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ABSTRACT

Neural models achieve state-of-the-art performance due to their ability to extract
salient features useful to downstream tasks. However, our understanding of how
this task-relevant information is included in these networks is still incomplete. In
this paper, we examine two questions (1) how densely is information included in
extracted representations, and (2) how similar is the encoding of relevant infor-
mation between related tasks. We propose metrics to measure information density
and cross-task similarity, and perform an extensive analysis in the domain of nat-
ural language processing, using four varieties of sentence representation and 13
tasks. We also demonstrate how the proposed analysis tools can find immediate
use in choosing tasks for transfer learning.

1 INTRODUCTION

Neural models achieve state of the art performance on a wide range of tasks in computer vision,
machine learning and natural language processing (Goodfellow et al., 2016). The key to the success
of these models is their ability to automatically create rich representations of the input (i.e images,
words or sentences) that possess the salient information necessary to perform particular tasks.

However, despite the success of these neural feature extractors, most neural representations are hard
to interpret (Shi et al., 2016b; Lipton, 2016). Recent research has thus attempted to answer the
natural question: what information about the input do neural representations capture? For example,
in natural language processing (NLP) tasks – the main test bed upon which we examine the methods
in this paper – Shi et al. (2016a;b) reveal that syntactic phenomena are captured by neural encoder-
decoder translation systems, Adi et al. (2016) demonstrate that sentence representations are aware
of sentence structure like length, word-order and word-content, and Conneau et al. (2018) probe
sentence representations for 10 linguistic properties.

However, while previous work has given us an idea of what information is contained, it is still
unclear how this information is captured. In this paper, we attempt to fill this gap in our knowledge
of interpreting neural representations, specifically focusing on the following questions:

• How densely is the information encoded within the representation, and across what dimen-
sions is it distributed?

• How is the information shared, for a given input, between two similar (or dissimilar) tasks?

We examine these questions through a comprehensive quantitative study of how popular sentence
representations encode information. We propose methods to characterize the information density –
how densely information necessary to solve a downstream task is encoded (§3) – and information
similarity – how similarly information is encoded for different tasks (§4). For information density,
we introduce the notion of “Condensed Feature Sets” (CFS), a minimal set of features required for
a classifier to achieve a certain level of accuracy on a target task. For information similarity, we take
a CFS for a given task and compare it to the CFS for other tasks, which provides cues about how
many common features are shared among them.

We further demonstrate that these metrics, in addition to satisfying our curiosity, have immediate
practical use; specifically allowing us to choose tasks for transfer learning (§5). Transfer learning
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Figure 1: Input representation from a neural extractor is investigated for task-specific information.
Here, information for Task A and C is compactly encoded, whereas information for Task B is dis-
persed. Also, similar dimensions in Task A and C are discriminative and hence the tasks require
similar information and form good candidates for transfer learning.

is the act of training on one task then transferring the knowledge acquired therefrom to improve
performance on another task, and is most effective when these tasks are highly related (Pan & Yang,
2010). We directly use our information similarity metric between two tasks as a proxy for transfer
learning potential between them.

In experiments (§6), we examine these metrics over 4 different neural sentence encoders and 13
diverse syntactic or semantic natural language tasks. Using our measures of information density,
we discover that information necessary for many of these tasks is concentrated in a very few units
(§7.1). Further, information similarity metrics are able to predict good candidate tasks for transfer
learning that correlate highly with actual transfer learning performance (§7.2).

2 CONCEPTUAL OVERVIEW

As discussed in the introduction, this paper delineates two concepts: “information density” and
“information similarity”. In this section, we give an informal and intuitive explanation of these
concepts and their utility, while in the following sections (§3 and §4) we provide mathematical
details to instantiate these concepts explicitly.

Information density is defined with respect to a particular method of encoding inputs into hidden
representations, and a particular down-stream task that uses these representations. We treat the
encoding of this task-specific information as “dense” if the necessary information to solve the task
is largely encoded in only a few elements of the hidden representation, and “dispersed” if many
neurons play a significant role in solving the tasks. This equips us to ask questions such as “Is the
information for task A encoded more compactly than the information for task B?” (which can be
answered in affirmative for the case in Figure 1). One can also answer questions like “Is encoder X
or encoder Y able to encode the information for task A in a more compact way?”

