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ABSTRACT

We present Deep Generalized Canonical Correlation Analysis (DGCCA) – a
method for learning nonlinear transformations of arbitrarily many views of data,
such that the resulting transformations are maximally informative of each other.
While methods for nonlinear two-view representation learning (Deep CCA, (An-
drew et al., 2013)) and linear many-view representation learning (Generalized
CCA (Horst, 1961)) exist, DGCCA is the first CCA-style multiview representation
learning technique that combines the flexibility of nonlinear (deep) representation
learning with the statistical power of incorporating information from many inde-
pendent sources, or views. We present the DGCCA formulation as well as an
efficient stochastic optimization algorithm for solving it. We learn DGCCA repre-
sentations on two distinct datasets for three downstream tasks: phonetic transcrip-
tion from acoustic and articulatory measurements, and recommending hashtags
and friends on a dataset of Twitter users. We find that DGCCA representations
soundly beat existing methods at phonetic transcription and hashtag recommenda-
tion, and in general perform no worse than standard linear many-view techniques.

1 INTRODUCTION

Multiview representation learning refers to settings where one has access to many “views” of data,
at train time. Views often correspond to different modalities or independent information about ex-
amples: a scene represented as a series of audio and image frames, a social media user characterized
by the messages they post and who they friend, or a speech utterance and the configuration of the
speaker’s tongue. Multiview techniques learn a representation of data that captures the sources of
variation common to all views.

Multiview representation techniques are attractive for intuitive reasons. A representation that is able
to explain many views of the data is more likely to capture meaningful variation than a representation
that is a good fit for only one of the views. They are also attractive for the theoretical reasons. For
example, Anandkumar et al. (2014) show that certain classes of latent variable models, such as
Hidden Markov Models, Gaussian Mixture Models, and Latent Dirichlet Allocation models, can be
optimally learned with multiview spectral techniques. Representations learned from many views
will generalize better than one, since the learned representations are forced to accurately capture
variation in all views at the same time (Sridharan & Kakade, 2008) – each view acts as a regularizer,
constraining the possible representations that can be learned. These methods are often based on
canonical correlation analysis (CCA), a classical statisical technique proposed by Hotelling (1936).

In spite of encouraging theoretical guarantees, multiview learning techniques cannot freely model
nonlinear relationships between arbitrarily many views. Either they are able to model variation
across many views, but can only learn linear mappings to the shared space (Horst, 1961), or they
simply cannot be applied to data with more than two views using existing techniques based on kernel
CCA (Hardoon et al., 2004) and deep CCA (Andrew et al., 2013).
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Here we present Deep Generalized Canonical Correlation Analysis (DGCCA). Unlike previous
correlation-based multiview techniques, DGCCA learns a shared representation from data with ar-
bitrarily many views and simultaneously learns nonlinear mappings from each view to this shared
space. The only (mild) constraint is that these nonlinear mappings from views to shared space must
be differentiable. Our main methodological contribution is the derivation of the gradient update for
the Generalized Canonical Correlation Analysis (GCCA) objective (Horst, 1961). As a practical
contribution, we have also released an implementation of DGCCA1.

We also evaluate DGCCA-learned representations on two distinct datasets and three downstream
tasks: phonetic transcription from aligned speech and articulatory data, and Twitter hashtag and
friend recommendation from six text and network feature views. We find that downstream perfor-
mance of DGCCA representations is ultimately task-dependent. However, we find clear gains in
performance from DGCCA for tasks previously shown to benefit from representation learning on
more than two views, with up to 4% improvement in heldout accuracy for phonetic transcription.

The paper is organized as follows. We review prior work in Section 2. In Section 3 we describe
DGCCA. Empirical results on a synthetic dataset, and three downstream tasks are presented in
Section 4. In Section 5, we describe the differences between DGCCA and other non-CCA-based
multiview learning work and conclude with future directions in Section 6.

2 PRIOR WORK

Some of most successful techniques for multiview representation learning are based on canonical
correlation analysis (Wang et al., 2015a;b) and its extension to the nonlinear and many view settings,
which we describe in this section. For other related multiview learning techniques, see Section 5.

