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Abstract. Deep neural networks are well suited to address medical
problems such as the automated analysis of leukocytes in bone marrow
images. However, their training requires large annotated datasets.
The shortage of annotations is one of the most prevalent problems in
biomedical image analysis. Particularly with polygonal contours as seg-
mentation training data, creating high quality annotations is infeasible.
Weak annotations, e.g. bounding boxes, can be obtained more easily.
This paper investigates several approaches that aim at refining weak
annotations. The resulting refined contours are used to train a semantic
segmentation network. Our evaluation shows that it is possible to achieve
precision close to training with ground truth data, with a novel U-net
method, presented in this paper.
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1 Introduction

In deep learning, it is often difficult to acquire a suitable number of annota-
tions, particularly for supervised segmentation of medical images. This makes
it necessary to appropriately balance the trade-off between annotation accuracy
and the required effort. Therefore, a viable approach is the refinement of quickly
obtainable, imprecise annotations prior to network training [8].

An important medical image analysis task is the segmentation of leukocytes
(white blood cells). Leukocytes are an integral part of the human immune system.
They are created through differentiation of hematopoietic stem cells in the bone
marrow. Based on their morphology, leukocytes can be grouped into several
different classes in varying stages of maturity. The distribution of cell types
is an important diagnostic tool and a deviation from the normal distribution
indicates diseases such as leukemia. Conventionally, the required statistics are
obtained manually, which is extremely time-consuming and prone to human
error. Consequently, an automated analysis tool is desirable.
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Even though classical methods exist, they mostly tackle subproblems, such
as nuclei segmentation [13], require some form of supervision [15], consider only
peripheral blood [16] or a subset of cell types [14]. Deep learning has the poten-
tial to overcome these limitations, as has been done in classification tasks [6].
However, there are no public datasets available with a sufficiently large number
of cell annotations, particular none which are suitable for segmentation. Creating
such a dataset manually is extremely labour intensive. Optimizing this process
is a crucial step in building a solid data basis for bone marrow image analysis.

In the category of Weakly Supervised Learning, many improvements focus on
adapting the network structure or the training procedure. BoxSup [5] iteratively
updates an initial bounding box to create more accurate masks during training.
Another algorithm using expectation maximization based foreground estimation
within a bounding box yields good results [11]. Khoreva et al. suggest that it is
also possible to work with a refinement procedure of weak annotations [8].

We propose to use a limited set of expert contoured cells to refine a larger
set with weak annotations. This alleviates the need for changing the network
structure or training process.

Figure 1 shows the proposed pipeline. In Stage 1 (Annotation Refinement),
we investigate several algorithms for the refinement of weak annotations. We
employ classical segmentation algorithms, model-based approaches and a novel
U-Net based method. In Stage 2 (Network Training), we train a segmentation
network on the refined annotations from Stage 1. Theoretically, any neural net-
work could be used in this stage because we use the refined annotations as if
they were manual annotations.

Contributions (1) We compare classical, model-based and learning-based ap-
proaches for the refinement of weak annotations. (2) We introduce a refinement
method based on the U-Net segmentation algorithm that yields highly effective
training data. (3) We propose a pipeline that exploits a small amount of well
annotated data to increase performance on weakly annotated data.

2 Image Data

Dataset We digitized Pappenheim stained bone marrow samples with 63× mag-
nification using immersion oil. A total of 4500 cells were annotated by medical

Annotation Refinement Method
• Classical Method  

(Superpixel/L0 + Watershed/Snakes)

• Model-based Methods (AAMs)

• Deep-learning Approaches (U-net)
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Stage 1: Annotation Refinement

Refined 
Annotation

Segmentation Network

Evaluated application in this paper:  
Semantic Segmentation using U-Net

Stage 2: Network Training

Fig. 1. Stage 1 employs one of several different methods for the refinement of a weak
annotation. Stage 2 uses the refined annotation to train a neural network.
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(a) extract from the dataset (b) corresponding ground truth

Fig. 2. An example image with corresponding ground truth from the dataset. Note
that the ground truth image is generated from instance polygons.

experts as polygonal contours and class labels. The corresponding segmentation
masks denote hematopoietic cells as shown in Figure 2. We extracted 5602 image
patches of size 256 × 256 px2 from these annotated whole-slide images.

Weak Annotations We simulate circular, weak annotations by perturbing the
minimal enclosing circle of a cell’s ground truth contour. The circle is artificially
distorted by adding noise to the center coordinates and the radius to simulate
inaccuracies in manually drawing such a circle. The radius is increased to cover
the whole cell again, before applying additional noise.