Information similarity is defined with respect to two tasks in the context of a common fixed encoder.
Specifically, we define two tasks as similar if similar elements in the hidden representation contribute
to solving the two tasks. This enables us to inquire “Is task A more similar to task B or task C?”
(For the case in figure 1, the answer to the question is Task C). This allows us to empirically answer
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questions about which tasks are most related to each other from the point of view of a particular
encoded representation, which has practical applications in transfer learning (as shown in §5).

3 METRICS FOR INFORMATION DENSITY

More formally, to measure information density, let X = [x1,x2, . . . ,xn]
ᵀ be input representations,

where xi ∈ Rd. These input representations capture (to a varying degree) information essential to
solve a set of classification tasks T . Each task t ∈ T comprises of a set of 〈x, y〉 pairs. To quantify
the information in the input representations X, about a specific classification task t, we measure the
accuracy a classifier f ∈ F would obtain on the task t using X. We restrict F to be a set of linear
functions over the input space X.

If instead of using all the d dimensions, we require only a handful of k � d dimensions to retain
a large fraction of the accuracy, then we can conclude that the information density for task t is
high for the input representations X. To formalize this, we first define accuracy score of the best
classifier f for task t using only a subset γ of the columns of X,

score(F , t, γ) = max
f∈F

∑
〈xi,yi〉∈t

(
1(f(xiγ) = yi)

)
n

where: xiγ = [xij | j ∈ γ]

We then define the concept of a Condensed Feature Set (CFS). Let CFSα(F , T ) ⊆ {1, 2, . . . , d} be
the smallest subset such that:

score(F , t,CFS) ≥ α(score(F , t, {1, 2, . . . , d})− bt) + bt

where bt is the base rate (i.e the percentage of examples in the majority class of task t), and α
is a hyperparameter that we dub the ‘retention ratio’. Intuitively, CFS is the smallest subset of
dimensions that are able to retain α times the original accuracy1 gain over the majority class baseline.
It is worthwhile to note that the CFS depends on the choice of representation. Two different ways to
represent input could lead to altogether different CFS for the same task.

Computing CFS is a combinatorially hard problem, and we use a greedy forward selection approach
to approximate it. We start with an empty set C and iteratively add dimension i ∈ {1, 2, . . . , d} \C
that provides the highest increase in classification accuracy until the set C satisfies the criterion for
it to be the CFS set. It is important to note that forward selection provides an upper bound on the
cardinality of CFS for a given task, classifier and a representation choice. However, empirically we
find that even this approximate method results in quite small sets of salient features in our experi-
ments in Section 7. Also, notably the CFS does not imply that the other dimensions are devoid of
any information, but rather that task specific information is sufficiently contained in the CFS.

4 METRICS FOR INFORMATION SIMILARITY

In this section, we tackle the problem of evaluating information similarity between two tasks by
using either the previously described CFS (§3), or direct comparisons between classifier weights.

4.1 ESTIMATING INFORMATION SIMILARITY USING CFS

To assess the information similarity for two tasks t1, t2, we first compute their CFSs C1 and C2,
then compute a metric of similarity between them.

A first intuitive attempt at a metric is set overlap ( |C1∩C2|
|C1∪C2| ). While the fraction of common hidden

units in the condensed feature sets is a straightforward metric, it has two key drawbacks. First,
set overlap does not take into account the relative influence of each dimension on classification

1Original accuracy is the accuracy score attained using the full set of dimensions
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performance. While this could potentially be addressed by some sort of weighting of dimensions, a
more concerning drawback is that there could be a high redundancy (or correlation) among different
hidden units leading to the possibility of two sets with very small overlap potentially encoding very
similar information. These drawbacks preclude us from using this metric.

Instead, we propose a second metric, information transfer. We wish to evaluate how useful the
information content in C1 is to the task t2. One way to approximate this is to compute the accuracy
of a classifier on task t2 using the features C1. This metric is robust to the redundancy problem men-
tioned earlier since two redundant sets would yield very similar accuracies using a linear classifier.

4.2 ESTIMATING INFORMATION SIMILARITY USING CLASSIFIER WEIGHTS

An alternative way to measure the information similarity for two tasks is to compute the similarity
of the classifier weights trained for the two tasks. Specifically, using the representation X , we train
two linear classifiers and then compute the inverse distance between the classifier weights. Let w1

and w2 be the normalized absolute classifier weights, such that they are positive and sum up to 1,
then we can define similarity(t1, t2) = ‖w1 −w2‖−1.

