
Under review as a conference paper at ICLR 2019

SOSELETO: A UNIFIED APPROACH TO TRANSFER
LEARNING AND TRAINING WITH NOISY LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present SOSELETO (SOurce SELEction for Target Optimization), a new
method for exploiting a source dataset to solve a classification problem on a tar-
get dataset. SOSELETO is based on the following simple intuition: some source
examples are more informative than others for the target problem. To capture
this intuition, source samples are each given weights; these weights are solved for
jointly with the source and target classification problems via a bilevel optimization
scheme. The target therefore gets to choose the source samples which are most
informative for its own classification task. Furthermore, the bilevel nature of the
optimization acts as a kind of regularization on the target, mitigating overfitting.
SOSELETO may be applied to both classic transfer learning, as well as the prob-
lem of training on datasets with noisy labels; we show state of the art results on
both of these problems.

-1.0 -0.8 -0.5 -0.2 0.0 0.2 0.5 0.8 1.0
Feature 1

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

Fe
at

ur
e 

2

Source examples (noisy)

(a)

-1.0 -0.8 -0.5 -0.2 0.0 0.2 0.5 0.8 1.0
Feature 1

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

Fe
at

ur
e 

2

Clean instances above thoreshold of 0.1

above threshold (correct)
below threshold (false)

(b)

-1.0 -0.8 -0.5 -0.2 0.0 0.2 0.5 0.8 1.0
Feature 1

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

Fe
at

ur
e 

2

Noisy instances below threshold of 0.1

below threshold (correct)
above threshold (false)

(c)

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

M
ea

n 
we

ig
ht

Instance weights evolution
Clean instances
Noisy instances

(d)

0.0 0.1 0.2 0.3 0.4 0.5
Weight threshold

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Precision and Recall Vs. Weight threshold

Precision
Recall

(e)

Figure 1: SOSELETO applied to a synthetic noisy labels problem. (a) A binary classification prob-
lem with points split by the y-axis. Input labels are marked as diamonds and triangles. 20% of the
input labels are noisy (have the wrong label). SOSELETO assigns a weight per instance. (b) All
correctly labeled input points are assigned high weights. (c) Most noisy points are assigned a low
weight. (d) Mean weight of clean and noisy instances throughout training. (e) High accuracy and
high recall are achieved for a broad range of weight thresholds.

1 INTRODUCTION

Deep learning has made possible many remarkable successes, leading to state of the art algorithms in
computer vision, speech and audio, and natural language processing. A key ingredient in this success
has been the availability of large datasets. While such datasets are common in certain settings, in
other scenarios this is not true. Examples of the latter include “specialist” scenarios, for instance

1



Under review as a conference paper at ICLR 2019

a dataset which is entirely composed of different species of tree; and medical imaging, in which
datasets on the order of hundreds to a thousand are common.

A natural question is then how one may apply the techniques of deep learning within these rela-
tively data-poor regimes. A standard approach involves the concept of transfer learning: one uses
knowledge gleaned from the source (data-rich regime), and transfers it over to the target (data-poor
regime). One of the most common versions of this approach involves a two-stage technique. In the
first stage, a network is trained on the source classification task; in the second stage, this network
is adapted to the target classification task. There are two variants for this second stage. In feature
extraction (e.g. Donahue et al. (2014)), only the parameters of the last layer (i.e. the classifier) are
allowed to adapt to the target classification task; whereas in fine-tuning (e.g. Girshick et al. (2014)),
the parameters of all of the network layers (i.e. both the features/representation and the classifier)
are allowed to adapt. The idea is that by pre-training the network on the source data, a useful feature
representation may be learned, which may then be recycled – either partially or completely – for
the target regime. This two-stage approach has been quite popular, and works reasonably well on a
variety of applications.

Despite this success, we claim that the two-stage approach misses an essential insight: some source
examples are more informative than others for the target classification problem. For example, if
the source is a large set of natural images and the target consists exclusively of cars, then we might
expect that source images of cars, trucks, and motorcycles might be more relevant for the target task
than, say, spoons. However, this example is merely illustrative; in practice, the source and target
datasets may have no overlapping classes at all. As a result, we don’t know a priori which source
examples will be important. Thus, we propose to learn this source filtering as part of an end-to-end
training process.

The resulting algorithm is SOSELETO: SOurce SELEction for Target Optimization. Each training
sample in the source dataset is given a weight, corresponding to how important it is. The shared
source/target representation is then optimized by means of a bilevel optimization. In the interior
level, the source minimizes its classification loss with respect to the representation parameters, for
fixed values of the sample weights. In the exterior level, the target minimizes its classification loss
with respect to both the source sample weights and its own classification layer. The sample weights
implicitly control the representation through the interior level. The target therefore gets to choose the
source samples which are most informative for its own classification task. Furthermore, the bilevel
nature of the optimization acts as a kind of regularization on the target, mitigating overfitting, as the
target does not directly control the representation parameters. Finally, note that the entire process –
training of the shared representation, target classifier, and source weights – happens simultaneously.

