer to represent V`, with K` � (d` + 1)d`+1. We
only need to store a weight vector w` ∈ RK`

, and assign V `
ij an element in w` indexed by a hash

function h`(i, j), namely

V `
ij = ξ`(i, j) · w`

h`(i,j), (3)

where hash function h`(i, j) outputs an integer within [1,K`]. Another independent hash function
ξ`(i, j) : (d`+1 × d`)→ ±1 outputs a sign factor, aiming to reduce the bias due to hash collisions
(Weinberger et al., 2009). The resulting matrix V` is virtual, since d` could be increased without
increasing the actual number of parameters in w` once the compression space size K` is determined
and fixed.

Substituting Eq. (3) into Eq. (1), we have z`+1
i = b`+1

i +
∑d`

j=1 ξ
`(i, j)w`

h`(i,j)a
`
j . During training,

w` is updated by back propagating the gradient via z`+1 (and the virtual V`). Besides, the activation
function f(·) in Eq. (1) was kept as ReLU in (Chen et al., 2015a) to further relieve the hash collision
effect through a sparse feature space. In both (Chen et al., 2015a) and this paper, the open source
xxHash1 is adopted as an approximately uniform hash implementation with low cost.

3 HOMOLOGICALLY FUNCTIONAL HASHING

3.1 STRUCTURE FORMULATION

The key differences between our homologically functional hashing and HashedNets (Chen et al.,
2015a) are three folded: (i) how to maintain the compression space, (ii) how to employ hash functions,
and (iii) how to map from hashed values to a virtual entry. Precisely,

• Reminder in HashedNets the compression space are split into pieces, with one piece w` for
one layer. In contrast, the compression space w ∈ RK in HFH is taken as a whole, so that
any entry in all layers fetches hashed values from a same space, namely the homology.

• Instead of adopting one pair of hash function (h, ξ) in Eq. (3), we use a set of multiple pairs
of independent random hash functions. Let’s say there are U pairs of mappings {hu, ξu}Uu=1,
each hu(i, j) outputs an integer within [1,K], and each ξu(i, j) selects a sign factor.

1http://cyan4973.github.io/xxHash/
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(a) HashedNets on one layer (b) HFH on one layer

(c) HFH on AlexNet

Figure 1: Illustrations of hashing approaches for neural networks compression. (a) and (b) illustrate
HashedNets (Chen et al., 2015a) and our HFH on one layer’s weight matrix. (c) shows HFH on
AlexNet. (Best viewed in color)

• Eq. (3) of HashedNets assigns an equality between one virtual element and one hashed
value, i.e., an implicit identity mapping. In contrast, this paper uses a multivariate function
g(·) to map from multiple hashed values {ξu(i, j)whu(i,j)}Uu=1 to Vij . Specifically,

Vij = g
([
ξ1(i, j)wh1(i,j), . . . , ξU (i, j)whU (i,j)

]
; α
)
. (4)

Therein, α is referred to as the parameters in g(·). Note that the input ξu(i, j)whu(i,j) is
order sensitive from u = 1 to U . For optimization convenience, we choose g(·) to be a
multi-layer feed forward neural network, and other multivariate functions can be considered
as alternatives.

Figure 1(b) illustrates our HFH structure on one layer, which can be easily plugged in any matrices
of DNNs. Note that α in the reconstruction network g(·) is of a much smaller size compared to w.
For instance, a setting with U = 4 and a 1-layer g(·;α) of α ∈ R4 performs already well enough in
experiments. In other words, Eq. (4) just uses an ignorable amount of additional memory to describe
a functional w-to-V mapping, whose properties will be further explained in the sequel. Figure 1(c)
further shows the HFH structure on multiple layers, taking AlexNet (Krizhevsky et al., 2012) for
instance. Therein, no matter convolutional or fully-connected, all layers fetch hashed values from
one single homological compression space.

3.2 TRAINING PROCEDURE

The parameters in need of updating include w in the compression and α in g(·). Training HFH is
equivalent to training a standard neural network, except that we need to forward/backward-propagate
values related to w through g(·) and the virtual entries.
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Forward Propagation. Substituting Eq. (4) into Eq. (1), we omit the super-script ` and get

zi = bi +

d∑
j=1

ajVij = bi +

d∑
j=1

aj · g
([
ξ1(i, j)wh1(i,j), . . . , ξU (i, j)whU (i,j)

]
; α
)
. (5)

Backward Propagation. Denote L as the final loss function, e.g., cross entropy or squared loss,
and suppose δi = ∂L

∂zi
is already available by back-propagation from layers above. The derivatives of

L with respect to w and α are computed by

∂L
∂w

=
∑
i

∑
j

ajδi
∂Vij
∂w

,
∂L
∂α

=
∑
i

∑
j

ajδi
∂Vij
∂α

, (6)

where, since we choose g(·) as a multilayer neural network, derivatives ∂Vij

∂w and ∂Vij

∂α can be
calculated through the small network g(·) in a standard back-propagation manner.