This mimics the characteristics of easily obtainable weak annotations by
medical experts: it is easy to define a circle covering the whole cell but difficult
to pinpoint the exact center of the minimal enclosing circle.

3 Annotation Refinement Methods

The following section captures three different kinds of refinement approaches –
classical, model-based and learning-based segmentation. These methods aim at
refining an initial, weak estimate of a single cell contour. All refined annotations
together form the training set, which is used in Stage 2.

Classical Segmentation Each of the following classical pipelines comprises a
pre-processing and a segmentation step. For pre-processing, we employ either
the commonly used Superpixel [1] algorithm or L0-Smoothing [17]. Additionally,
histogram equalization and low pass filtering are performed. In the segmentation
step we use either an Active Contour Model [7] (referred to as ACM or Snakes)
or a variant of Watershed [3], with the weak annotation as the initial contour.
Both are classical methods often used for finding boundary pixels in images.
This results in four methods, combining either Superpixel or L0-Smoothing with
either Watershed or Snakes.
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Model-based Segmentation A commonly used model-based algorithm for
segmentation tasks is Active Appearance Model Fitting (AAM) [10]. With Lucas
Kanade-based minimization [2], landmarks in a given image can be localized by
iteratively refining the weak annotation. Ground-truth segmentation polygons
are resampled to a fixed number nlandmarks of equidistant landmarks. We trained
three different Patch-based models: one with ndiag = 50 and nlandmarks = 18
(denoted as AAM ), the same based on HoG-Features (HOG-AAM ), and a large
version with ndiag = 200 and nlandmarks = 54 (XL-AAM ). Furthermore, we
evaluate the first AAM with constrained parameters [4] (C-AAM ).

Deep Learning-based Segmentation In the category of deep learning-based
approaches, we chose vanilla U-Nets [12] with a depth between 3 and 6. While
this model is often used for segmentation of bio-medical images, it is not directly
suitable for instance segmentation, as required in this case. Thus, we modify the
training data by eroding the ground truth polygon with a circular kernel of
fixed size. This ensures that adjacent cells can be distinguished more easily. For
refinement, we perform U-Net prediction and dilate the predicted area within
the weak annotation using the same kernel as before.

4 Evaluation

We perform two experiments to evaluate the precision of the refinement methods
and their ability to improve the performance of a segmentation network.

Stage 1: Annotation Refinement We compare refined annotations based
on the methods presented in Section 3, as well as the weak annotations, with
the corresponding manual annotations (ground truth). We employ 3-fold cross-
validation, repeated 10 times with different random seeds for the perturbation
of the weak annotations.

Stage 2: Network Training Further, we evaluate the capability of refined
annotations to improve segmentation performance compared to using weak an-
notations directly. We also test the performance of manual annotations. We
chose semantic segmentation using a vanilla U-Net of depth 5 as a network for
the second stage.

For this experiment, we separated the dataset into six subsets. In every cross-
validation, one of them serves as the test set and the remaining five sets as the
training data. For each of the five sets, we generate refined annotations based
on training on the other four sets.

Limited Training Data We further evaluated the method with limited train-
ing data for the first stage. For this scenario, we used one of six subsets as
training data for the Stage 1 U-net method (depth 5). Based on this we refine
four subsets, which are then utilized as training data for a Stage 2 U-Net (depth
5).
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Fig. 3. First stage refinement results: L0+WS (green), AAM (yellow), U-Net 5 (blue),
weak (red), manual annotation (violet)

Parameters and Setup The (hyper-)parameters set to the following based on
an initial analysis of a wide range of parameters on a smaller subset.

(SLIC) nsegments = 100, c = 10 (L0-Smoothing) λ = 0.02 (AAM) 2 scales,
20 shape components, 100 appearance components, 16× 16 px2 patch-size, 10 %
weight for the constraints (U-Net) 8 px kernel size. Gaussian noise for the weak
annotations used σc = 7 px and σr = 2 px.

In Stage 2, we only evaluate selected approaches and weak annotations. We
train for 150 epochs using an Adam optimizer (learning rate 0.0001) and the
Dice loss. We retain the model with the highest validation Dice score. Further,
we apply random crop and random rotation for data augmentation and pre-train
the U-Net on the medical image dataset of the MoNuSeg-Challenge [9].

5 Results

We use the Dice score as a criterion to measure segmentation accuracy. Results
are shown in Figure 4 a (Stage 1) and Figure 4 b (Stage 2). The refinement results
(Stage 1) for five cells are shown in Figure 3.

Computation Times Computations on a GTX 1080 Ti and a Quad-core i7 4.6
GHz took 0.1 s to 0.7 s for classical methods and normal model-fitting, almost
3 s for a large or feature-based model and 8 ms to 17 ms for the U-Net approach.

