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Abstract

Place and grid-cells are known to aid navigation in animals and humans. Together1

with concept cells, they allow humans to form an internal representation of the2

external world, namely the concept space. We investigate the presence of such a3

space in deep neural networks by plotting the activation profile of its hidden layer4

neurons. Although place cell and concept-cell like properties are found, grid-cell5

like firing patterns are absent thereby indicating a lack of path integration or feature6

transformation functionality in trained networks. Overall, we present a plausible7

inadequacy in current deep learning practices that restrict deep networks from8

performing analogical reasoning and memory retrieval tasks.9

1 Introduction10

Cells in the hippocampal region of the rat brain signal the animal’s location in space. This phenomenon11

has provided support to the idea that the rat hippocampus operates like a cognitive map [1]. Specific12

cells, termed as the “place cells” are known to selectively fire when the animal is in certain locations13

in the environment [1]. The discovery of place cells was followed by the discovery of “grid” cells,14

that selectively fire at multiple discrete and regularly spaced locations [2]. Extensive animal studies,15

especially in rats, involving electrophysiological recording have shown the existence of grid cells16

and place cells in localized brain structures, namely the medial entorhinal cortex and hippocampus17

respectively. In humans, the role of the medial temporal lobe and particularly the hippocampus in18

creation, consolidation and recall of declarative memories has been established [3]. Specific cells in19

the medial temporal lobe (MTL), called the “concept” cells, seem to fire when a particular concept is20

presented to the subject [4]. These findings established that humans are indeed capable of forming an21

internal representation of the external world. Navigating this internally represented abstract concept22

space might indeed form the basis of memory retrieval or context-driven reasoning.23

Deep learning (DL) has brought about a new dawn in artificial intelligence by enabling models to24

learn representations of data with multiple levels of abstraction. However, most of these models lack25

the flexibility to perform relational reasoning. These issues have rekindled interest among researchers26

to understand and replicate the brain’s learning process. The success of deep neural networks (DNN)27

is generally attributed to their ability to identify optimal discriminative features in a given dataset.28

This learnt feature space can be thought of as a “concept” space for the DNN. The ability to perform29

relational reasoning depends on the network’s ability to navigate over this concept space. To solve30

analogical problems, the network needs to apply the desired feature transformation to arrive at the31

correct solution. For instance in the image space, the network needs to navigate the visual concept32

space to understand that an OR operation between a “dog image” and a “ball image” could lead to an33

image of “a dog playing with a ball”.34

The ability to navigate the concept space depends on the properties of the constituent neurons. Akin35

to memory retrieval or context-driven reasoning in humans, DNN would need neurons that show36
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place and grid-cell like activation properties. Artificial neurons that respond to specific classes of37

images could be considered as showing place cell-like activity in the concept space. Consequently,38

all final layer neurons of a DNN trained for a classification problem would be showing place-cell like39

activity. However, the ability to navigate the concept space relies on the DNN’s ability to perform40

“path integration”, or the ability to localize its position in the concept space given specific feature41

transformations. Grid cells are known to be responsible for path integration in rodents and humans.42

Therefore, the ability of the DNN to solve analogical problems relies on the presence of grid cell-like43

properties among DNN neurons.44

In this work1, we aim to investigate a particular class of DNN, namely convolutional neural network45

(CNN). We investigate the firing properties of neurons, specifically in the final and pre-final layers, to46

understand their activation patterns while the network performs classification.47

2 Methods and Results48

We trained a CNN to identify hand-written digits 0− 9 in the MNIST dataset. The dataset has 60,00049

images for training and the network was tested on 10,000 images. The network architecture consists50

of two 2D convolutional layers (filter size 5) followed by 2D Max-pooling layers. The output of the51

convolutional layers was fed to a dropout layer and further input to two fully connected layers with 5052

and 10 hidden units. Rectified Linear Unit (ReLU) was used as the activation function. The network53

was implemented on PyTorch 1.1.0 and trained to optimize negative log-likelihood loss using the54