We pause here to note that the general philosophy behind SOSELETO is related to the literature
on instance reweighting for domain adaptation, see for example Sugiyama et al. (2008); Yan et al.
(2017). However, there is a crucial difference between SOSELETO and this literature, which is
related to the difference between domain adaptation and more general transfer learning. Domain
adaptation is concerned with the situation in which there is either full overlap between the source
and target label sets; or in some more recent work Zhang et al. (2018), partial but significant overlap.
Transfer learning, by contrast, refers to the more general situation in which there may be zero overlap
between label sets, or possibly very minimal overlap. (For example, if the source consists of natural
images and the target of medical images.) The instance reweighting literature is concerned with
domain adaptation; the techniques are therefore relevant to the case in which source and target have
the same labels. SOSELETO is quite different: it makes no such assumptions, and is therefore a
more general approach which can be applied to both “pure” transfer learning, in which there is no
overlap between source and target label sets, as well as domain adaptation. (Note also a further
distinction with domain adaptation: the target is often – though not always – taken to be unlabelled
in domain adaptation. This is not the case for our setting of transfer learning.)

Above, we have illustrated how SOSELETO may be applied to the problem of transfer learning.
However, the same algorithm can be applied to the problem of training with noisy labels. Concretely,
we assume that there is a large noisy dataset, as well as a much smaller clean dataset; the latter can
be constructed cheaply through careful hand-labelling, given its small size. Then if we take the
source to be the large noisy dataset, and the target to the small clean dataset, SOSELETO can be
applied to the problem. The algorithm will assign high weights to samples with correct labels and

2



Under review as a conference paper at ICLR 2019

low weights to those with incorrect labels, thereby implicitly denoising the source, and allowing for
an accurate classifier to be trained.

The remainder of the paper is organized as follows. Section 2 presents related work. Section 3
presents the SOSELETO algorithm, deriving descent equations as well as convergence properties of
the bilevel optimization. Section 4 presents results of experiments on both transfer learning as well
as training with noisy labels. Section 5 concludes.

2 RELATED WORK

Transfer learning As described in Section 1, the most common techniques for transfer learning
are feature extraction and fine-tuning, see for example Donahue et al. (2014) and Girshick et al.
(2014), respectively. An older survey of transfer learning techniques may be found in Pan & Yang
(2010). Domain adaptation Saenko et al. (2010) is concerned with transferring knowledge when the
source and target classes are the same. Earlier techniques aligned the source and target via matching
of feature space statistics Tzeng et al. (2014); Long et al. (2015); subsequent work used adversarial
methods to improve the domain adaptation performance Ganin & Lempitsky (2015); Tzeng et al.
(2015; 2017); Hoffman et al. (2017).

In this paper, we are more interested in transfer learning where the source and target classes are
different. A series of recent papers Long et al. (2017); Pei et al. (2018); Cao et al. (2018a;b) address
domain adaptation that is closer to our setting. In particular, Cao et al. (2018b) examines “partial
transfer learning”, the case in which there is partial overlap between source and target classes (par-
ticularly when the target classes are a subset of the source). This setting is also dealt with in Busto
& Gall (2017).

Ge & Yu (2017) examine the scenario where the source and target classes are completely different.
Similar to SOSELETO, they propose selecting a portion of the source dataset. However, the se-
lection is not performed in an end-to-end fashion, as in SOSELETO; rather, selection is performed
prior to training, by finding source examples which are similar to the target dataset, where similarity
is measured by using filter bank descriptors.

Another recent work of interest is Luo et al. (2017), which focuses on a slightly different scenario:
the target consists of a very small number of labelled examples (i.e. the few-shot regime), but a very
large number of unlabelled examples. Training is achieved via an adversarial loss to align the source
and the target representations, and a special entropy-based loss for the unlabelled part of the data.

Instance reweighting for domain adaptation is a well studied technique, demonstrated e.g. in
Covariate Shift methods Shimodaira (2000); Sugiyama et al. (2007; 2008). In these works, the
source and target label spaces are the same. We, however, allow for different – even entirely non-
overlapping – classes in the source and target. Crucially, we do not make assumptions on the sim-
ilarity of the distributions nor do we explicitly optimize for it. The same distinction applies for
the recent work of Yan et al. (2017), and for the partial overlap assumption of Zhang et al. (2018).
In addition, these two works propose an unsupervised approach, whereas our proposed method is
completely supervised. Covariate shift determines the weighting for an instance as the ratio of its
probability of being in the training set and being in the prediction set. Consequently, the feature
vectors are used in re-weighting, regardless of their labels. This renders covariate shift unsuitable
for handling noisy labels. Our re-weighing scheme is instead gradient-based and as we show next
performs well in this task.

Learning with noisy labels Classification with noisy labels is a longstanding problem in the ma-
chine learning literature, see the review paper Frénay & Verleysen (2014) and the references therein.
Within the realm of deep learning, it has been observed that with sufficiently large data, learning
with label noise – without modification to the learning algorithms – actually leads to reasonably
high accuracy Krause et al. (2016); Sun et al. (2017).

The setting that is of greatest interest to us is when the large noisy dataset is accompanied by a
small clean dataset. Sukhbaatar et al. (2014) introduce an additional noise layer into the CNN which
attempts to adapt the output to align with the noisy label distribution; the parameters of this layer
are also learned. Xiao et al. (2015) use a more general noise model, in which the clean label, noisy
label, noise type, and image are jointly specified by a probabilistic graphical model. Both the clean

3



Under review as a conference paper at ICLR 2019

label and the type of noise must be inferred given the image, in this case by two separate CNNs. Li
et al. (2017) consider the same setting, but with additional information in the form of a knowledge
graph on labels.

