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ABSTRACT

We propose a novel architecture for k-shot classification on the Omniglot dataset.
Building on prototypical networks, we extend their architecture to what we call
Gaussian prototypical networks. Prototypical networks learn a map between im-
ages and embedding vectors, and use their clustering for classification. In our
model, a part of the encoder output is interpreted as a confidence region esti-
mate about the embedding point, and expressed as a Gaussian covariance matrix.
Our network then constructs a direction and class dependent distance metric on
the embedding space, using uncertainties of individual data points as weights.
We show that Gaussian prototypical networks are a preferred architecture over
vanilla prototypical networks with an equivalent number of parameters. We report
results consistent with state-of-the-art performance in 1-shot and 5-shot classi-
fication both in 5-way and 20-way regime on the Omniglot dataset. We explore
artificially down-sampling a fraction of images in the training set, which improves
our performance. Our experiments therefore lead us to hypothesize that Gaussian
prototypical networks might perform better in less homogeneous, noisier datasets,
which are commonplace in real world applications.

1 INTRODUCTION

1.1 FEW-SHOT LEARNING

Humans are able to learn to recognize new object categories on a single or small number of exam-
ples. This has been demonstrated in a wide range of activities from hand-written character recog-
nition (Lake et al., 2011), and motor control (Braun et al., 2009), to acquisition of high level con-
cepts (Lake et al., 2015). Replicating this kind of behavior in machines is the motivation for studying
few-shot learning.

Parametric deep learning has been performing well in settings with abundance of data. In general,
deep learning models have a very high functional expressivity and capacity, and rely on being slowly,
iteratively trained in a supervised regime. An influence of a particular example within the training
set is therefore small, as the training is designed to capture the general structure of the dataset. This
prevents rapid introduction of new classes after training. (Santoro et al., 2016)

In contrast, few-shot learning requires very fast adaptation to new data. In particular, k-shot clas-
sification refers to a regime where classes unseen during training must be learned using k labeled
examples. Non-parametric models, such as k-nearest neighbors (kNN) do not overfit, however, their
performance strongly depends on the choice of distance metric. (Atkeson et al., 1997) Architectures
combining parametric and non-parametric models, as well as matching training and test conditions,
have been performing well on k-shot classification recently.

1.2 GAUSSIAN PROTOTYPICAL NETWORKS

In this paper we develop a novel architecture based on prototypical networks used in Snell et al.
(2017), and train it and test it on the Omniglot dataset (Lake et al., 2015). Vanilla prototypical
networks map images into embedding vectors, and use their clustering for classification. They
divide a batch into support, and query images, and use the embedding vectors of the support set to

1



Under review as a conference paper at ICLR 2018

define a class prototype – a typical embedding vector for a given class. Proximity to these is then
used for classification of query images.

Our model, which we call the Gaussian prototypical network, maps an image into an embedding
vector, and an estimate of the image quality. Together with the embedding vector, a confidence
region around it is predicted, characterized by a Gaussian covariance matrix. Gaussian prototypical
networks learn to construct a direction and class dependent distance metric on the embedding space.
We show that our model is a preferred way of using additional trainable parameters compared to
increasing dimensionality of vanilla prototypical networks.

Our goal is to show that by allowing our model to express its confidence in individual data points,
we reach better results. We also experiment with intentionally corrupting parts of our dataset in
order to explore the extendability of our method to noisy, inhomogeneous real world datasets, where
weighting individual data points might be crucial for performance.

We report, to our knowledge, performance consistent with state-of-the-art in 1-shot and 5-shot clas-
sification both in 5-way and 20-way regime on the Omniglot dataset. (Lake et al., 2015) By studying
the response of our model to partially down-sampled data, we hypothesize that its advantage might
be more significant in lower quality, inhomogeneous datasets.

This paper is structured as follows: We describe related work in Section 2. We then proceed to
introduce our methods in Section 3. The episodic training scheme is also presented there. We discuss
the Omniglot dataset in Section 4, and our experiments in Section 5. Finally, our conclusions are
presented in Section 6.

2 RELATED WORK

Non-parametric models, such as k-nearest neighbors (kNN), are ideal candidates for few-shot clas-
sifiers, as they allow for incorporation of previously unseen classes after training. However, they
are very sensitive to the choice of distance metric. (Atkeson et al., 1997) Using the distance in the
space of inputs directly (e.g. raw pixel values) does not produce high accuracies, as the connection
between the image class and its pixels is very non-linear.