By using the absolute values of the learned weights, our notion of information similarity does not
suffer from cases where the tasks have a strong negative correlation. In the extreme case of perfect
negative correlation, the learned vectors would be w and −w, and we would rightly estimate a high
information similarity between two clearly related tasks.

5 APPLICATION TO TRANSFER LEARNING

We can use our formalization of condensed feature sets and information similarity to solve a common
problem in transfer learning – of choosing appropriate tasks for transfer learning. More formally,
we have a set T of classification tasks and a representation X, consider the following problem:

Given a primary task tp ∈ T , find a candidate task tc ∈ {T \ tp} such that transfer
learning from tc would lead to the highest performance gain on the task tp.

This is a common problem when the primary task tp is a low resource task and there are potential
high resource candidate tasks which could be used for learning from. The most common learning
methodology is to train the candidate task first, and then transfer it’s sentence encoder weights to
the main task by fine-tuning (Mou et al., 2016; Conneau et al., 2017; 2018). This problem of finding
the best candidate task for a given main task, tp, can be trivially solved by trial and error. However,
this requires training 2n neural networks (for each task, once to train the candidate task and other
to fine tune after pre-training), where n is the number of candidate tasks (T \ tp). Training such a
large number of networks can be computationally expensive, and to the best of our knowledge, there
are no efficient solutions to this problem. Practitioners often rely on their intuitive understanding of
the similarity of tasks as a proxy to the task’s transfer potential or transferability. Using our transfer
similarity criterion, we can produce a ranked recommendation list of candidate tasks.

6 EXPERIMENTAL SETUP

In this work, we examine our methods on popular natural language processing tasks using four
different choices of sentence representations (a brief overview is presented in Table 1).

Task Details: To determine task-specific information density in sentence representations, and cal-
culate and evaluate predicted transfer potentials, we design a set of experiments on a diverse suite
of text classification tasks. The tasks can be divided into:

High Resource Tasks include textual entailment on Stanford Natural Language Inference (SNLI)
dataset, sentiment analysis (on IMDB and binary version of Stanford Sentiment Treebank, SST
(b)), Quora question deduplication task (QUORA) and probing tasks from Conneau & Kiela (2018)
comprising of bigram shift (BShift) which tests if a bigram in a sentence is inverted, Tense task
which asks for the tense of the main-clause verb, sentence length (SentLen) classifies a sentence
into equal-width bins according to number of words in a sentence, and finally, Semantic Odd Man
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Name Dimensions Objective/Description
SkipThought 4800 Encode a sentence to predict

(Kiros et al., 2015) the sentences around it
SIF 300 Weighted average of word vectors

(Arora et al., 2016) and then modify a bit using PCA/SVD
InferSent 4096 Universal sentence representations

(Williams et al., 2017) trained on supervised NLI task
ParaNMT 4096 Train paraphrastic sentence embeddings on

(Wieting & Gimpel, 2017) English-English sentential paraphrase pairs

Table 1: A brief overview of the sentence representations we experiment with in this work

Out (SOMO) tests whether a noun or a verb is out of context (replaced) in a sentence.

Low Resource Tasks include textual entailment on sentences involving compositional knowl-
edge (SICK corpus), paraphrase detection (on Microsoft Research Paraphrase Corpus (MRPC)),
question classification (TREC) and the fine counterpart of sentiment analysis on Stanford Sentiment
Treebank (SST (f)), which includes five sentiment classes.

Since, we study the transfer from high resource tasks on low resource tasks, we control for varying
dataset sizes of high resource tasks, and clip all the high resource tasks to 60K sentences. Further
all the low resource tasks contain only less than 10K sentences. In our test suite, there are 4 tasks
whose inputs are 2 sentences, including SNLI, SICK, MRPC, QUORA.

Implementation Details: To measure the task-specific information density (§3), we compute CFS
(with α = 0.8) for each task for different choices of sentence representations. We use the greedy
forward selection and a logistic regression classifier with L2 penalty and a regularization constant
C = 1.0. For 2-sentence input tasks, we use a bilinear logistic regression model to capture interac-
tions between different features of each sentences.

To calculate information similarity (§4), we use the both the information transfer metric (§4.1), and
classifier weight difference (§4.2). Classifier weight difference metric is only applicable in cases
where the number of features between the tasks are of the same size. Thus, 2 sentence input tasks
and 1 sentence input cannot be compared using the metric. However, CFS based metric doesn’t
suffer from such a problem.