Other recent work on label noise includes Rolnick et al. (2017), which shows that adding many
copies of an image with noisy labels to a clean dataset barely dents performance; Malach & Shalev-
Shwartz (2017), in which two separate networks are simultaneously trained, and a sample only
contributes to the gradient descent step if there is disagreement between the networks (if there is
agreement, that probably means the label is wrong); and Drory et al. (2018), which analyzes theo-
retically the situations in which CNNs are more and less resistant to noise. A pair of papers Liu &
Tao (2016); Yu et al. (2017) combine ideas of learning with label noise with instance reweighting.

Bilevel optimization Bilevel optimization problems have a nested structure: the interior level
(sometimes called the lower level) is a standard optimization problem; and the exterior level (some-
times called the upper level) is an optimization problem where the objective is a function of the
optimal arguments from the interior level. A branch of mathematical programming, bilevel opti-
mization has been extensively studied within this community Colson et al. (2007); Bard (2013). For
recent developments, readers are referred to the review paper Sinha et al. (2018). Bilevel optimiza-
tion has been used in both machine learning, e.g. Bennett et al. (2006; 2008) and computer vision,
e.g. Ochs et al. (2015).

3 SOSELETO: SOURCE SELECTION FOR TARGET OPTIMIZATION

We have two datasets. The source set is the data-rich set, on which we can learn extensively. It
is denoted by {(xsi , ysi )}n

s

i=1, where as usual xsi is the ith source training image, and ysi is its cor-
responding label. The second dataset is the target set, which is data-poor; but it is this set which
ultimately interests us. That is, the goal in the end is to learn a classifier on the target set, and
the source set is only useful insofar as it helps in achieving this goal. The target set is denoted
{(xti, yti)}n

t

i=1, and it is assumed that is much smaller than the source set, i.e. nt � ns.

Our goal is to exploit the source set to solve the target classification problem. The key insight is that
not all source examples contribute equally useful information in regards to the target problem. For
example, suppose that the source set consists of a broad collection of natural images; whereas the
target set consists exclusively of various breeds of dog. We would assume that any images of dogs
in the source set would help in the target classification task; images of wolves might also help, as
might cats. Further afield it might be possible that objects with similar textures as dog fur might be
useful, such as rugs. On the flip side, it is probably less likely that images of airplanes and beaches
will be relevant (though not impossible). However, the idea is not to come with any preconceived
notions (semantic or otherwise) as to which source images will help; rather, the goal is to let the
algorithm choose the relevant source images, in an end-to-end fashion.

We assume that the source and target classifier networks have the same architecture, but different
network parameters. In particular, the architecture is given by

F (x; θ, φ)

where φ is last layer, or possibly last few layers, and θ constitutes all of the remaining layers. We
will refer to φ colloquially as the “classifier”, and to θ as the “features” or “representation”. (This is
consistent with the usage in related papers, see for example Tzeng et al. (2017).) Now, the source and
target will share features, but not classifiers; that is, the source network will be given by F (x; θ, φs),
whereas the target network will be F (x; θ, φt). The features θ are shared between the two, and this
is what allows for transfer learning.

The weighted source loss is given by

Ls(θ, φ
s, α) =

1

ns

ns∑
j=1

αj`(y
s
j , F (xsj ; θ, φ

s))

where αj ∈ [0, 1] is a weight assigned to each source training example; and `(·, ·) is a per example
classification loss, in this case cross-entropy. The use of the weights αj will allow us to decide
which source images are most relevant for the target classification task.

4



Under review as a conference paper at ICLR 2019

The target loss is standard:

Lt(θ, φ
t) =

1

nt

nt∑
i=1

`(yti , F (xti; θ, φ
t))

As noted in Section 1, this formulation allows us to address both the transfer learning problem as
well as learning with label noise. In the former case, the source and target may have non-overlapping
label spaces; high weights will indicate which source examples have relevant knowledge for the
target classification task. In the latter case, the source is the noisy dataset, the target is the clean
dataset, and they share a classifier (i.e. φt = φs) as well as a label space; high weights will indicate
which source examples do not have label noise, and are therefore reliable. In either case, the target
is much smaller than the source.

The question now becomes: how can we combine the source and target losses into a single optimiza-
tion problem? A simple idea is to create a weighted sum of source and target losses. Unfortunately,
issues are likely to arise regardless of the weight chosen. If the target is weighted equally to the
source, then overfitting may likely result given the small size of the target. On the other hand, if the
weights are proportional to the size of the two sets, then the source will simply drown out the target.

A more promising idea is to use bilevel optimization. Specifically, in the interior level we find the
optimal features and source classifier as a function of the weights α, by minimizing the source loss:

θ∗(α), φs∗(α) = min
θ,φs

Ls(θ, φ
s, α) (1)

In the exterior level, we minimize the target loss, but only through access to the source weights; that
is, we solve:

min
α,φt

Lt(θ
∗(α), φt) (2)

Why might we expect this bilevel formulation to succeed? The key is that the target only has access
to the features in an indirect manner, by controlling which source examples are included in the
source classification problem. Thus, the target can influence the features chosen, but only in this
roundabout way. This serves as an extra form of regularization, mitigating overfitting, which is the
main threat when dealing with a small set such as the target.

Implementing the bilevel optimization is rendered somewhat challenging due to the need to solve the
optimization problem in the interior level (1). Note that this optimization problem must be solved at
every point in time; thus, if we choose to solve the optimization (2) for the exterior level via gradient
descent, we will need to solve the interior level optimization (1) at each iteration of the gradient
descent. This is clearly inefficient. Furthermore, it is counter to the standard deep learning practice
of taking small steps which improve the loss. Thus, we instead propose the following procedure.