A straightforward modification in which a metric embedding is learned and then used for kNN
classification has yielded good results, as demonstrated by Goldberger et al. (2005), Weinberger &
Saul (2009), Kulis (2013), and Bellet et al. (2013). An approach using matching networks has been
proposed in Vinyals et al. (2016), in effect learning a distance metric between pairs of images. A
noteworthy feature of the method is its training scheme, where each mini-batch (called an episode)
tries to mimic the data-poor test conditions by sub-sampling the number of classes as well as num-
bers of examples in each. It has been demonstrated that such an approach improves performance on
few-shot classification. (Vinyals et al., 2016) We therefore use it as well.

Instead of learning on the dataset directly, it has recently been proposed (Ravi & Larochelle, 2017)
to train an LSTM (Hochreiter & Schmidhuber, 1997) to predict updates to a few-shot classifier
given an episode as its input. This approach is referred to as meta-learning. Meta-learning has been
reaching high accuracies on Omniglot (Lake et al., 2015), as demonstrated by Finn et al. (2017),
and Munkhdalai & Yu (2017). A task-agnostic meta-learner based on temporal convolutions has
been proposed in Mishra et al. (2017), currently outperforming other approaches. Combinations
of parametric and non-parametric methods have been the most successful in few-shot learning re-
cently. (Snell et al., 2017)(Ren & Yu, 2014)(Koch et al., 2015)

Our approach is specific to classification of images, and does not attempt to solve the problem via
meta-learning. We build on the model presented in Snell et al. (2017), which maps images into
embedding vectors, and uses their clustering for classification. The novel feature of our model is
that it predicts its confidence about individual data points via a learned, image-dependent covariance
matrix. This allows it to construct a richer embedding space to which images are projected. Their
clustering under a direction and class-dependent distance metric is then used for classification.
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Figure 1: A diagram of the function of the Gaussian prototypical network. An encoder maps an
image into a vector in the embedding space (dark circles). A covariance matrix is also output for
each image (dark ellipses). Support images are used to define the prototypes (stars), and covariance
matrices (light ellipses) of the particular class. The distances between centroids, and encoded query
images, modified by the total covariance of a class, are used to classify query images. The distances
are shown as dashed gray lines for a particular query point.

3 METHODS

In this paper, we build on prototypical networks described in Snell et al. (2017). We extend their
architecture to what we call a Gaussian prototypical network, allowing the model to reflect quality of
individual data points (images) by predicting their embedding vectors as well as confidence regions
around them, characterized by a Gaussian covariance matrix.

A vanilla prototypical network comprises an encoder that maps an image into an embedding vector.
A batch contains a subset of available training classes. In each iteration, images for each class are
randomly split into support, and query images. The embeddings of support images are used to
define class prototypes – embedding vectors typical for the class. The proximity of query image
embeddings to the class prototypes is used for classification.

The encoder architectures of vanilla and Gaussian prototypical networks do not differ. The key
difference is the way encoder outputs are interpreted, used, and how the metric on the embedding
space is constructed. The function of the Gaussian network is presented in Figure 1.

3.1 ENCODER

We use a multi-layer convolutional neural network without an explicit, final fully connected layer
to encode images into high-dimensional Euclidean vectors. For a vanilla prototypical network, the
encoder is a function taking an image I and transforming it into a vector ~x as

encoder(θ) : I ∈ RH×W×C → ~x ∈ RD , (1)

where H and W are the height and width of the input image, and C is the number of its channels.
D is the embedding dimension of our vector space which is a hyperparameter of the model. θ are
the trainable weights of the encoder.

For a Gaussian prototypical network, the output of the encoder is a concatenation of an embedding
vector ~x ∈ RD and real vector ~sraw ∈ RDS relevant to the covariance matrix Σ ∈ RD×D. Therefore

encoderGauss(θ) : I ∈ RH×W×C → [~x,~sraw] ∈
[
RD,RDS

]
, (2)

where DS is the number of degrees of freedom of the covariance matrix.