Complexity. Concerning time and memory cost, HFH roughly has the same complexity as Hashed-
Nets, since the additional small network g(·) is quite light-weighted (e.g., 4 hashed inputs and 2
layers). One key varying factor is the way to implement multiple hash functions. On one hand, if they
are calculated online, HFH requires little additional time if tackling them in parallel. On the other, if
they are pre-computed and stored in dicts to avoid hashing time cost, the multiple hash functions of
HFH demand more storage space. In application, we suggest to pre-compute hashes during offline
training for speedup, and to compute hashing in parallel during online prediction for saving memory
under limited hardware budget.

3.3 PROPERTY ANALYSIS

In this part, we try to depict the properties of our HFH from several aspects to help understanding it,
especially in comparison with HashedNets (Chen et al., 2015a).

Value Collision. It should be noted, both HashedNets and HFH conduct hashing prior to training,
i.e., in a two-phase manner. Consequently, it would be unsatisfactory if hashing collisions happen
among important values. For instance in natural language processing tasks, one may observe wired
results if there are many hashing collisions among embeddings (which form a matrix) of frequent
words, especially when they are not related at all. In the literature, multiple hash functions are known
to perform better than one single function (Azar et al., 1994; Broder & Karlin, 1990; Broder &
Mitzenmacher, 2001). In intuition, when we have multiple hash functions, the items colliding in one
function are hashed differently by other hash functions.

Value Reconstruction. In both HashedNets and HFH, the hashing trick can be viewed as a re-
construction of the original parameter V from w ∈ RK . In this sense, the approach with a lower
reconstruction error is preferred2. Then we have at least the following two observations:

• The maximum number of possible distinct values output by hashing intuitively explains
the modelling capability (Shi et al., 2009). For HashedNets, considering the sign hashing
function ξ(·), we have at most 2K possible distinct values of Eq. (3) to represent elements
in V. In contrast, since there are multiple ordered hashed inputs, HFH has at most (2K)U

possible distinct values of Eq. (4). Note that the memory size K is the same for both.

• The reconstruction error may be difficult to analyzed directly, since the hash-
ing mechanism is trained jointly within the whole network. However, we observe
g
([
ξ1(i, j)wh1(i,j), . . . , ξU (i, j)whU (i,j)

]
; α
)

degenerates to g(ξ1(i, j)wh1(i,j)) if we as-
sign zeros to all entries in α unrelated to the 1st input dimension. Since g(ξ1(i, j)wh1(i,j))
depends only on one single pair of hash functions, it is conceptually equivalent to Hashed-
Nets. Consequently, including HashedNets as a special case, HFH with freely adjustable α
is able to reach a lower reconstruction error to fit the final accuracy better.

2One might argue that there exists redundancy in V, whereas here we could imagine V is already structured
and filled by values with least redundancy.
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Feature Hashing. In line with previous work (Shi et al., 2009; Weinberger et al., 2009), we compare
HashedNets and HFH in terms of feature hashing. For specification clarity, we drop the sign hashing
functions ξ(·) below for both methods, the analysis with which is straightforward by replacing K
hereafter with 2K.

• For HashedNets, one first defines a hash mapping function φ
(1)
i (a), whose k-th element is[

φ
(1)
i (a)

]
k
,

∑
j:h(i,j)=k

aj , for k = 1, . . . ,K. (7)

Thus zi by HashedNets can be computed as the inner product (details c.f. Section 4.3 in
(Chen et al., 2015a))

zi = w>φ
(1)
i (a). (8)

• For HFH, we first define a hash mapping function φ
(2)
i (a). Different from a K-dim output

in Eq. (7), it is of a much larger size KU , with
(∑U

u=1 kuK
(u−1)

)
-th element as[

φ
(2)
i (a)

]∑U
u=1 kuK(u−1)

,
∑

j:h1(i,j)=k1

h2(i,j)=k2
...

hU (i,j)=kU

aj , for ∀u, ku = 1, . . . ,K. (9)

Second, we define vector gα(w) still of length KU , whose
(∑U

u=1 kuK
(u−1)

)
-th entry is

[gα(w)]∑U
u=1 kuK(u−1) , g (wk1

, wk2
, . . . , wkU

; α) , for ∀u, ku = 1, . . . ,K. (10)

Thus zi by HFH can be computed as the following inner product

zi = gα(w)
>
φ

(2)
i (a). (11)

The difference between Eq. (8) and Eq. (11) further explains the above discussion about
“the maximum number of possible distinct values”.