2.1 CANONICAL CORRELATION ANALYSIS (CCA)

Canonical correlation analysis (CCA) (Hotelling, 1936) is a statistical method that finds maximally
correlated linear projections of two random vectors and is a fundamental multiview learning tech-
nique. Given two input views, X1 ∈ Rd1 and X2 ∈ Rd2 , with covariance matrices, Σ11 and Σ22,
respectively, and cross-covariance matrix, Σ12, CCA finds directions that maximize the correlation
between them:

(u∗1, u
∗
2) = argmax

u1∈Rd1 ,u2∈Rd2

corr(u>1 X1, u
>
2 X2) = argmax

u1∈Rd1 ,u2∈Rd2

u>1 Σ12u2√
u>1 Σ11u1u>2 Σ22u2

Since this formulation is invariant to affine transformations of u1 and u2, we can write it as the
following constrained optimization formulation:

(u∗1, u
∗
2) = argmax

u>1 Σ11u1=u>2 Σ22u2=1

u>1 Σ12u2 (1)

This technique has two limitations that have led to significant extensions: First, it is limited to
learning representations that are linear transformations of the data in each view, and second, it can
only leverage two input views.

2.2 DEEP CANONICAL CORRELATION ANALYSIS (DCCA)

Deep CCA (DCCA) (Andrew et al., 2013) is an extension of CCA that addresses the first limitation
by finding maximally linearly correlated non-linear transformations of two vectors. It does this by
passing each of the input views through stacked non-linear representations and performing CCA on
the outputs.

Let us use f1(X1) and f2(X2) to represent the network outputs. The weights, W1 and W2, of these
networks are trained through standard backpropagation to maximize the CCA objective:

(u∗1, u
∗
2,W

∗
1 ,W

∗
2 ) = argmax

u1,u2

corr(u>1 f1(X1), u>2 f2(X2))

DCCA is still limited to only 2 input views.
1See https://bitbucket.org/adrianbenton/dgcca-py3 for implementation of DGCCA

along with data from the synthetic experiments.
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2.3 GENERALIZED CANONICAL CORRELATION ANALYSIS (GCCA)

Another extension of CCA, which addresses the limitation on the number of views, is Generalized
CCA (GCCA) (Horst, 1961). It corresponds to solving the optimization problem in Equation (2),
of finding a shared representation G of J different views, where N is the number of data points,
dj is the dimensionality of the jth view, r is the dimensionality of the learned representation, and
Xj ∈ Rdj×N is the data matrix for the jth view.2

minimize
Uj∈Rdj×r,G∈Rr×N

J∑
j=1

‖G− U>j Xj‖2F

subject to GG> = Ir

(2)

Solving GCCA requires finding an eigendecomposition of an N ×N matrix, which scales quadrat-
ically with sample size and leads to memory constraints. Unlike CCA and DCCA, which only learn
projections or transformations on each of the views, GCCA also learns a view-independent repre-
sentation G that best reconstructs all of the view-specific representations simultaneously. The key
limitation of GCCA is that it can only learn linear transformations of each view.

3 DEEP GENERALIZED CANONICAL CORRELATION ANALYSIS (DGCCA)

In this section, we present deep GCCA (DGCCA): a multiview representation learning technique
that benefits from the expressive power of deep neural networks and can also leverage statistical
strength from more than two views in data, unlike Deep CCA which is limited to only two views.
More fundamentally, deep CCA and deep GCCA have very different objectives and optimization
problems, and it is not immediately clear how to extend deep CCA to more than two views.

DGCCA learns a nonlinear map for each view in order to maximize the correlation between the
learnt representations across views. In training, DGCCA passes the input vectors in each view
through multiple layers of nonlinear transformations and backpropagates the gradient of the GCCA
objective with respect to network parameters to tune each view’s network, as illustrated in Figure 1.
The objective is to train networks that reduce the GCCA reconstruction error among their outputs.
At test time, new data can be projected by feeding them through the learned network for each view.

Figure 1: A schematic of DGCCA with deep networks for J views.

We now formally define the DGCCA problem. We consider J views in our data, and let Xj ∈
Rdj×N denote the jth input matrix.3 The network for the jth view consists of Kj layers. Assume,
for simplicity, that each layer in the jth view network has cj units with a final (output) layer of size
oj . The output of the kth layer for the jth view is hjk = s(W j

kh
j
k−1), where s : R → R is a

nonlinear activation function and W j
k ∈ Rck×ck−1 is the weight matrix for the kth layer of the jth

view network. We denote the output of the final layer as fj(Xj).