At a given iteration, we will take a gradient descent step for the interior level problem (1):

θm+1 = θm − λp
∂Ls
∂θ

(θm, φ
s
m, αm)

= θm − λpQ(θm, φ
s
m)αm (3)

where m is the iteration number; λp is the learning rate (where the subscript p stands for “parame-
ters”, to distinguish it from a second learning rate for α, to appear shortly); and Q(θ, φs) is a matrix
whose jth column is given by

qj =
1

ns
∂

∂θ
`(ysj , F (xsj ; θ, φ

s))

Thus, Equation (3) leads to an improvement in the features θ, for a fixed set of source weights α.
Note that there will be an identical descent equation for the classifier φs, which we omit for clarity.

Given this iterative version of the interior level of the bilevel optimization, we may now turn to the
exterior level. Plugging Equation (3) into Equation (2) gives the following problem:

min
α,φt

Lt(θm − λpQα, φt)

5



Under review as a conference paper at ICLR 2019

Algorithm 1 SOSELETO: SOurce SELEction for Target Optimization
Initialize: θ, φs, α, φt.
while not converged do

Sample source batch b← {b1, . . . , bL} ⊂ {1, . . . , ns}
Denote by αb = [αb1 , . . . , αbL ]
Q← [q1 . . . qL] where q` ← 1

ns
∂
∂θ `(y

s
b`
, F (xsb` ; θ, φ

s))

R← [r1 . . . rL] where r` ← 1
ns

∂
∂φs `(y

s
b`
, F (xsb` ; θ, φ

s))

θ ← θ − λpQαb
φs ← φs − λpRαb
αb ← CLIP[0,1]

(
αb + λαλpQ

T ∂Lt

∂θ

)
φt ← φt − λp ∂Lt

∂φt

end while

where we have suppressed Q’s arguments for readability. We can then take a gradient descent step
of this equation, yielding:

αm+1 = αm − λα
∂

∂α
Lt(θm − λpQα, φt)

= αm + λαλpQ
T ∂Lt
∂θ

(θm −Qαmλp)

≈ αm + λαλpQ
T ∂Lt
∂θ

(θm) (4)

where in the final line, we have made use of the fact that λp is small. Of course, there will also be a
descent equation for the classifier φt. The resulting update scheme is quite intuitive: source example
weights are update according to how well they align with the target aggregated gradient.

We have not yet dealt with the weight constraint. That is, we would like to explicitly require that
each αj ∈ [0, 1]. We may achieve this by requiring αj = σ(βj) where the new variable βj ∈ R,
and σ : R → [0, 1] is a sigmoid-type function. As shown in Appendix A, for a particular piecewise
linear sigmoid function, replacing the Update Equation (4) with a corresponding update equation for
β is equivalent to modifying Equation (4) to read

αm+1 = CLIP[0,1]

(
αm + λαλpQ

T ∂Lt
∂θ

(θm)

)
(5)

where CLIP[0,1] clips the values below 0 to be 0; and above 1 to be 1.

Thus, SOSELETO consists of alternating Equations (3) and (5), along with the descent equations
for the source and target classifiers φs and φt. As usual, the whole operation is done on a mini-batch
basis, rather than using the entire set; note that if processing is done in parallel, then source mini-
batches are taken to be non-overlapping, so as to avoid conflicts in the weight updates. SOSELETO
is summarized in Algorithm 1. Note that the target derivatives ∂Lt/∂θ and ∂Lt/∂φt are evaluated
over a target mini-batch; we suppress this for clarity.

In terms of time-complexity, we note that each iteration requires both a source batch and a target
batch; assuming identical batch sizes, this means that SOSELETO requires about twice the time as
the ordinary source classification problem. Regarding space-complexity, in addition to the ordinary
network parameters we need to store the source weights α. Thus, the additional relative space-
complexity required is the ratio of the source dataset size to the number of network parameters. This
is obviously problem and architecture dependent; a typical number might be given by taking the
source dataset to be Imagenet ILSVRC-2012 (size 1.2M) and the architecture to be ResNeXt-101
Xie et al. (2017) (size 44.3M parameters), yielding a relative space increase of about 3%.

Convergence properties SOSELETO is only an approximation to the solution of a bilevel opti-
mization problem. As a result, it is not entirely clear whether it will even converge. In Appendix B,
we demonstrate a set of sufficient conditions for SOSELETO to converge to a local minimum of the
target loss Lt.

6



Under review as a conference paper at ICLR 2019

4 RESULTS

We briefly discuss some implementation details. In all experiments, we use the SGD optimizer
without learning rate decay, and we use λα = 1. We initialize the α-values to be 1, and in practice
clip them to be in the slightly expanded range [0, 1.1]; this allows more relevant source points some
room to grow. Other settings are experiment specific, and are discussed in the relevant sections.

4.1 NOISY LABELS: SYNTHETIC EXPERIMENT

To illustrate how SOSELETO works on the problem of learning with noisy labels, we begin with a
synthetic experiment, see Figure 1. The setting is straightforward: the source dataset consists of 500
points which lie in R2. There are two labels / classes, and the ideal separator between the classes
is the y-axis. However, of the 500 points, 100 are corrupted: that is, they lie on the wrong side
of the separator. This is shown in Figure 1(a), in which one class is shown as white triangles and
the second as black pluses. The target dataset is a set of 50 points, which are “clean”, in the sense
that they lie on the correct sides of the separator. (For the sake of simplicity, the target set is not
illustrated.)