Homology. Efficiency during searching appropriate compression ratios is the most important benefit
brought by the homological property. Particularly, people usually have to search within candidate
compression ratios either heuristically or in a Bayesian manner. The searching procedure becomes
more and more exhaustive as the network depth increases, since usually compression ratios are
various for different (kinds of) layers. For instance, the compression ratios of convolutional and
fully-connected layers in both Han et al. (2015) and Guo et al. (2016) are quite different. In contrast
for HFH, we only need to vary one scalar value K concerning the compression ratio. One may argue
that these methods can adopt a same pruning ratio throughout layers, while preliminary experiments
(not focused on and thus omitted in this paper) indicate equally pruning leads to inferior performances.

4 RELATED WORK

Recent studies have confirmed the redundancy existence in the parameters of deep neural networks.
Denil et al. (2013) decomposed a matrix in a fully-connected layers as the product of two low-rank
matrices, so that the number of parameters decreases linearly as the latent dimensionality decreases.
More structured decompositions Fastfood (Le et al., 2013) and Deep Fried (Yang et al., 2015) were
proposed not only to reduce the number of parameters, but also to speed up matrix multiplications.
Han et al. (2015) and Han et al. (2016) proposed to iterate pruning-retraining during training DNNs,
and used quantization and fine-tuning as a post-processing step. Huffman coding and hardware
implementation were also considered. In order to mostly keep accuracy, the authors suggested
multiple rounds of pruning-retraining. That is, for little accuracy loss, we have to prune slowly
enough and thus suffer from increased training time. More recently, dynamic network surgery was
proposed in (Guo et al., 2016), which achieves state-of-the-art compressions by adopting a dynamic
strategy to adapt the pruning procedure. Again, the most related work to ours is HashedNets (Chen
et al., 2015a), which was then extended in (Chen et al., 2015b) to random hashing in frequency domain
for compressing convolutional neural networks. Either HashedNets or HFH could be combined in
conjunction with other techniques for better compression.
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Extensive studies have been made on constructing and analyzing multiple hash functions, which have
shown better performances over one single hash function (Broder & Karlin, 1990). One multi-hashing
algorithm, d-random scheme (Azar et al., 1994), uses only one hash table but d hash functions, pretty
similar to our settings. One choice alternative to d-random is the d-left algorithm proposed in Broder
& Mitzenmacher (2001), used for improving IP lookups. Hashing algorithms for natural language
processing are also studied in Goyal et al. (2012). Papers (Shi et al., 2009; Weinberger et al., 2009)
investigated feature hashing (a.k.a. the hashing trick), providing useful bounds and feasible results.

5 EXPERIMENTS

We conduct extensive experiments to evaluate HFH on DNN compression, especially in comparison
with HashedNets. Codes for fully reproducibility will be open source in future after necessary
polishment.

5.1 ENVIRONMENT DESCRIPTIONS

Datasets. Five benchmark datasets (Larochelle et al., 2007) are considered here, including (1) the
original MNIST hand-written digit dataset, (2) dataset BG-IMG as a variant to MNIST, (3) binary im-
age classification dataset CONVEX, (4) dataset CIFAR-10, and (5) ImageNet ILSVRC-2012. For
all datasets, we use prespecified training and testing splits. In particular, the original MNIST dataset
has #train=60,000 and #test=10,000, while both BG-IMG and CONVEX have #train=12,000 and
#test=50,000. CIFAR-10 consists of 60k 32×32 color images of 10 object classes, i.e., 6k images
per class, and there are 50k training and 10k testing images, respectively. ImageNet ILSVRC-2012
has 1.2M training images and 50k validation images. Moreover, collected from a commercial search
engine, a large scale dataset with billions of samples is used to learn DNNs for pairwise semantic
ranking. We randomly split out 20% samples from the training data to form the validation set.

Methods and Settings. Chen et al. (2015a) compared HashedNets against several DNN compres-
sion approaches, and showed HashedNets performs consistently the best, including the low-rank
decomposition (Denil et al., 2013). Under the same settings, we compare HFH with HashedNets3

and baseline DNNs without compression. If not defined, all activation functions are chosen as ReLU.