2Horst’s original presentation of GCCA is in a very different form from the one used here but has been
shown to be equivalent (Kettenring, 1971).

3Our notation for this section closely follows that of Andrew et al. (2013)
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DGCCA can be expressed as the following optimization problem: find weight matrices W j =

{W j
1 , . . . ,W

j
Kj
} defining the functions fj , and linear transformations Uj (of the output of the jth

network), for j = 1, . . . , J , that
minimize

Uj∈Roj×r,G∈Rr×N

J∑
j=1

‖G− U>j fj(Xj)‖2F

subject to GG> = Ir

, (3)

where G ∈ Rr×N is the shared representation we are interested in learning.

Optimization: We solve the DGCCA optimization problem using stochastic gradient descent
(SGD) with mini-batches. In particular, we estimate the gradient of the DGCCA objective in Prob-
lem 3 on a mini-batch of samples that is mapped through the network and use back-propagation
to update the weight matrices, W j’s. However, note that the DGCCA optimization problem is a
constrained optimization problem. It is not immediately clear how to perform projected gradient de-
scent with back-propagation. Instead, we characterize the objective function of the GCCA problem
at an optimum, and compute its gradient with respect to the inputs to GCCA, i.e. with respect to the
network outputs. These gradients are then back-propagated through the network to update W j’s.

Although the relationship between DGCCA and GCCA is analogous to the relationship between
DCCA and CCA, derivation of the GCCA objective gradient with respect to the network output
layers is non-trivial. The main difficulty stems from the fact that there is no natural extension of the
correlation objective to more than two random variables. Instead, we consider correlations between
every pair of views, stack them in a J × J matrix and maximize a certain matrix norm for that
matrix. For GCCA, this suggests an optimization problem that maximizes the sum of correlations
between a shared representation and each view. Since the objective as well as the constraints of the
generalized CCA problem are very different from that of the CCA problem, it is not immediately
obvious how to extend Deep CCA to Deep GCCA.

Next, we show a sketch of the gradient derivation, the full derivation is given in appendix A. It is
straightforward to show that the solution to the GCCA problem is given by solving an eigenvalue
problem. In particular, defineCjj = f(Xj)f(Xj)

> ∈ Roj×oj , to be the scaled empirical covariance
matrix of the jth network output, and Pj = f(Xj)

>C−1
jj f(Xj) ∈ RN×N be the corresponding

projection matrix that whitens the data; note that Pj is symmetric and idempotent. We define M =∑J
j=1 Pj . Since each Pj is positive semi-definite, so is M . Then, it is easy to check that the rows of

G are the top r (orthonormal) eigenvectors of M , and Uj = C−1
jj f(Xj)G

>. Thus, at the minimum
of the objective, we can rewrite the reconstruction error as follows:

J∑
j=1

‖G− U>j fj(Xj)‖2F =

J∑
j=1

‖G−Gfj(Xj)
>C−1

jj fj(Xj)‖2F = rJ − Tr(GMG>)

Minimizing the GCCA objective (w.r.t. the weights of the neural networks) means maximizing
Tr(GMG>), which is the sum of eigenvalues L =

∑r
i=1 λi(M). Taking the derivative of L with

respect to each output layer fj(Xj) we have:
∂L

∂fj(Xj)
= 2UjG− 2UjU

>
j fj(Xj)

Thus, the gradient is the difference between the r-dimensional auxiliary representation G embedded
into the subspace spanned by the columns of Uj (the first term) and the projection of the actual
data in fj(Xj) onto the said subspace (the second term). Intuitively, if the auxiliary representation
G is far away from the view-specific representation U>j fj(Xj), then the network weights should
receive a large update. Computing the gradient descent update has time complexity O(JNrd),
where d = max(d1, d2, . . . , dJ) is the largest dimensionality of the input views.

4 EXPERIMENTS

4.1 SYNTHETIC MULTIVIEW MIXTURE MODEL

In this section, we apply DGCCA to a small synthetic data set to show how it preserves the generative
structure of data sampled from a multiview mixture model. The data we use for this experiment are
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plotted in Figure 2. Points that share the same color across different views are sampled from the
same mixture component.