We explore three variants of the Gaussian prototypical network:

a) Radius covariance estimate. DS = 1 and only a single real number sraw ∈ R1 is generated
per image. As such the covariance matrix has the form Σ = diag (σ, σ, . . . , σ), where σ
is calculated from the raw encoder output sraw. The confidence estimate is therefore not
direction-sensitive.
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b) Diagonal covariance estimate. DS = D and the dimension of the covariance estimate is
the same as of the embedding space. ~sraw ∈ RD is generated per image. Therefore the
covariance matrix has the form Σ = diag (~σ), where ~σ is calculated from the raw encoder
output ~sraw. This allows the network to express direction-dependent confidence about a
data point.

c) Full covariance estimate. A full covariance matrix is output per data point. This method
proved to be needlessly complex for the tasks given and therefore was not explored further.

We were using 2 encoder architectures: 1) a small architecture, and 2) a big architecture. The small
architecture corresponded to the one used in Snell et al. (2017), and we used it to validate our own
experiments with respect. The big architecture was used to see the effect of an increased model
capacity on accuracy. As a basic building block, we used the sequence of layers in Equation 3.

3× 3 CNN→ batch normalization→ ReLU→ 2× 2 max pool (3)

Both architectures were composed of 4 such blocks stacked together. The details of the architectures
are as follows:

1) Small architecture: 3× 3 filters, numbers of filters [64, 64, 64, D] ([64, 64, 64, D+ 1] for
the radius Gaussian model, [64, 64, 64, 2D] for the diagonal Gaussian model). Embedding
space dimensions explored were D = 32, 64, 128.

2) Big architecture: 3 × 3 filters, numbers of filters [128, 256, 512, D] ([128, 256, 512, D +
1] for the radius Gaussian model, [128, 256, 512, 2D] for the diagonal Gaussian model).
Embedding space dimensions explored were D = 128, 256, 512.

We explored 4 different methods of translating the raw covariance matrix output of the encoder
into an actual covariance matrix. Since we primarily deal with the inverse of the covariance matrix
S = Σ−1, we were predicting it directly. Let the relevant part of the raw encoder output be Sraw.
The methods are as follows:

a) S = 1 + softplus (Sraw), where softplus(x) = log (1 + ex) and it is applied component-
wise. Since softplus(x) > 0, this guarantees S > 1 and the encoder can only make data
points less important. The value of S is also not limited from above. Both of these ap-
proaches prove beneficial for training. Our best models used this regime for initial training.

b) S = 1 + sigmoid (Sraw), where sigmoid(x) = 1/ (1 + e−x) and it is applied component-
wise. Since sigmoid(x) > 0, this guarantees S > 1 and the encoder can only make data
points less important. The value of S is bounded from above, as S < 2, and the encoder is
therefore more constrained.

c) S = 1 + 4 sigmoid (Sraw) and therefore 1 < S < 5. We used this to explore the effect of
the size of the domain of covariance estimates on performance.

d) S = offset + scale × softplus (Sraw/div), where offset, scale, and div are initialized to
1.0 and are trainable. Our best models used this regime for late-stage training, as it is more
flexible and data-driven than a).

3.2 EPISODIC TRAINING

A key component of the prototypical model is the episodic training regime described in Snell et al.
(2017) and modeled on Vinyals et al. (2016). During training, a subset of Nc classes is chosen from
the total number of classes in the training set (without replacement). For each of these classes, Ns

support examples are chosen at random, as well as Nq query examples. The encoded embeddings
of the support examples are used to define where a particular class prototype lies in the embedding
space. The distances between the query examples and positions of class prototypes are used to clas-
sify the query examples and to calculate loss. For the Gaussian prototypical network, the covariance
of each embedding point is estimated as well. A diagram of the process is shown in Figure 1.

For a Gaussian prototypical network, the radius or a diagonal of a covariance matrix is output to-
gether with the embedding vector (more precisely its raw form is, as detailed in Section 3.1). These
are then used to weight the embedding vectors corresponding to support points of a particular class,
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as well as to calculate a total covariance matrix for the class. The distance dc(i) from a class proto-
type c to a query point i is calculated as

d2c(i) = (~xi − ~pc)T Sc (~xi − ~pc) , (4)

where ~pc is the centroid, or prototype, of the class c, and Sc = Σ−1
c is the inverse of its class

covariance matrix. The Gaussian prototypical network is therefore able to learn class and direction-
dependent distance metric in the embedding space. We found that the speed of training and its
accuracy depend strongly on how distances are used to construct a loss. We conclude that the best
option is to work with linear Euclidean distances, i.e. dc(i). The specific form of the loss function
used is presented in Algorithm 1.