To validate our transfer potentials, we train the four low resouce tasks (SST (f), TREC, MRPC, and
SICK) by first pre-training on the other candidate tasks and subsequently fine-tuning. All models
contain the same sentence encoder2 and a logistic output layer. The tasks having two input sentences
(SICK, SNLI, MRPC, QUORA) share the sentence encoder. The vocabulary is shared across the
tasks, and is a union of individual task vocabularies.

7 RESULTS AND DISCUSSION

7.1 RESULTS ON INFORMATION DENSITY

We compute the Condensed Feature Sets (CFS) for the above mentioned tasks on four different
sentence representations. We plot our findings in Figure 2. Clearly, we require only a few dimensions
to capture the majority of the task information. For instance, in all the four representations at least 8
out of 10 tasks attain a relative accuracy of 90%, by merely using less than equal to 10 dimensions.

Interestingly, SST (b) (2 classes) is more densely represented than SST (f) (5 classes) owing to the
difference in granularity of information content. Also, probing tasks are generally very densely cap-
tured as they are designed to verify presence of simple linguistic properties in sentence embeddings.

2embedding layer (H=128) followed by LSTM (H=128)
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Figure 2: The relative accuracies of different tasks with increasing number of dimensions given by
the greedy forward selection. Note that in majority of tasks, very few dimensions are required to
reach close to the accuracy given by all the dimensions (i.e. 1.0 mark).

Validating Transfer Potential (CFS / Clf. Weight Difference)

Task Ranking Metric InferSent SkipThought SIF ParaNMT
RR @1 (0.25 / 0.20) (0.50 / 0.33) (0.25 / 0.33) (0.50 / 0.33)

TREC Precision @5 (0.60 / 0.80) (0.80 / 0.60) (0.40 / 0.80) (0.80 / 0.60)
NDCG @5 (0.46 / 0.77) (0.63 / 0.76) (0.41 / 0.90) (0.92 / 0.83)

RR @1 (1.00 / 0.50) (1.00 / 1.00) (1.00 / 0.50) (1.00 / 0.50)
SST (f) Precision @5 (0.60 / 0.60) (0.80 / 0.60) (0.60 / 0.40) (0.80 / 0.40)

NDCG @5 (0.85 / 0.61) (0.92 / 0.99) (0.68 / 0.60) (1.00 / 0.60)

RR @1 (0.14 / -) (0.20 / -) (0.14 / -) (0.17 / -)
MRPC Precision @5 (0.60 / -) (0.80 / -) (0.80 / -) (0.60 / -)

NDCG @5 (0.63 / -) (0.56 / -) (0.71 / -) (0.64 / -)

RR @1 (1.00 / -) (0.33 / -) (0.33 / -) (0.14 / -)
SICK Precision @5 (0.80 / -) (0.80 / -) (0.60 / -) (0.80 / -)

NDCG @5 (0.95 / -) (0.55 / -) (0.63 / -) (0.16 / -)

Table 2: Validating the transfer potential predicted by Condensed Feature Set (CFS) and Classifier
(Clf.) Weight Difference. We evaluate our predicted ranked list against the gold utility transfer list
using NDCG @5, which is Normalized Discounted Cumulative Gain, a measure of ranking quality
biased towards top ranks. RR @ 1 or Reciprocal Rank, equals 1/R where R is the position in the
predicted list where the top item of gold list appears. The Clf. weight difference method is not
applicable for 2 sentence tasks (as discussed in §6)
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(b) SST (f) w/ Clf. Weight Difference
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(c) TREC w/ CFS
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(d) TREC w/ Clf. Weight Difference

Figure 3: A graphical view depicting the transfer-learning (TL) gains for two tasks (SST(f) and
TREC). These tasks are trained using pre-trained representations of other tasks, in the order of pre-
dictions from our two methods (CFS and Clf. Weight Difference). Each figure shows the maximum
TL gain (y-axis) by transfering from the best task explored until that point (x-axis). For comparison,
a random baseline gives expected best-TL gain for a random ordering of tasks.