Figure 2: Synthetic data used in in Section 4.1 experiments.
Importantly, in each view, there is no linear transformation of the data that separates the two mixture
components, in the sense that the generative structure of the data could not be exploited by a linear
model. This point is reinforced by Figure 3(a), which shows the two-dimensional representation G
learned by applying (linear) GCCA to the data in Figure 2. The learned representation completely
loses the structure of the data.

(a) GCCA (b) DGCCA
Figure 3: The matrix G learned from applying (linear) GCCA or DGCCA to the data in Figure 2.

We can contrast the failure of GCCA to preserve structure with the result of applying DGCCA; in this
case, the input neural networks had three hidden layers with ten units each with weights randomly
initialized. We plot the representation G learned by DGCCA in Figure 3 (b). In this representation,
the mixture components are easily separated by a linear classifier; in fact, the structure is largely
preserved even after projection onto the first coordinate of G.

It is also illustrative to consider the view-specific representations learned by DGCCA, that is, to
consider the outputs of the neural networks that were trained to maximize the GCCA objective. We
plot the representations in Figure 4. For each view, we have learned a nonlinear mapping that does
remarkably well at making the mixture components linearly separable. Recall that absolutely no
direct supervision was given about which mixture component each point was generated from. The
only training signals available to the networks were the reconstruction errors between the network
outputs and the learned representation G.

Figure 4: Outputs of the trained input neural networks in Section 4.1 applied to the data in Figure 2.

4.2 PHONEME CLASSIFICATION

In this section, we discuss experiments on the University of Wisconsin X-ray Microbeam Database
(XRMB) (Westbury, 1994). XRMB contains acoustic and articulatory recordings as well as phone-
mic labels. We present phoneme classification results on the acoustic vectors projected using DCCA,
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GCCA, and DGCCA. We set acoustic and articulatory data as the two views and phoneme labels as
the third view for GCCA and DGCCA. For classification, we run K-nearest neighbor classification
(Cover & Hart, 1967) on the projected result.

4.2.1 DATA

We use the same train/tune/test split of the data as Arora & Livescu (2014). To limit experiment
runtime, we use a subset of speakers for our experiments. We run a set of cross-speaker experiments
using the male speaker JW11 for training and two splits of JW24 for tuning and testing. We also
perform parameter tuning for the third view with 5-fold cross validation using a single speaker,
JW11. For both experiments, we use acoustic and articulatory measurements as the two views in
DCCA. Following the pre-processing in Andrew et al. (2013), we get 273 and 112 dimensional
feature vectors for the first and second view respectively. Each speaker has ∼50,000 frames. For
the third view in GCCA and DGCCA, we use 39-dimensional one-hot vectors corresponding to the
labels for each frame, following Arora & Livescu (2014).

4.2.2 PARAMETERS

We use a fixed network size and regularization for the first two views, each containing three hidden
layers with sigmoid activation functions. Hidden layers for the acoustic view were all width 1024,
and layers in the articulatory view all had width 512 units. L2 penalty constants of 0.0001 and
0.01 were used to train the acoustic and articulatory view networks, respectively. The output layer
dimension of each network is set to 30 for DCCA and DGCCA. For the 5-fold speaker-dependent
experiments, we performed a grid search for the network sizes in {128, 256, 512, 1024} and covari-
ance matrix regularization in {10−2, 10−4, 10−6, 10−8} for the third view in each fold. We fix the
hyperparameters for these experiments optimizing the networks with minibatch stochastic gradient
descent with a step size of 0.005, batch size of 2000, and no learning decay or momentum. The third
view neural network had an L2 penalty of 0.0005.

4.2.3 RESULTS

As we show in Table 1, DGCCA improves upon both the linear multiview GCCA and the non-linear
2-view DCCA for both the cross-speaker and speaker-dependent cross-validated tasks.

In addition to accuracy, we examine the reconstruction error, i.e. the objective in Equation 3, ob-
tained from the objective in GCCA and DGCCA.4 This sharp improvement in reconstruction error
shows that a non-linear algorithm can better model the data.