SOSELETO is run for 100 epochs. In Figures 1(b) and 1(c), we choose a threshold of 0.1 on the
weights α, and colour the points accordingly. In particular, in Figure 1(b) the clean (i.e. correctly
labelled) instances which are above the threshold are labelled in green, while those below the thresh-
old are labelled in red; as can be seen, all of the clean points lie above the threshold for this choice of
threshold, meaning that SOSELETO has correctly identified all of the clean points. In Figure 1(c),
the noisy (i.e. incorrectly labelled) instances which are below the threshold are labelled in green;
and those above the threshold are labelled in red. In this case, SOSELETO correctly identifies most
of these noisy labels by assigning them small weights (below 0.1); in fact, 92 out of 100 points are
assigned such small weights. The remaining 8 points, those shown in red, are all near the separator,
and it is therefore not very surprising that SOSELETO mislabels them. All told, using this particular
threshold the algorithm correctly accounts for 492 out of 500 points, i.e. 98.4%.

Further analysis appears in Figures 1(d) and 1(e). In Figure 1(e), a plot is shown of mean weight vs.
training epoch for clean instances and noisy instances; the width of each plot is the 95% confidence
interval of the weights of that type. All weights are initialized at 0.5; after 100 epochs, the clean
instances have a mean weight of about 0.8, whereas the noisy instances have a mean weight of about
0.05. The evolution is exactly as one would expect. Figure 1(e) examines the role of the threshold,
chose as 0.1 in the above discussion; although 0.1 is a good choice in this case, the good behaviour
is fairly robust to choices in the range of 0.1 to 0.4.

4.2 NOISY LABELS: CIFAR-10

We now turn to a real-world setting of the problem of learning with label noise. We use a noisy
version of CIFAR-10 Krizhevsky & Hinton (2009), following the settings used in Sukhbaatar et al.
(2014); Xiao et al. (2015). In particular, an overall noise level is selected. Based on this, a label
confusion matrix is chosen such that the diagonal entries of the matrix are equal to one minus the
noise level, and the off-diagonals are chosen randomly (while maintaining the matrix’s stochastic-
ity). Noisy labels are then sampled according to this confusion matrix. We run experiments for
various overall noise levels.

The target consists of a small clean dataset. CIFAR-10’s train set consists of 50K images; of this
50K, both Sukhbaatar et al. (2014); Xiao et al. (2015) set aside 10K clean examples for pre-training,
a necessary step in both of these algorithms. In contrast, we use a smaller clean dataset of half the
size, i.e. 5K examples while the rest of the 45K samples are noisy. We compare our results to the
two state of the art methods Sukhbaatar et al. (2014); Xiao et al. (2015), as they both address the
same setting as we do – the large noisy dataset is accompanied by a small clean dataset, with no
extra side-information available. In addition, we compare with the baseline of simply training on
the noisy labels without modification. In all cases, Caffes CIFAR-10 Quick cif architecture has been
used. For SOSELETO, we use the following settings: λp = 10−4, the target batch-size is 32, and the
source batch-size is 256. We use a larger source batch-size to enable more α-values to be affected
quickly.

7



Under review as a conference paper at ICLR 2019

Table 1: Noisy labels: CIFAR-10. Best results in bold.

Noise
Level

CIFAR-10 Quick
–

Sukhbaatar et al. (2014)
10K clean examples

Xiao et al. (2015)
10K clean examples

SOSELETO
5K clean examples

30% 65.57 69.73 69.81 72.41
40% 62.38 66.66 66.76 69.98
50% 57.36 63.39 63.00 66.33

Table 2: SVHN 0-4→MNIST 5-9. Best results in bold.
Uses Unlabelled Data? Method nt = 20 nt = 25

No Target only 80.1 84.0
No Fine-tuning 80.2 83.0
No SOSELETO 83.2 87.9

Yes Vinyals et al. (2016) 56.6 51.3
Yes Fine-tuned variant of Vinyals et al. (2016) 79.3 82.7
Yes Luo et al. (2017) 80.4 83.1
Yes Label-efficient version of Luo et al. (2017) 94.2 95.0

Results are shown in Table 1 for three different overall noise levels, 30%, 40%, and 50%. Per-
formance is reported for CIFAR-10’s test set, which is of size 10K. (Note that the competitors’
performance numbers are taken from Xiao et al. (2015).) SOSELETO achieves state of the art on
all three noise levels, with considerably better performance than both Sukhbaatar et al. (2014) and
Xiao et al. (2015): between 2.6% to 3.2% absolute improvement. Furthermore, it does so in each
case with only half of the clean samples used in Sukhbaatar et al. (2014); Xiao et al. (2015).

We perform further analysis by examining the α-values that SOSELETO chooses on convergence,
see Figure 4.2. To visualize the results, we imagine thresholding the training samples in the source
set on the basis of their α-values; we only keep those samples with α greater than a given threshold.
By increasing the threshold, we both reduce the total number of samples available, as well as change
the effective noise level, which is the fraction of remaining samples which have incorrect labels. We
may therefore plot these two quantities against each other, as shown in Figure 4.2; we show three
plots, one for each noise level. Looking at these plots, we see for example that for the 30% noise
level, if we take the half of the training samples with the highest α-values, we are left with only about
4% which have incorrect labels. We can therefore see that SOSELETO has effectively filtered out
the incorrect labels in this instance. For the 40% and 50% noise levels, the corresponding numbers
are about 10% and 20% incorrect labels; while not as effective in the 30% noise level, SOSELETO
is still operating as designed. Further evidence for this is provided by the large slopes of all three
curves on the righthand side of the graph.