3.3 DEFINING A CLASS

A critical part of a prototypical network is the creation of a class prototype from the available sup-
port points of a particular class. We propose a variance-weighted linear combination of embedding
vectors of individual support examples as our solution. Let class c have support images Ii that are
encoded into embedding vectors ~xci , and inverses of covariance matrices Sc

i , whose diagonals are
~sci . The prototype is defined as

~pc =

∑
i ~s

c
i ◦ ~xci∑
i ~s

c
i

, (5)

where ◦ denotes a component-wise multiplication, and the division is also component-wise. The
diagonal of the inverse of the class covariance matrix is then calculated as

~sc =
∑
i

~sci . (6)

This corresponds to the optimal combination of Gaussians centered on the individual points into
an overall class Gaussian, hence the name of the network. The elements of s are effectively 1/σ2.
Equations 5 and 6 therefore correspond to weighting by 1/σ2. The full algorithm is described in
Algorithm 1.

3.4 EVALUATING MODELS

To estimate the accuracy of a model on the test set, we classify the whole test set for every number
of support points Ns = k in the range k ∈ [1, ..19]. The number of query points for a particular k
is therefore Nq = 20 − Ns, as Omniglot provides 20 examples of each class. The accuracies are
then aggregated, and for a particular stage of the model training a k-shot classification accuracy as
a function of k is determined. Since we are not using a designated validation set, we ensure our
impartiality by considering the test results for the 5 highest training accuracies, and calculate their
mean and standard deviation. By doing that, we prevent optimizing our result for the test set, and
furthermore obtain error bounds on the resulting accuracies. We evaluate our models in 5-way and
20-way test classification to directly compare to existing literature.

4 DATASETS

We used the Omniglot dataset. (Lake et al., 2015) Omniglot contains 1623 character classes from 50
alphabets (real and fictional) and 20 hand-written, gray-scale, 105×105 pixel examples of each. We
down-sampled them to 28 × 28 × 1, subtracted their mean, and inverted them. We were using the
recommended split to 30 training alphabets, and 20 test alphabets, as suggested by Lake et al. (2015),
and used by Snell et al. (2017). The training set included overall 964 unique character classes, and
the test set 659 of them. There was no class overlap between the training and test datasets. We
did not use a separate validation set as we did not fine-tune hyperparameters and chose the best
performing model based on training accuracies alone (see Section 3.4).

To extend the number of classes, we augmented the dataset by rotating each character by 90◦, 180◦,
and 270◦, and defined each rotation to be a new character class on its own. The same approach
is used in Vinyals et al. (2016), and Snell et al. (2017). An example of an augmented character is
shown in Figure 2. This increased the number of classes 4-fold. In total, there were 77,120 images
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Algorithm 1 Classification and loss algorithm for Gaussian prototypical networks

Input: Images I , class labels y, encoder f , Ns number of support points per class, Nq number of
query points per class, Nc number of classes in a batch

Output: Predicted labels ŷ, loss L
for batch in data do

Choose a subset Cused of Nc classes from all possible training classes at random (without
replacement)
for class c in classes Cused do

Choose Ns support examples for the class c from batch and call them Sc.
Choose Nq query examples for the class c from batch and call them Qc.
Embed Qc as f(Qc)→ Q̃c,

Embed Sc as f(Sc)→ S̃c, {~sc} . vectors and covariances
Class prototype ~pc ←

(∑
i ~s

c
i ◦ S̃c

i

)
/ (
∑

i ~s
c
i ) . summed over support points

Class inverse covariance ~sc =
∑

i ~s
c
i . summed over support points

end for
Loss L← 0 . zeroing the loss per batch
for query image i in batch query points do

Let the image i embedding vector be ~x and its true class y
for class c in classes Cused do

difference(c, i) = ~x− ~pc . position difference from class c

distance(c, i) =

√
(~x− ~pc)T ~sc ◦ (~x− ~pc) . covariance-modified distance

end for
Predicted label ŷi ← arg minc distance(c, i) . labelled based on the ”closest” prototype
L← L+ 1

Nc
softmax cross entropy(−distance(c, i), y) . summed over c

end for
L← L/batch size . loss per batch for comparability

end for

Figure 2: An example of augmentation of class count by rotations. An original character (on the
left) is rotated by 90◦, 180◦, and 270◦. Each rotation is then defined as a new class. This enhances
the number of classes, but also introduces degeneracies for symmetric characters.

in the training set, and 52,720 images in the test set. Due to the rotational augmentation, characters
that have a rotational symmetry were nonetheless defined as multiple classes. As even a hypothetical
perfect classifier would not be able to differentiate e.g. the character ”O” from a rotated ”O”, 100 %
accuracy was not reachable.