In this experimental setup, DCCA under-performs the baseline of simply running KNN on the orig-
inal acoustic view. Prior work considered the output of DCCA stacked on to the central frame of the
original acoustic view (39 dimensions). This poor performance, in the absence of original features,
indicates that it was not able to find a more informative projection than original acoustic features
based on correlation with the articulatory view within the first 30 dimensions.

Table 1: KNN phoneme classification performance

CROSS-SPEAKER SPEAKER-DEPENDENT

DEV TEST REC DEV TEST REC
METHOD ACC ACC ERROR ACC ACC ERROR

MFCC 48.89 49.28 66.27 66.22
DCCA 45.40 46.06 65.88 65.81
GCCA 49.59 50.18 40.67 69.52 69.78 40.39
DGCCA 53.78 54.22 35.89 72.62 72.33 20.52

To highlight the improvements of DGCCA over GCCA, Figure 5 presents a subset of the the con-
fusion matrices on speaker-dependent test data. In particular, we observe large improvements in the
classification of D, F , K, SH , V and Y . GCCA outperforms DGCCA for UH and DH . These
matrices also highlight the common misclassifications that DGCCA improves upon. For instance,

4For 2-view experiments, correlation is a common metric to compare performance. Since that metric is
unavailable in a multiview setting, reconstruction error is the analogue.
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(a) GCCA (b) DGCCA
Figure 5: The confusion matrix for speaker-dependent GCCA and DGCCA

DGCCA rectifies the frequent misclassification of V as P , R and B by GCCA. In addition, com-
monly incorrect classification of phonemes such as S and T is corrected by DGCCA, which enables
better performance on other voiceless consonants such as like F , K and SH . Vowels are classified
with almost equal accuracy by both the methods.

4.3 TWITTER USER HASHTAG & FRIEND RECOMMENDATION

Linear multiview techniques are effective at recommending hashtag and friends for Twitter users
(Benton et al., 2016). In this experiment, six views of a Twitter user were constructed by applying
principal component analysis (PCA) to the bag-of-words representations of (1) tweets posted by the
ego user, (2) other mentioned users, (3) their friends, and (4) their followers, as well as one-hot
encodings of the local (5) friend and (6) follower networks. We learn and evaluate DGCCA models
on identical training, development, and test sets as Benton et al. (2016), and evaluate the DGCCA
representations on macro precision at 1000 (P@1000) and recall at 1000 (R@1000) for the hashtag
and friend recommendation tasks described there.

We trained 40 different DGCCA model architectures, each with identical architectures across views,
where the width of the hidden and output layers, c1 and c2, for each view are drawn uniformly from
[10, 1000], and the auxiliary representation width r is drawn uniformly from [10, c2]5. All networks
used ReLUs as activation functions, and were optimized with Adam (Kingma & Ba, 2014) for 200
epochs6. Networks were trained on 90% of 102,328 Twitter users, with 10% of users used as a
tuning set to estimate heldout reconstruction error for model selection. We report development and
test results for the best performing model on the downstream task development set. Learning rate
was set to 10−4 with an L1 and L2 regularization constants of 0.01 and 0.001 for all weights 7.

Table 2: Dev/test performance at Twitter friend and hashtag recommendation tasks.

FRIEND HASHTAG
ALGORITHM P@1000 R@1000 P@1000 R@1000

PCA[TEXT+NET] 0.445/0.439 0.149/0.147 0.011/0.008 0.312/0.290
GCCA[TEXT] 0.244/0.249 0.080/0.081 0.012/0.009 0.351/0.326
GCCA[TEXT+NET] 0.271/0.276 0.088/0.089 0.012/0.010 0.359/0.334
DGCCA[TEXT+NET] 0.297/0.268 0.099/0.090 0.013/0.010 0.385/0.373

WGCCA[TEXT] 0.269/0.279 0.089/0.091 0.012/0.009 0.357/0.325
WGCCA[TEXT+NET] 0.376/0.364 0.123/0.120 0.013/0.009 0.360/0.346

Table 2 displays the performance of DGCCA compared to PCA[text+net] (PCA applied to con-
catenation of view feature vectors), linear GCCA applied to the four text views, [text], and all

5We chose to restrict ourselves to a single hidden layer with non-linear activation and identical architec-
tures for each view, so as to avoid a fishing expedition. If DGCCA is appropriate for learning Twitter user
representations, then a good architecture should require little exploration.