Figure 2: Noisy labels on CIFAR-10: Effect of α-values chosen by SOSELETO. Blue is 30% noise,
green is 40% noise, red is 50% noise. See accompanying explanation in the text.

8



Under review as a conference paper at ICLR 2019

4.3 TRANSFER LEARNING: SVHN 0-4 TO MNIST 5-9

We now examine the performance of SOSELETO on a transfer learning task. In order to provide
a challenging setting, we choose to (a) use source and target sets with disjoint label sets, and (b)
use a very small target set. In particular, the source dataset is chosen to the subset of Google Street
View House Numbers (SVHN) Netzer et al. (2011) corresponding to digits 0-4. SVHN’s train set is
of size 73,257 images, with about half of those belonging to the digits 0-4. The target dataset is a
very small subset of MNIST LeCun et al. (1998) corresponding to digits 5-9. While MNIST’s train
set is of size 60K, with 30K corresponding to digits 5-9, we use very small subsets: either 20 or 25
images, with equal numbers sampled from each class (4 and 5, respectively). Thus, as mentioned,
there is no overlap between source and target classes, making it a true transfer learning (rather than
domain adaptation) problem; and the small target set size adds further challenge. Furthermore, this
task has already been examined in Luo et al. (2017).

We compare our results with the following techniques. Target only, which indicates training on
just the target set; standard fine-tuning; Matching Nets Vinyals et al. (2016), a few-shot technique
which is relevant given the small target size; fine-tuned Matching Nets, in which the previous result
is then fine-tuned on the target set; and two variants of the Label Efficient Learning technique Luo
et al. (2017) – one which includes fine-tuning plus a domain adversarial loss, and the other the
full technique presented in Luo et al. (2017). Note that besides the target only and fine-tuning
approaches, all other approaches depend on unlabelled target data. Specifically, they use all of the
remaining MNIST 5-9 examples – about 30,000 – in order to aid in transfer learning. SOSELETO,
by contrast, does not make use of any of this data.

For each of the above methods, the simple LeNet architecture LeCun et al. (1998) was used. For
SOSELETO, we use the following settings: λp = 10−2, the source batch-size is 32, and the target
batch-size is 10 (it is chosen to be small since the target itself is very small). Additionally, the
SVHN images were resized to 28 × 28, to match the MNIST size. The performance of the various
methods is shown in Table 2, and is reported for MNIST’s test set which is of size 10K. We have
divided Table 2 into two parts: those techniques which use the 30K examples of unlabelled data,
and those which do not. SOSELETO has superior performance to all of the techniques which do
not use unlabelled data. Furthermore, SOSELETO has superior performance to all of the techniques
which do use unlabelled data, except the Label Efficient technique. It is noteworthy in particular
that SOSELETO outperforms the few-shot techniques, despite not being designed to deal with such
small amounts of data.

In Appendix C we further analyze which SVHN instances are considered more useful than others
by SOSELETO, by transfering all of SVHN classes to MNSIT 5-9.

Two-stage SOSELETO Finally, we note that although SOSELETO is not designed to use unla-
belled data, one may do so using the following two-stage procedure. Stage 1: run SOSELETO as
described above. Stage 2: use the learned SOSELETO classifier to classify the unlabelled data. This
will now constitute a dataset with noisy labels, and SOSELETO can now be run in the mode of
training with label noise, where the noisily labelled unsupervised data is now the source, and the
target remains the same small clean set. In the case of nt = 25, this procedure elevates the accuracy
to above 92%.

5 CONCLUSIONS

We have presented SOSELETO, a technique for exploiting a source dataset to learn a target clas-
sification task. This exploitation takes the form of joint training through bilevel optimization, in
which the source loss is weighted by sample, and is optimized with respect to the network parame-
ters; while the target loss is optimized with respect to these weights and its own classifier. We have
derived an efficient algorithm for performing this bilevel optimization, through joint descent in the
network parameters and the source weights, and have analyzed the algorithm’s convergence prop-
erties. We have empirically shown the effectiveness of the algorithm on both learning with label
noise, as well as transfer learning problems. An interesting direction for future research involves
incorporating an additional domain alignment term into SOSELETO, in the case where the source
and target dataset have overlapping labels. We note that SOSELETO is architecture-agnostic, and
thus may be easily deployed. Furthermore, although we have focused on classification tasks, the

9



Under review as a conference paper at ICLR 2019

technique is general and may be applied to other learning tasks within computer vision; this is an
important direction for future research.

10



Under review as a conference paper at ICLR 2019

REFERENCES

CIFAR-10 Quick network. https://github.com/BVLC/caffe/blob/master/
examples/cifar10/cifar10_quick_train_test.prototxt.

Jonathan F Bard. Practical bilevel optimization: algorithms and applications, volume 30. Springer
Science & Business Media, 2013.

Kristin P Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang. Model selection via
bilevel optimization. In Neural Networks, 2006. IJCNN’06. International Joint Conference on,
pp. 1922–1929. IEEE, 2006.

Kristin P Bennett, Gautam Kunapuli, Jing Hu, and Jong-Shi Pang. Bilevel optimization and machine
learning. In IEEE World Congress on Computational Intelligence, pp. 25–47. Springer, 2008.