7.2 RESULTS ON INFORMATION SIMILARITY AND APPLICATION TO TRANSFER LEARNING

Further, we determine the transfer potential among different tasks by using (a) transfer through the
condensed feature sets and (b) similarity of classifier weights trained on different tasks. To evaluate
the predictions about transfer potential by our proposed methods, we obtain “gold” transfer learning
results for 4 low resource tasks – TREC, MRPC, SST(f) and SICK, where we train neural models
for these tasks, without transfer, as well as, with transfer from each of the potential candidate tasks.
We observe that for SST(f), the biggest gain is by pretraining on SST(b), IMDB in the given
order, which happen to be movie review tasks just like SST(f). Further, for SICK, the best tasks
to transfer from are SNLI, QUORA which are related tasks of textual entailment and question
deduplication respectively. The details of the actual transfer results are tabulated for all four primary
tasks in Table 1 of Appendix.

To assess the utility of our methods’ predictions about transfer potential, we compare our recom-
mended list and the ranked gold list using metrics to compare rankings (like Precision @5, NDCG
@5, Reciprocal Rank). From table 2, we can see that our top ranks are quite similar to the top
gold ranks. The average Precision @5 by the CFS method is 70%, indicating that on an average 3.5
tasks out of top 5 tasks are predicted correctly. Whereas, the average Precision @ 5 for the classifier
weight difference is 60%. Comparing CFS transfer and classifier weight difference head to head, we
note that on 7 out of 8 occassions, CFS metric has a higher Reciprocal Rank @1, whereas on 5 out
of 8 occasions it has a higher NDCG value as well.
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Qualitatively, we predict that SST(binary) has the highest transfer potential for SST(fine)
(unanimously predicted by all 4 sentence representations), while SNLI is predicted as the best can-
didate for 1 out of 4 sentence representations, and is in top 3 rankings of two other representations.
These results match our intuition, and the gold transfer results. Figure 3 presents a graphical view
of the utility of our predictions compared against the actual transfer results for SST(f), and TREC.
A similar graph for SICK and MRPC is Figure 1 in Appendix.

8 RELATED WORK

Below, we discuss some relevant research in understanding information in representations, transfer
learning and finding overlap among tasks:

Understanding Information in Representations: Shi et al. (2016b) investigate if the sequence
to sequence (seq2seq) models for machine translation learn syntactic information about the source
sentence. They verify syntactic properties of the encoded representation of the source sentence.
Similar to our goal, they study the extent and the concentration of information captured. They verify
that their encoder captures to varying degrees sentence-level syntactic labels (like voice and tense of
the sentence) and word-level syntactic labels (like part-of-speech tags of each word).

Another related work (Shi et al., 2016a) finds the encoded representations to be aware of the length
of the source sentence, again for the task of machine translation. Karpathy et al. (2015) reveal the
existence of cells that keep track of long-range dependencies such as line-lengths, quotes and brack-
ets. Radford et al. (2017) observe, that a single dimension in the encoded representation controls
the sentiment in the task of language modeling. This is remarkable and surprising, as one would not
expect a high level concept like sentiment to be so clearly disentangled, especially for a task whose
objective did not model sentiment explicitly.

Transfer Learning: Pre-training neural models using unsupervised data is used in wide variety
of tasks such as using word embeddings for sentence classification (Kim, 2014) and pre-trained
language models for Machine Translation (Ramachandran et al., 2016). More recently, general
purpose sentence embeddings are used to solve downstream syntactic and semantic sentence level
tasks. The sentence embeddings might be trained in a supervised or an unsupervised manner. For
instance, SkipThought vectors (Kiros et al., 2015) tries to reconstruct the surrounding sentences,
InferSent vectors (Conneau et al., 2017) are trained on the SNLI labeled corpus. These sentence
embeddings have shown to perform well on downstream tasks such as sentiment analysis, paraphrase
detection, entailment, etc, and hence, they must capture syntax and semantics of a sentence.

Task overlap: In a transfer learning setting for neural models, we wish to answer the question:
which tasks can be used as auxiliary tasks or grouped together? Few past works try to answer this
question in the context of multi-task learning. Kumar & Daume III (2012) assume that the vector
formed using parameters of each task is a linear combination of a finite number of underlying ‘basis’
tasks. Then they use sparse matrix factorization to cluster tasks into similar tasks. Another approach
can be to decorrelate the features explicitly while training. As long as the inputs for different tasks
share the same representation, simple set overlap (discussed in §4.1) between the features might be
enough to conclude high similarity. Cogswell et al. (2015) employ a regularization term to decor-
relate activations in the last layer to achieve this. In the problem of domain adaptation, Stacked
Denoising Auto-encoders (Yang & Eisenstein, 2014) are used to project the inputs into a high vari-
ance non-linear space, but they don’t consider the labels. All these approaches are computationally
intractable as they require training of multiple neural models, while our framework select tasks that
requires training only simple classifiers.