Stage 1: Annotation Refinement Figure 4 a clearly shows that model-based
approaches perform better than classical approaches, while deep learning-based
methods outperform both. Both classical methods and AAMs generally result
in a higher number of accurately fitted cells. The U-Net approach yields more
precise results, but fails for approximately 10 % of the cases (not shown in the
plot). A failure can occur if no cell is predicted at all or two cells are inseparable.
However, they can simply be replaced with weak annotations for the subsequent
learning task if this is detected. A deeper network results in a lower failure rate.

Another observation is that the larger AAM (XL-AAM ) performs worse than
the normal-size version (AAM ). C-AAM performs slightly better, while HOG-
AAM is the most successful model-based approach. Of the classical approaches,
L0-preprocessed images tend to yield more accurate segmentations, especially
together with Watershed.
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(a) Dice score distribution for the Stage 1 refinement methods.
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(b) Dice score distribution for Stage 2 segmentation results.

Fig. 4. Results for Stage 1 and Stage 2.

Stage 2: Network Training Figure 4 b shows the result of the segmentation
network trained with different annotation refinement methods.

Even though the weak annotations are quite imprecise, the results are not
significantly worse compared to SLIC+ACM, which has much higher accuracy
in the first stage. The C-AAM approach, which is less accurate in segmenting
single cells, performs better compared to this classical approach. HOG-AAM,
which yields better results in the first stage, is not much better than C-AAM.
L0+WS is the most accurate approach of the classical and model-based ap-
proaches evaluated in this experiment. The U-Net method yields results close to
using manual annotations.

Limited Training Data Using limited training data (i.e., just one of six sub-
sets) for training the first stage, reached similar results as previous experiments:
across all folds, we achieved a mean dice score of 0.859 with a variance of 0.0026
in the second stage.
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6 Discussion & Outlook

The results show that a refinement using classical and model-based approaches
yields slightly better Stage 2 segmentation results compared to weak annotations
exclusively. The accuracy of the segmentation network is not directly related to
the accuracy of the refinement method: some more precise methods yield worse
results when used as training data (e.g. C-AAM compared to SLIC+ACM ).
Imprecisions in the refined annotations, particularly from model-based and clas-
sical approaches, tend to focus on salient image characteristics. Consequently,
erroneous annotations created by those approaches are more likely to mislead
the segmentation network than random weak annotations.

The success of the U-Net approach indicates that by using a method trained
on precise contours for refinement of weak annotations, the annotation effort
can significantly be reduced without too high loss in segmentation precision.
Even though it needs to be ensured that a sufficient amount of training data
is available, our results with limited training data indicate that already a small
amount is beneficial. We will conduct further research regarding performance as
a function of training data. Due to the capabilities of the U-Net in general, it is
likely that this approach could be useful to a wider range of applications from
different modalities as well as different object shapes. Further improvements
could be gained by using a three class network (background, cell, cell contour).

As the process of manually drawing contours is extremely time consuming,
it was not feasibly to perform an intra- and inter-rater analysis yet.

We employ the U-Net method for the generation of annotated leukocytes in a
bone marrow microscopy dataset. This approach significantly reduces annotation
time without significant loss in terms of precision in subsequent tasks.

7 Conclusion

In this paper, we analyze three different classes of approaches for contour re-
finement with respect to their suitability to provide data for supervised training
of a deep segmentation network. Classical methods and simple model-based ap-
proaches improve results when used as training data. Furthermore, we propose
a novel method based on U-Net prediction and morphological operations. This
method provides refined annotations, which yield segmentation accuracies close
to those achieved by networks trained on manually generated ground truth data.
We demonstrate the effectiveness of refining weak annotations prior to training
on a challenging problem in medical image analysis.
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superpixels compared to state-of-the-art superpixel methods. IEEE Transactions
on Pattern Analysis and Machine Intelligence 34(11), 2274–2282 (2012)

2. Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. Inter-
national Journal of Computer Vision 56(3), 221–255 (2004)

3. Beucher, S., Meyer, F.: The morphological approach to segmentation: the water-
shed transformation. Optical Engineering 34, 433–433 (1992)

4. Cootes, T.F., Taylor, C.J.: Constrained active appearance models. In: Computer
Vision (ICCV), 8. IEEE International Conference on. vol. 1, pp. 748–754 (2001)

5. Dai, J., He, K., Sun, J.: Boxsup: Exploiting bounding boxes to supervise convo-
lutional networks for semantic segmentation. In: Computer Vision (ICCV), 2015
IEEE International Conference on (December 2015)
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