5.2 FEEDFORWARD NNS FOR CLASSIFICATION

Focusing on classification by feedforward NNs, the performances of HFH are tested on MNIST,
textttBG-IMG and CONVEX in the following two scenarios. First, we compare the effects of varying
compression ratio by HFH and HashedNets. Second, we compare different configurations of HFH
itself, including the number U of seeds and the layer of reconstruction network g(·). Hidden layers
within g(·) keep using tanh as activation functions.

5.2.1 VARYING COMPRESSION RATIO

To test robustness, we vary the compression ratio with (1) a fixed virtual network size, and then
with (2) a fixed memory size (i.e., the size of compression space). Three-layer (1 hidden layer) and
five-layer (3 hidden layers) networks are investigated. In experiments, we vary the compression ratio
geometrically within {1, 12 ,

1
4 , . . . ,

1
64}. For HFH, this comparison sticked to use 4 hash functions,

3-layer g(·), and without dual space hashing.

With Virtual Network Size Fixed. The hidden layer for 3-layer nets initializes at 1000 units, and
for 5-layer nets starts at 100 units per layer. As the compression ratio ranges from 1 to 1/64 with a
fixed virtual network size, the memory decreases and it becomes increasingly difficult to preserve the
classification accuracy. The testing errors are shown in Figure 2, where standard neural networks with
equivalent parameter sizes are included in comparison. HFH shows robustly effective compression
against the compression ratios, and persistently produces better prediction accuracy than HashedNets.
It should be noted, even when the compression ratio equals to one, HFH with the reconstruction
network structure is still not equivalent to HashedNets and performs better.

3HashedNets code downloaded from http://www.cse.wustl.edu/∼wenlinchen/project/HashedNets/index.html
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Figure 2: Testing errors by varying compression ratio with a fixed virtual network size.

With Memory Storage Fixed. We change to vary the compression ratio from 1 to 1/64 with a
fixed memory storage size, i.e., the size of the virtual network increases while the number of free
parameters remains unchanged. In this sense, we’d better call it expansion instead of compression.
Both 3-layer and 5-layer nets initialize at 50 units per hidden layer. The testing errors in this scenario
are shown in Figure 3. At all compression (expansion) ratios on each dataset, HFH performs better
than or at least comparably well compared to HashedNets.

Figure 3: Testing errors by varying compression (expansion) ratio with a fixed memory storage.

5.2.2 VARYING CONFIGURATIONS OF HFH

On 3-layer nets with compression ratio 1/8, we vary the configuration dimensions of HFH, including
the number of hash functions (U ), and the structure of layers of the reconstruction network g(·).
Since it is impossible to enumerate all probable choices, U is restricted to vary in {2, 4, 8, 16}. The
structure of g(·) is chosen from 2 ∼ 4 layers, with U ×1, U ×0.5U ×1, U ×U ×0.5U ×1 layerwise
widths, respectively. We denote Ux-Gy as x hash functions and y layers of g(·). Table 1 shows the
performances of HFH with different configurations on MNIST.
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Table 1: Performances on MNIST by various con-
figurations of HFH.

Index Config Test Error(%)

(0) U4-G3 1.32
(1.1) U2-G3 1.42
(1.2) U8-G3 1.39
(1.3) U16-G3 1.40
(2.1) U4-G2 1.34
(2.2) U4-G3 1.28

We summarize key observations below.
First, the series from index (0) to (1.x)
fixes a 3-layer g(·) and varies the number
of hash functions. As listed, more hash
functions do not ensure a better accuracy,
and instead U4-G3 performs the best,
perhaps because too many hash functions
potentially brings too many partial colli-
sions. Second, the series from (0) to (2.x)
fixes the number of hash functions and
varies the layer number in g(·), where
three layers performs the best mainly due
to its strongest representability.

5.3 CONVOLUTIONAL NNS FOR IMAGE CLASSIFICATION

We further evaluate the performances by hashing compression methods on deep convolutional NNs for
image classification. Note that, we treat the convolutional layers same as fully-connected layers during
hashing. A more meticulous alternative could be hashing over CNNs on CIFAR-10 (Krizhevsky &
Hinton, 2009) and ImageNet ILSVRC-2012 datasets are reported here for comparison.

Particularly on CIFAR-10, a traditional CNN model with 3 conv layers and 2 fc layers is trained as
the baseline, which stores roughly 4.8 million parameters and achieves 11.01% top-1 classification
test error. As we vary the compression ratio, again equally over all layers, the top-1 test errors by
HashedNets and HFH are illustrated in Figure 4. As shown, HFH can still achieve a test error at 18%
with just 1 percent memory size of the baseline model, much better than HashedNets.