6From preliminary experiments, we found that Adam pushed down reconstruction error more quickly than
SGD with momentum, and that ReLUs were easier to optimize than sigmoid activations.

7This setting of regularization constants led to low reconstruction error in preliminary experiments.
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views, [text+net], along with a weighted GCCA variant (WGCCA). We learned PCA, GCCA, and
WGCCA representations of width r ∈ {10, 20, 50, 100, 200, 300, 400, 500, 750, 1000}, and report
the best performing representations on the development set.

There are several points to note: First is that DGCCA outperforms linear methods at hashtag rec-
ommendation by a wide margin in terms of recall. This is exciting because this task was shown to
benefit from incorporating more than just two views from Twitter users. These results suggest that
a nonlinear transformation of the input views can yield additional gains in performance. In addi-
tion, WGCCA models sweep over every possible weighting of views with weights in {0, 0.25, 1.0}.
WGCCA has a distinct advantage in that the model is allowed to discriminatively weight views
to maximize downstream performance. The fact that DGCCA is able to outperform WGCCA at
hashtag recommendation is encouraging, since WGCCA has much more freedom to discard unin-
formative views, whereas the DGCCA objective forces networks to minimize reconstruction error
equally across all views. As noted in Benton et al. (2016), only the friend network view was useful
for learning representations for friend recommendation (corroborated by performance of PCA ap-
plied to friend network view), so it is unsurprising that DGCCA when applied to all views cannot
compete with WGCCA representations learned on the single useful friend network view8.

5 OTHER MULTIVIEW LEARNING WORK

There has been strong work outside of CCA-related methods to combine nonlinear representation
and learning from multiple views. Kumar et al. (2011) elegantly outlines two main approaches these
methods take to learn a joint representation from many views: either by 1) explicitly maximizing
pairwise similarity/correlation between views or by 2) alternately optimizing a shared, “consen-
sus” representation and view-specific transformations to maximize similarity. Models such as the
siamese network proposed by Masci et al. (2014), fall in the former camp, minimizing the squared
error between embeddings learned from each view, leading to a quadratic increase in the terms of
the loss function size as the number of views increase. Rajendran et al. (2015) extend Correlational
Neural Networks (Chandar et al., 2015) to many views and avoid this quadratic explosion in the
loss function by only computing correlation between each view embedding and the embedding of a
“pivot” view. Although this model may be appropriate for tasks such as multilingual image caption-
ing, there are many datasets where there is no clear method of choosing a pivot view. The DGCCA
objective does not suffer from this quadratic increase w.r.t. the number of views, nor does it require
a privileged pivot view, since the shared representation is learned from the per-view representations.

Approaches that estimate a “consensus” representation, such as the multiview spectral clustering ap-
proach in Kumar et al. (2011), typically do so by an alternating optimization scheme which depends
on a strong initialization to avoid bad local optima. The GCCA objective our work builds on is par-
ticularly attractive, since it admits a globally optimal solution for both the view-specific projections
U1 . . . UJ , and the shared representation G by singular value decomposition of a single matrix: a
sum of the per-view projection matrices. Local optima arise in the DGCCA objective only because
we are also learning nonlinear transformations of the input views. Nonlinear multiview methods
often avoid learning these nonlinear transformations by assuming that a kernel or graph Laplacian
(e.g. in multiview clustering) is given (Kumar et al., 2011; Xiaowen, 2014; Sharma et al., 2012).

6 CONCLUSION

We present DGCCA, a method for non-linear multiview representation learning from an arbitrary
number of views. We show that DGCCA clearly outperforms prior work when using labels as a
third view (Andrew et al., 2013; Arora & Livescu, 2014; Wang et al., 2015c), and can successfully
exploit multiple views to learn user representations useful for downstream tasks such as hashtag
recommendation for Twitter users. To date, CCA-style multiview learning techniques were either
restricted to learning representations from no more than two views, or strictly linear transformations
of the input views. This work overcomes these limitations.