P Panareda Busto and Juergen Gall. Open set domain adaptation. In The IEEE International Con-
ference on Computer Vision (ICCV), volume 1, pp. 3, 2017.

Yue Cao, Mingsheng Long, and Jianmin Wang. Unsupervised domain adaptation with distribution
matching machines. In AAAI Conference on Artificial Intelligence, 2018a.

Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Partial transfer learning
with selective adversarial networks. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2018b.

Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Annals of
operations research, 153(1):235–256, 2007.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In Inter-
national conference on machine learning, pp. 647–655, 2014.

Amnon Drory, Shai Avidan, and Raja Giryes. On the resistance of neural nets to label noise. arXiv
preprint arXiv:1803.11410, 2018.

Benoı̂t Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. IEEE
transactions on neural networks and learning systems, 25(5):845–869, 2014.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International Conference on Machine Learning, pp. 1180–1189, 2015.

Weifeng Ge and Yizhou Yu. Borrowing treasures from the wealthy: Deep transfer learning through
selective joint fine-tuning. In Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion, Honolulu, HI, volume 6, 2017.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580–587, 2014.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint
arXiv:1711.03213, 2017.

Jonathan Krause, Benjamin Sapp, Andrew Howard, Howard Zhou, Alexander Toshev, Tom Duerig,
James Philbin, and Li Fei-Fei. The unreasonable effectiveness of noisy data for fine-grained
recognition. In European Conference on Computer Vision, pp. 301–320. Springer, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

11

https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_quick_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_quick_train_test.prototxt


Under review as a conference paper at ICLR 2019

Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, and Li-Jia Li. Learning from
noisy labels with distillation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1910–1918, 2017.

Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. IEEE
Transactions on pattern analysis and machine intelligence, 38(3):447–461, 2016.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features
with deep adaptation networks. In Proceedings of the 32nd International Conference on Interna-
tional Conference on Machine Learning-Volume 37, pp. 97–105. JMLR. org, 2015.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint
adaptation networks. In International Conference on Machine Learning, pp. 2208–2217, 2017.

Zelun Luo, Yuliang Zou, Judy Hoffman, and Li F Fei-Fei. Label efficient learning of transferable
representations acrosss domains and tasks. In Advances in Neural Information Processing Sys-
tems, pp. 164–176, 2017.

Eran Malach and Shai Shalev-Shwartz. Decoupling” when to update” from” how to update”. In
Advances in Neural Information Processing Systems, pp. 961–971, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, 2011.

Peter Ochs, René Ranftl, Thomas Brox, and Thomas Pock. Bilevel optimization with nonsmooth
lower level problems. In International Conference on Scale Space and Variational Methods in
Computer Vision, pp. 654–665. Springer, 2015.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2010.

Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain adap-
tation. In AAAI Conference on Artificial Intelligence, 2018.

David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to massive
label noise. arXiv preprint arXiv:1705.10694, 2017.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In European conference on computer vision, pp. 213–226. Springer, 2010.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: from classical to
evolutionary approaches and applications. IEEE Transactions on Evolutionary Computation, 22
(2):276–295, 2018.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller. Covariate shift adaptation by
importance weighted cross validation. Journal of Machine Learning Research, 8(May):985–1005,
2007.

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Motoaki Kawanabe.
Direct importance estimation with model selection and its application to covariate shift adaptation.
In Advances in neural information processing systems, pp. 1433–1440, 2008.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus. Training
convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080, 2014.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effec-
tiveness of data in deep learning era. In 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 843–852. IEEE, 2017.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

12



Under review as a conference paper at ICLR 2019

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. In Computer Vision (ICCV), 2015 IEEE International Conference on, pp.
4068–4076. IEEE, 2015.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Computer Vision and Pattern Recognition (CVPR), volume 1, 2017.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, pp. 3630–3638, 2016.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
labeled data for image classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2691–2699, 2015.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, pp. 5987–5995. IEEE, 2017.

Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng Zuo. Mind the
class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 3, 2017.

Xiyu Yu, Tongliang Liu, Mingming Gong, Kun Zhang, and Dacheng Tao. Transfer learning with
label noise. arXiv preprint arXiv:1707.09724, 2017.

Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. Importance weighted adversarial nets
for partial domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8156–8164, 2018.

13



Under review as a conference paper at ICLR 2019

APPENDIX A CONSTRAINING THE WEIGHTS

Recall that our goal is to explicitly require that αj ∈ [0, 1]. We may achieve this by requiring

αj = σ(βj) =


0 if βj < 0

βj if 0 ≤ βj ≤ 1

1 if βj > 1

where the new variable βj ∈ R, and σ(·) is a kind of piecewise linear sigmoid function.

Now we will wish to replace the Update Equation (4), the update for α, with a corresponding update
equation for β. This is straightforward. Define the Jacobian ∂α/∂β by(

∂α

∂β

)
ij

=
∂αi
∂βj

Then we modify Equation (4) to read

βm+1 = βm + λαλp

(
∂α

∂β

)T
QT

∂Lt
∂θ

(θm)

The Jacobian is easy to compute analytically:

∂α

∂β
= diag(σ′(βj)), where σ′(z) =


0 if z < 0

1 if 0 ≤ z ≤ 1

0 if z > 1

Due to this very simple form, it is easy to see that βm will never lie outside of [0, 1]; and thus that
αm = βm for all time. Hence, we can simply replace this equation with

αm+1 = CLIP[0,1]

(
αm + λαλpQ

T ∂Lt
∂θ

(θm)

)
where CLIP[0,1] clips the values below 0 to be 0; and above 1 to be 1.