Adam optimizer. The network was trained using a learning rate of 0.001 for 10 epochs (training batch55

size = 128). At the end of 10 epochs, the network’s accuracy on the testset was 98.79 %.56

Once the network was trained to yield a satisfactory classification accuracy on the testset, we57

investigated the activation properties of constituent neurons. We limited our analysis to the pre-58

final and final layers (Layer 6 & 7 respectively) only. To visualize the concept space, we used59

the t-distributed Stochastic Neighbourhood Embedding (tSNE) [5] to generate a low-dimensional60

representation (2D representation here) of the feature space. We explored two concept spaces – one61

generated from the tSNE plot of raw image data and the other generated from the activation of the62

final layer neurons of the network. The first corresponds to the image concept space and the second63

corresponds to the concept space learned by the network, also referred hereafter as the network64

concept space. We generated the aforementioned spaces for the testset images (10,000 points). Figure65

1 shows the two concept spaces.66

(a) tSNE representation of the image space for the
MNIST testset.

(b) tSNE representation of the learned feature
space for the MNIST testset.

Figure 1: Concept spaces obtained from tSNE representations of higher dimensional data in 2
dimensions.

To observe the firing property of the neuron across the concept space, the tSNE plots were color-coded67

using the respective neuron’s activation values. Figure 2 shows the firing pattern of Layer 7 neurons.68

All the final layer neurons showed place-cell like activity, with preference to one cluster. Given the69

training paradigm, this was expected. Further, we extended our analysis to observe the firing pattern70

of the previous layer.71

The pre-final layer had 50 neurons. However, none of the neurons had grid-cell like firing property.72

We used Principal Component Analysis (PCA) and obtained 11 PCs that significantly explained the73

1Code and results available here
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(a) Activation patterns of final layer neurons in image space

(b) Activation patterns of final layer neurons in network space

Figure 2: Activation patterns of the final layer neurons represented using color coding on the tSNE
plots. All non-negative activities are clamped to 0 as they correspond to highlight regions with high
neuronal activation, akin to firing rates.

firing properties of these neurons. The firing patterns of these 11 PC neurons are shown in Figure 3.74

Since the firing patterns of the PC neurons are obtained from a linear combination of those of the75

pre-final neurons, the absence of a grid-like firing pattern in the 50 neurons is reflected in the firing76

patterns shown in Figure 3. Instead these neurons show preferential firing to multiple clusters, thus77

indicating that these neurons respond to images of multiple digits.78

3 Discussions & Conclusion79

In this work, we explored the firing patterns of final and pre-final layer neurons in a CNN trained80

to identify hand-written digits in the MNIST dataset. Although the final layer neurons showed81

place-cell like firing patterns in the learned concept space, the pre-final layer neurons failed to show82

any grid-cell like firing patterns. The distinction in firing patterns is clearer in the network space83

as compared to the image space, thus indicating that the network coded for certain regions in the84

concept space. However, the absence of grid-cell like firing indicates that the network failed to learn85

the transformations and manifolds in the concept space. This would imply that the network would be86

unable to navigate this space and thereby perform feature transformation operations in this space.87

Thus, the trained CNN would fail to perform analogical problems, similar to other deep models88

trained on more complicated datasets.89

The network analyzed here was a fairly simple and shallow network as compared to practical deep90

networks. However, it serves as a toy example to illustrate the inadequacy of current training practices91

that restrict deep networks from performing analogical reasoning tasks. Since the images were92

shown to the network in isolation, the network was unable to learn the information of manifolds and93
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(a) Activation patterns of the principal components of pre-final layer neurons
in image space

(b) Activation patterns of the principal components of pre-final layer neurons
in network space

Figure 3: Activation patterns of the principal components of pre-final layer neurons represented using
color coding on the tSNE plots.

relative transformation among the clusters. Adding examples that lie on manifolds in this space could94

alleviate this problem. More recently, Hill et al. proposed a framework to incorporate analogical95

reasoning in deep networks using a modified training strategy [6]. It would be interesting to observe96

the firing patterns of neurons in such a network, as done here, to inspect if the network navigated the97

concept space similar to the animal brain.98
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