Figure 4: Performances by compressed con-
volutional NNs on CIFAR-10 data.

Figure 5: Performances for pairwise semantic
ranking. Testing correct-to-wrong pairwise
ranking ratios (the larger the better) are plot-
ted versus the number of training epochs.

Table 2: Performances by AlexNet on ImageNet ILSVRC-2012. Note HashedNet and HFH
are in a same comparable level, holding an equal compression ratio across all layers.

Method Top-1 Test Error(%) Parameters Compression

baseline 42.78% 61.0M 1
HashedNet (Chen et al., 2015a) 61.71% 6.7M 1/9
HashedNet (Chen et al., 2015a) 64.17% 3.45M 1/17.7
HFH (ours) 48.05% 6.7M 1/9
HFH (ours) 51.99% 3.45M 1/17.7

Fastfood 16 (AD) (Yang et al., 2015) 42.90% 16.4M 1/3.7
SVD (Denton et al., 2014) 44.02% 11.9M 1/5
pruning (Han et al., 2015) 42.77% 6.7M 1/9
dynamic surgery (Guo et al., 2016) 43.09% 3.45M 1/17.7

On ImageNet ILSVRC-2012 data, the standard AlexNet model (Krizhevsky et al., 2012) is chosen
as the reference model, which has 61 million parameters across 5 conv layers and 3 fc layers. The top-
1 classification test error by this baseline AlexNet is 42.78%. The current state-of-the-art compression
results on AlexNet are achieved by pruning in (Han et al., 2015) with overall 1/9 compression ratio,
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and dynamic network surgery in (Guo et al., 2016) with overall 1/17.7 compression ratio, which are
obtained by carefully tuning the compression ratios in different layers.

Applying HashedNets to match the above two compression ratios, the performances are much
worse, as listed in Table 2. However, using HFH at the same compression ratios, the test errors are
significantly reduced and even comparable to those by (Han et al., 2015) and (Guo et al., 2016).
Again it is noticeable that: (1) both HashedNets and HFH hold the compression ratios across all
layers equal, and thus the searching time cost is low; (2) the hashing techniques and the pruning
strategies are not mutually exclusive, but provably to be used jointly for a better compression.

5.4 CONVOLUTIONAL NNS FOR PAIRWISE SEMANTIC RANKING

Finally, we evaluate the performance of HFH on semantic learning-to-rank convolutional NNs. The
data are collected from logs of a commercial search engine, with per clicked query-url being a positive
sample and per non-clicked being a negative sample. There are totally around 45 billion samples.
We adopt a deep convolutional structured semantic model similar to (Huang et al., 2013; Shen et al.,
2014), which is of a siamese structure to describe the semantic similarity between a query and the
title of an url. Stochastically for each query, the network is trained to optimize the pairwise ranking
cross entropy for each randomly sampled pair of positive and negative samples.

The performance is evaluated by correct-to-wrong pairwise ranking ratio on testing set. In Figure 5,
we plot the performance by a baseline network as training epoch proceeds. Results by HFH and
HashedNets with 1/4 compression ratio are included for comparison. Still, HFH performs better than
HashedNets throughout the training epochs, and even comparable to the full network baseline that
requires 4 times of memory storage. The deterioration of HashedNets probably comes from many
inappropriate collisions on word embeddings, especially for words of high frequencies.

6 CONCLUSION AND FUTURE WORK

This paper presents a novel homologically functional hashing for neural network compression. Briefly,
after adopting multiple low-cost hash functions to fetch values in a homological compression space,
HFH employs a small reconstruction network to recover each entry in an matrix of the original network.
The compression space is shared throughout all layers, and the reconstruction network is plugged
into the whole network and learned jointly. HFH includes the recently proposed HashedNets (Chen
et al., 2015a) as a degenerated special case. On multiple datasets, HFH demonstrates promisingly
high compression ratios with little loss on prediction accuracy, especially significantly improved
compared with HashedNets. As a simple and effective approach, HFH is expected to be a standard
tool for DNN compression.

As future work, we aim for deeper analysis on the properties and bounds of HFH. More industrial
applications are also expected, especially on mobile devices. Furthermore, HFH might be extended
in a multi-hops hyper-structure. Briefly, imagining w in the compression space plays a virtual role
similar to V, we may adopt the homologically functional hashing structure once again on w, so that
w is still virtual and reconstructed by hashed values from another further compressed space.
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