5 EXPERIMENTS

We conducted a large number of few-shot learning experiments on the Omniglot dataset. For Gaus-
sian prototypical networks, we explored different embedding space dimensionalities, ways of gener-
ating the covariance matrix, and encoder capacities (see Section 3.1 for details). We also compared
them to vanilla prototypical networks, and showed that our Gaussian variant is a favorable way of
using additional trainable parameters compared to increasing embedding space dimensionality. We
found that predicting a single number per embedding point (the radius method in Section 3.1) works
the best on Omniglot.

In general, we explored the size of the encoder (small, and big, as described in Section 3), the Gaus-
sian/vanilla prototypical network comparison, the distance metric (cosine,

√
L2, L2, and L2

2), the
number of degrees of freedom of the covariance matrix in the Gaussian networks (radius, and diag-
onal estimates, see Section 3.1), and the dimensionality of the embedding space. We also explored
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Figure 3: Comparison of two methods of allocation of extra parameters. Allocating extra parameters
to increase embedding space dimensionality (radius), or making a more precise covariance estimate
(diagonal). The radius estimate (1 additional real number per embedding vector) outperforms the
diagonal estimate with the same number of parameters.

augmenting the input dataset by down-sampling a subset of it to encourage the usage of covariance
estimates by the network, and found that this improves (k > 1)-shot performance.

We were using the Adam optimizer with an initial learning rate of 2× 10−3. We halved the learning
rate every 2000 episodes ≈ 30 epochs. All our models were implemented in TensorFlow, and
ran on a single NVidia K80 GPU in Google Cloud. The training time of each model was less than a
day.

We trained our models with Nc = 60 classes (60-way classification) at training time, and tested
on Nct = 20 classes (20-way) classification. For our best-performing models, we also conducted
a final Nct = 5 (5-way) classification test to compare our results to literature. During training,
each class present in the mini-batch comprised Ns = 1 support points, as we found that limiting
the number of support points leads to better accuracies. This could intuitively be understood as
matching the training regime to the test regime, as done in Vinyals et al. (2016). The remaining
Nq = 20−Ns = 19 images per class were used as query points.

We verified, provided that the covariance estimate is not needlessly complex, that using encoder
outputs as covariance estimates is more advantageous than using the same number of parameters
as additional embedding dimension. This holds true for the radius estimate (i.e. one real number
per embedding vector), however, the diagonal estimate does not seem to help with performance
(keeping the number of parameters equal). This effect is shown in Figure 3.

The best performing model was initially trained on the undamaged dataset for 220 epochs. The
training then continued with 1.5% of images down-sampled to 24 × 24, 1.0% down-sampled to
20 × 20, and 0.5% down-sampled to 16 × 16 for 100 epochs. Then with 1.5% down-sampled to
23 × 23 and 1.0% down-sampled to 17 × 17 for 20 epochs, and 1.0% down-sampled to 23 × 23
for 10 epochs. These choices were quite arbitrary and not optimized over. The purposeful damage
to the dataset encouraged usage of the covariance estimate and increased (k > 1)-shot results, as
demonstrated in Figure 4.

The comparison of our models to results from literature is presented in Table 1. To our knowledge,
our models perform consistently with state-of-the-art in 1-shot and 5-shot classification both in 5-
way and 20-way regime on the Omniglot dataset. In 5-shot 5-way classification in particular, we
are reaching very close to perfect performance (99.73± 0.04 %) and therefore conclude that a more
complex dataset is needed for further few-shot learning algorithms development.