9 CONCLUSION

In this work, we gauge information density in the hidden layers of neural networks trained for many
natural language tasks. For most of the tasks we investigate, we find that the majority of the infor-
mation is captured by merely a few units. Further, we apply these insights to transfer learning and
present a framework to determine the transfer potential across different tasks in a computationally
efficient way. We evaluate our predictions about transferability against the actual transfer learning
performance and find them to be largely consistent.
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APPENDIX: MEASURING DENSITY AND SIMILARITY
OF TASK RELEVANT INFORMATION IN NEURAL REP-
RESENTATIONS

Anonymous authors
Paper under double-blind review

1 ACTUAL TRANSFER RESULTS

Main Tasks TREC MRPC SICK SST (f)

w/o transfer 85.28 66.53 60.63 34.65

SST (b) 87.30 66.59 60.20 40.49
IMDB 84.48 66.82 59.65 39.22
SNLI 85.08 67.93 61.26 37.14

QUORA 83.47 67.64 60.97 33.61
BShift 77.82 67.87 56.90 31.30
Tense 83.06 68.12 59.79 33.56

CoordInv 83.67 68.75 60.16 33.24
SOMO 86.29 68.46 59.81 36.68
SentLen 86.69 67.54 57.13 25.54

Table 1: Exact Transfer Results: Accuracies obtained on four tasks (TREC, MRPC, SICK, SST(f))
by pre-training on all the other tasks. The top row (w/o transfer) denotes results without any transfer
learning, and below we enlist the results with transfer learning.
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2 PREDICTED RANKINGS OF TASKS

Predictions (using CFS)

Ranks InferSent SkipThought SIF ParaNMT
TREC

1 SNLI SNLI SNLI SentLen
2 BShift SST (b) QUORA SST (b)
3 SentLen IMDB Tense Tense

MRPC

1 SentLen SST (b) SNLI SentLen
2 QUORA IMDB QUORA BShift
3 SST (b) SNLI SST (b) QUORA

SICK

1 SNLI SST (b) IMDB SST (b)
2 SOMO IMDB QUORA IMDB
3 QUORA SNLI SNLI BShift

SST (f)

1 SST (b) SST (b) SST (b) SST (b)
2 BShift IMDB SNLI IMDB
3 IMDB SNLI QUORA SNLI

Table 2: Top 3 predictions of tasks using CFS in the order of transfer potential
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3 TRANSFER EVALUATION
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(a) SICK w/ CFS
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(b) MRPC w/ Clf. Weight Difference

Figure 1: A graphical view depicting the transfer-learning (TL) gains for two tasks (SICK and
MRPC). These tasks are trained using pre-trained representations of other tasks, in the order of
predictions from CFS information transfer. Each figure shows the maximum TL gain (y-axis) by
transfering from the best task explored until that point (x-axis). For comparison, a random baseline
gives expected best-TL gain for a random ordering of tasks.
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4 INDIVIDUAL TASK, REPRESENTATION PLOTS
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(a) SST (f) w/ ParaNMT
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(b) SST (f) w/ skipthought

1 2 3 4 5 6 7 8 9
Number of TL iterations

35

36

37

38

39

40

Ac
cu

ra
cy

 (%
) o

n 
pr

im
ar

y 
ta

sk

Best Performance w/ TL
Random
CFS
Weight Similarity
Base Performance w/o TL

(c) SST (f) w/ infersent
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Figure 2: SST (f) plots for different input representations.
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(a) MRPC w/ ParaNMT
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(b) MRPC w/ skipthought
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(c) MRPC w/ infersent
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(d) MRPC w/ SIF

Figure 3: MRPC plots for different input representations.
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(a) SICK w/ ParaNMT
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(b) SICK w/ skipthought
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(c) SICK w/ infersent
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(d) SICK w/ SIF

Figure 4: SICK plots for different input representations.
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(a) TREC w/ ParaNMT
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(b) TREC w/ skipthought
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(c) TREC w/ infersent
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(d) TREC w/ SIF

Figure 5: TREC plots for different input representations.
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