8The performance of WGCCA suffers compared to PCA because whitening the friend network data ignores
the fact that the spectrum of the decays quickly with a long tail – the first few principal components made up a
large portion of the variance in the data, but it was also important to compare users based on other components.
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APPENDIX A DERIVING THE GCCA OBJECTIVE GRADIENT

In order to train the neural networks in DGCCA, we need to compute the gradient of the GCCA
objective with respect to any one of its input views. This gradient can then be backpropagated
through the input networks to derive updates for the network weights.

Let N be the number of data points and J the number of views. Let Yj ∈ RcjK×N be the data
matrix representing the output of the jth neural network, i.e. Yj = fj(Xj), where cjK is the number
of neurons in the output layer of the jth network. Then, GCCA can be written as the following
optimization problem, where r is the dimensionality of the learned auxiliary representation:

minimize
Uj∈Rc

j
K
×r,G∈Rr×N

J∑
j=1

‖G− U>j Yj‖2F

subject to GG> = Ir

It can be shown that the solution is found by solving a certain eigenvalue problem. In particular,
define Cjj = YjY

>
j ∈ RcjK×c

j
K , Pj = Y >j C

−1
jj Yj (note that Pj is symmetric and idempotent), and

M =
∑J

j=1 Pj (since each Pj is psd, so is M ). Then the rows of G are the top r (orthonormal)
eigenvectors of M , and Uj = C−1

jj YjG
>. Thus, at the minima of the objective, we can rewrite the

reconstruction error as follows:
J∑

j=1

‖G− U>j Yj‖2F =

J∑
j=1

‖G−GY >j C−1
jj Yj‖

2
F

=

J∑
j=1

‖G(IN − Pj)‖2F

=

J∑
j=1

Tr[G(IN − Pj)G
>]

=

J∑
j=1

Tr(Ir)− Tr(GMG>)

= Jr − Tr(GMG>)

Note that we can write the rank-1 decomposition of M as
∑N

k=1 λkgkg
>
k . Furthermore, since the

kth row of G is gk, and since the matrix product Ggk = êk,

GMG> =

N∑
k=1

λkGgk(Ggk)> =

r∑
k=1

λkêkê
>
k

But this is just an N × N diagonal matrix containing the top r eigenvalues of M , so we can write
the GCCA objective as

Jr −
r∑

i=1

λi(M)

Thus, minimizing the GCCA objective (w.r.t. the weights of the neural nets) means maximizing the
sum of eigenvalues

∑r
i=1 λi(M), which we will henceforth denote by L.

Now, we will derive an expression for ∂L
∂Yj

for any view Yj . First, by the chain rule, and using the

fact that ∂L
∂M = G>G (Petersen & Pedersen, 2012),

∂L

∂(Yj)ab
=

N∑
c,d=1

∂L

∂Mcd

∂Mcd

∂(Yj)ab

=

N∑
c,d=1

(G>G)cd
∂Mcd

∂(Yj)ab

10
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Since M =
∑J

j′=1 Pj′ , and since the only projection matrix that depends on Yj is Pj , ∂M
∂Yj

=
∂Pj

∂Yj
.

Since Pj = Y >j C
−1
jj Yj ,

(Pj)cd =

cjK∑
k,`=1

(Yj)kc(C
−1
jj )k`(Yj)`d

Thus, by the product rule,

∂(Pj)cd
∂(Yj)ab

= δcb

cjK∑
`=1

(Yj)`d(C−1
jj )a` +

δdb

cjK∑
k=1

(Yj)kc(C
−1
jj )ka +

cjK∑
k,`=1

(Yj)kc(Yj)`d
∂(C−1

jj )k`

∂(Yj)ab

= δcb(C
−1
jj Yj)ad + δdb(C

−1
jj Yj)ac

+

cjK∑
k,`=1

(Yj)kc(Yj)`d
∂(C−1

jj )k`

∂(Yj)ab

The derivative in the last term can also be computed using the chain rule:

∂(C−1
jj )k`

∂(Yj)ab
=

N∑
m,n=1

∂(C−1
jj )k`

∂(Cjj)mn

∂(Cjj)mn

∂(Yj)ab

= −
N∑

m,n=1

{
(C−1

jj )km(C−1
jj )n`

[δam(Yj)nb + δan(Yj)mb]
}

= −
N∑

n=1

(C−1
jj )ka(C−1

jj )n`(Yj)nb

−
N∑

m=1

(C−1
jj )km(C−1

jj )a`(Yj)mb

= −(C−1
jj )ka(C−1

jj Yj)`b

− (C−1
jj )a`(C

−1
jj Yj)kb

Substituting this into the expression for ∂(Pj)cd
∂(Yj)ab

and simplifying matrix products, we find that

∂(Pj)cd
∂(Yj)ab

= δcb(C
−1
jj Yj)ad + δdb(C

−1
jj Yj)ac

− (C−1
jj Yj)ac(Y

>
j C

−1
jj Yj)bd

− (C−1
jj Yj)ad(Y >j C

−1
jj Yj)bc

= (IN − Pj)cb(C
−1
jj Yj)ad +

(IN − Pj)db(C
−1
jj Yj)ac

11
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Finally, substituting this into our expression for ∂L
∂(Yj)ab

, we find that

∂L

∂(Yj)ab
=

N∑
c,d=1

(G>G)cd(IN − Pj)cb(C
−1
jj Yj)ad

+

N∑
c,d=1

(G>G)cd(IN − Pj)db(C
−1
jj Yj)ac

= 2[C−1
jj YjG

>G(IN − Pj)]ab

Therefore,
∂L

∂Yj
= 2C−1

jj YjG
>G(IN − Pj)

But recall that Uj = C−1
jj YjG

>. Using this, the gradient simplifies as follows:

∂L

∂Yj
= 2UjG− 2UjU

>
j Yj

Thus, the gradient is the difference between the r-dimensional auxiliary representation G embedded
into the subspace spanned by the columns of Uj (the first term) and the projection of the network
outputs in Yj = fj(Xj) onto said subspace (the second term). Intuitively, if the auxiliary repre-
sentation G is far away from the view-specific representation U>j fj(Xj), then the network weights
should receive a large update.
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APPENDIX B DGCCA OPTIMIZATION PSEUDOCODE

Algorithm 1 contains the pseudocode for the DGCCA optimization algorithm. In practice we use
stocastic optimization with minibatches, following Wang et al. (2015c).

Algorithm 1 Deep Generalized CCA

Input: multiview data: X1, X2, . . . , XJ ,
number of iterations T , learning rate η

Output: O1, O2, . . . , OJ

Initialize weights W1,W2, . . . ,WJ

for iteration t = 1, 2, . . . , T do
for each view j = 1, 2, . . . , J do
Oj ← forward pass of Xj with weights Wj

mean-center Oj

end for
U1, . . . , UJ , G← gcca(O1, . . . , OJ )
for each view j = 1, 2, . . . , J do
∂F/∂Oj ← UjU

>
j Oj − UjG

∇Wj ← backprop(∂F/∂Oj ,Wj)
Wj ←Wj − η∇Wj

end for
end for
for each view j = 1, 2, . . . , J do
Oj ← forward pass of Xj with weights Wj

mean-center Oj

end for
U1, . . . , UJ , G← gcca(O1, . . . , OJ )
for each view j = 1...J do
Oj ← U>j Oj

end for

13
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APPENDIX C RECONSTRUCTION ERROR AND DOWNSTREAM
PERFORMANCE

Figure 6: Tuning reconstruction error against Recall at 1000 for the hashtag prediction task. Each
point corresponds to a different setting of hyperparameters.

CCA methods are typically evaluated intrinsically by the amount of correlation captured, or recon-
struction error. These measures are dependent on the width of the shared embeddings and view-
specific output layers, and do not necessarily predict downstream performance. Although recon-
struction error cannot solely be relied on for model selection for a downstream task, we found that
it was a useful as a signal to weed out very poor models. Figure 6 shows the reconstruction error
against hashtag prediction Recall at 1000 for an initial grid search of DGCCA hyperparameters.
Models with tuning reconstruction error greater than 103 can safely be ignored, while there is some
variability in the performance of models with achieving lower error.

Since a DGCCA model with high reconstruction error suggests that the views do not agree with each
other at all, it makes sense that the shared embedding will likely be noisy, whereas a relatively lowly
reconstruction error suggests that the transformed views have converged to a stable solution.
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