5.1 USAGE OF COVARIANCE ESTIMATE

In order to validate our assumption that the Gaussian prototypical network outperforms the vanilla
version due to its ability to predict covariances of individual embedded images and therefore the
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Figure 4: The effect of down-sampling a part of the training set on k-shot test accuracy. The network
trained on purposefully damaged data outperforms the one trained on unmodified data, as it learns
to utilize covariance estimates better.

Table 1: The results of our experiments as compared to other papers. To our knowledge, our models
perform consistently with state-of-the-art in 1-shot and 5-shot classification both in 5-way and 20-
way regime on the Omniglot dataset.

20-way 5-way
Model 1-shot 5-shot 1-shot 5-shot
Matching networks (Vinyals et al., 2016) 93.8% 98.5% 98.1% 98.9%
Matching networks (Vinyals et al., 2016) 93.5% 98.7% 97.9% 98.7%
Neural statistician (Edwards & Storkey, 2016) 93.2% 98.1% 98.1% 99.5%
Prototypical network (Snell et al., 2017) 96.0% 98.9% 98.8% 99.7%
Finn et al. (2017) 98.7 ± 0.4% 99.9 ± 0.3%
Munkhdalai & Yu (2017) 98.9 %
TCML (Mishra et al., 2017) 97.64 ± 0.30% 99.36 ± 0.18% 98.96 ± 0.20% 99.75 ± 0.11%
Gauss (radius) (ours) 97.02 ± 0.40% 99.16 ± 0.11% 99.02 ± 0.11% 99.66 ± 0.04%
Gauss (radius) damage (ours) 96.94 ± 0.31% 99.29 ± 0.09% 99.07 ± 0.07% 99.73 ± 0.04%

possibility to down-weight them, we studied the distribution of predicted values of s (see Section 3.1
for details) for our best performing network for undamaged and damaged test data. The network was
trained on partially down-sampled training data.

For the undamaged test set, the vast majority of covariance estimates took the same value, indicating
that the network did not use its ability to down-weight data points. However, for a partially down-
sampled test set, the distribution of magnitudes of covariance estimates got significantly broader.
We interpret this as a confirmation that the network learned to put less emphasis on down-sampled
images. A comparison of both distributions is shown in Figure 5.

6 CONCLUSION

In this paper we proposed Gaussian prototypical networks for few-shot classification – an improved
architecture based on prototypical networks (Snell et al., 2017). We tested our models on the Om-
niglot dataset, and explored different approaches to generating a covariance matrix estimate together
with an embedding vector. We showed that Gaussian prototypical networks outperform vanilla pro-
totypical networks with a comparable number of parameters, and therefore that our architecture
choice is beneficial. We found that estimating a single real number on top of an embedding vector
works better than estimating a diagonal, or a full covariance matrix. We suspect that lower quality,
less homogeneous datasets might prefer a more complex covariance matrix estimate.

Contrary to Snell et al. (2017), we found that the best results are obtained by training in the 1-shot
regime. Our results are consistent with state-of-the-art in 1-shot and 5-shot classification both in
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Figure 5: Predicted covariances for the original test set and a partially down-sampled version of
it. The Gaussian network learned to down-weight damaged examples by predicting a higher s, as
apparent from the heavier tail of the yellow distribution. The distributions are aligned together, as
only the difference between the leading edge and a value influence classification.

5-way and 20-way regime on the Omniglot dataset. Especially for 5-way classification, our results
are very close to perfect performance.

We got better accuracies (in particular for (k > 1)-shot classification) by artificially down-sampling
fractions of our training dataset, encouraging the network to fully utilize covariance estimates. We
hypothesize that the ability to learn the embedding as well as its uncertainty would be even more
beneficial for poorer-quality, heterogeneous datasets, which are commonplace in real world appli-
cations. There, down-weighting some data points might be crucial for faithful classification. This is
supported by our experiments with down-sampling Omniglot.

ACKNOWLEDGMENTS

We would like to thank Ben Poole, Yihui Quek, and Justin Johnson (all at Stanford University)
for useful discussions. A part of this work was done as a class project for the Stanford University
CS 231N: Convolutional Neural Networks for Visual Recognition, which provided Google Cloud
credit coupons that partially supported our GPU usage.

REFERENCES

Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted learning. Artif.
Intell. Rev., 11(1-5):11–73, February 1997. ISSN 0269-2821. doi: 10.1023/A:1006559212014.
URL http://dx.doi.org/10.1023/A:1006559212014.
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