APPENDIX B PROOF OF CONVERGENCE

SOWETO is only an approximation to the solution of a bilevel optimization problem. As a result, it
is not entirely clear whether it will even converge. In this section, we demonstrate a set of sufficient
conditions for SOWETO to converge to a local minimum of the target loss Lt.

To this end, let us examine the change in the target loss from iteration m to m+ 1:

∆Lt = Lt(θm+1, φ
t
m+1)− Lt(θm, φtm)

= Lt

(
θm − λpQαm , φtm − λp

∂Lt
∂φt

)
− Lt(θm, φtm)

≈ Lt(θm, φtm)− λp
(
∂Lt
∂θ

)T
Qαm − λp

(
∂Lt
∂φt

)T
∂Lt
∂φt
− Lt(θm, φtm)

= −λp
(
∂Lt
∂θ

)T
Qαm − λp

∥∥∥∥∂Lt∂φt

∥∥∥∥2
Now, we can use the evolution of the weights α. Specifically, we substitute Equation (4) into the
above, to get

∆Lt ≈ −λp
(
∂Lt
∂θ

)T
Q

(
αm−1 + λαλpQ

T ∂Lt
∂θ

)
− λp

∥∥∥∥∂Lt∂φt

∥∥∥∥2
= −λp

(
∂Lt
∂θ

)T
Qαm−1 − λαλ2p

∥∥∥∥QT ∂Lt∂θ

∥∥∥∥2 − λp ∥∥∥∥∂Lt∂φt

∥∥∥∥2
≡ ∆LFOt

14



Under review as a conference paper at ICLR 2019

where ∆LFOt indicates the change in the target loss, to first order.

Note that the latter two terms in ∆LFOt are both negative, and will therefore cause the first order
approximation of the target loss to decrease, as desired. As regards the first term, matters are un-
clear. However, it is clear that if we set the learning rate λα sufficiently large, the second term will
eventually dominate the first term, and the target loss will be decreased. Indeed, we can do a slightly
finer analysis. Ignoring the final term (which is always negative), and setting v = QT ∂Lt

∂θ , we have
that

∆LFOt ≤ −λpvTαm−1 − λαλ2p‖v‖2

≤ λp‖v‖1 − λαλ2p‖v‖22
≤ λp

√
ns‖v‖2 − λαλ2p‖v‖22

= λp‖v‖2
(√

ns − λαλp‖v‖2
)

where in the second line we have used the fact that all elements of α are in [0, 1]; and in the third
line, we have used a standard bound on the L1 norm of a vector.

Thus, a sufficient condition for the first order approximation of the target loss to decrease is if

λα ≥
√
ns

λp
∥∥QT ∂Lt

∂θ

∥∥
If this is true at all iterations, then the target loss will continually decrease and converge to a local
minimum (given that the loss is bounded from below by 0).

APPENDIX C ANALYZING SVHN 0-9 TO MNIST 5-9

SOSELETO is capable of automatically pruning unhelpful instances at train time. The experiment
presented in Section 4.3 demonstrates how SOSELETO can improve classification of MNIST 5-9 by
making use of different digits from a different dataset (SVHN 0-4). To further reason about which
instances are chosen as useful, we have conducted another experiment: SVHN 0-9 to MNIST 5-9.
There is now a partial overlap in classes between source and target. Our findings are summarized
in what follows. An immediate effect of increasing the source set, was a dramatic improvement in
accuracy to 90.3%.

Measuring the percentage of “good” instances (i.e. instances with weight above a certain threshold)
didn’t reveal a strong correlation with the labels. In Figure 3 we show this result for a threshold of
0.8. As can be seen, labels 7-9 are slightly higher than the rest but there is no strong evidence of
labels 5-9 being more useful than 0-4, as one might hope for.

That said, a more careful examination of low- and high-weighted instances, revealed that the useful-
ness of an instance, as determined by SOSELETO, is more tied to its appearance: namely, whether
the digit is centered, at a similar size as MNIST, the amount of blur, and rotation. In Figure 4 we
show a random sample of some “good” and “bad” (i.e. high and low weights, respectively). A close
look reveals that “good” instances often tend to be complete, centered, axis aligned, and at a good
size (wrt MNIST sizes). Especially interesting was that, among the “bad” instances, we found about
3− 5% wrongly labeled instances! In Figure 5 we display several especially problematic instances
of the SVHN, all of which are labeled as “0” in the dataset. As can be seen, some examples are very
clear errors. The highly weighted instances, on the other hand, had almost no such errors.

15



Under review as a conference paper at ICLR 2019

% instances above threshold

SVHN class labels

Figure 3: Percentage of good instances from SVHN per class. Classes 0-4 are colored blue and
classes 5-9 are colored orange.

Randomly sampled ”good” instances Randomly sampled ”bad” instances

Figure 4: SVHN “good” (left) and “bad” (right) instances of class label 0.

Figure 5: Hand-picked examples from the pool of “bad” instances with label 0.

16


	Introduction
	Related work
	SOSELETO: SOurce SELEction for Target Optimization
	Results
	Noisy labels: synthetic experiment
	Noisy labels: CIFAR-10
	Transfer learning: SVHN 0-4 to MNIST 5-9

	Conclusions
	Constraining the Weights
	Proof of Convergence
	Analyzing SVHN 0-9 to MNIST 5-9

