
Under review as a conference paper at ICLR 2019

INCREMENTAL HIERARCHICAL REINFORCEMENT
LEARNING WITH MULTITASK LMDPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration is a well known challenge in Reinforcement Learning. One principled
way of overcoming this challenge is to find a hierarchical abstraction of the base
problem and explore at these higher levels, rather than in the space of primitives.
However, discovering a deep abstraction autonomously remains a largely unsolved
problem, with practitioners typically hand-crafting these hierarchical control ar-
chitectures. Recent work with multitask linear Markov decision processes, allows
for the autonomous discovery of deep hierarchical abstractions, but operates ex-
clusively in the offline setting. By extending this work, we develop an agent that
is capable of incrementally growing a hierarchical representation, and using its
experience to date to improve exploration.

1 INTRODUCTION

The exploration-exploitation trade-off is much studied in the Reinforcement Learning (RL) literature.
A central question regards how to explore efficiently in large state spaces. In this direction, a number
of classical exploration ideas have emerged for problems with enumerable state spaces which could be
represented in tabular format Roger (1999). In fact, approximately optimal exploration is achievable
in these settings Kolter & Ng (2009). When the state space is large and neural networks are used to
approximate the value function, an additional suite of techniques exist to promote exploration Stadie
et al. (2015); Tang et al. (2016); Plappert et al. (2017).

An always good-in-principle idea is to first construct an abstract representation of the problem, and
explore at this higher level rather than in the space of primitives. This might correspond to a person
exploring a house by choosing to explore at the level of rooms, rather than exploring exclusively
inch-by-inch. Intuitively, this suggests that exploring a large state space may be best conducted at
different levels of granularity, corresponding to different layers of abstraction. The challenge here is
that finding suitable abstractions autonomously is, in general, largely an unsolved problem, although
some progress has been made in this direction Vigorito & Barto (2010); Bacon & Precup (2015).
Additionally, while further layers of abstraction would enhance the agent’s ability to explore at these
various scales, many architectures in the hierarchical reinforcement learning literature focus on just
two layers of control, e.g., the options framework Sutton & Singh (2015); Machado et al. (2018).

Recent work using the linearly-solvable Markov decision process (LMDP) framework provides
a mechanism for autonomously learning deeper control hierarchies Saxe et al. (2017). However,
this method operates in the off-line setting. By incorporating ideas from incremental learning on
static classification tasks, we develop an agent that is able to both build, and utilize, a hierarchical
architecture fully online. Our agent operates by periodically increasing the capacity of its hierarchical
representation, and allowing subsequent experience to fine-tune the new weights. In so much as an
analogy to the well-known options framework is helpful, the new approach can be thought of as
periodically adding a randomly initialized options policy, and allowing subsequent experience to
adjust all of the available options in light of the new-found capacity.

We demonstrate that learning the hierarchical representation online is not only possible, but can
actually aid exploration when coupled with a simple count-based exploration boost.

1

Under review as a conference paper at ICLR 2019

2 PRELIMINARIES

The LMDP framework Todorov (2006); Kappen (2005) considers a special class of MDPs for which
the Bellman optimality condition becomes linear in the exponentiated cost-to-go. In this formalism,
the MDP is defined as a three-tuple L = 〈S, Pπ̄, R〉, where S = [1, . . . , N] is a set of states, and
Pπ̄ : S × S → [0, 1] is the so-called passive transition probability between states. This transition
probability is defined as the resultant transition probability under some reference policy π̄. And
R : S → R is the expected instantaneous reward. The reference policy π̄ is typically taken to be
the uniformly random policy, corresponding to the entropy-regularized RL problem Schulman et al.
(2017); Haarnoja et al. (2017). Intuitively, the passive dynamics can be thought of as the diffuse
process followed by the agent in the absence of a specified control.

In this setting, the action taken by the agent is a full distribution over next states a(·|s) ∈ RN , which
acts to shift the passive transition probability by redistributing probability mass; making preferred
transitions more likely, and disfavoured transitions less likely. A control cost is associated with this
choice: actions corresponding to distributions over next states that are very different from the passive
transition probability distribution are expensive, while those that are similar are cheap. In this way
the problem is said to be regularized by the reference policy. Intuitively, this can be thought of as
specifying an intrinsic preference for energy-efficient actions, by regularizing the controlled transition
probabilities towards the reference policy. The LMDP has rewards Ri(s) for each interior state, and
Rb(s) for each boundary state in the finite exit formulation. The LMDP can be solved by finding
the so-called desirability function z(s) = eV (s), specified in terms of the state value function. The
optimal policy can then be computed in closed form as:

a∗(s′|s) =
Pπ̄(s′|s)z(s′)
G[z](s)

, (1)

where the normalizing constant G[z](s) =
∑
s′ Pπ̄(s′|s)z(s′) Todorov (2009). Intuitively, the hard

maximization of standard MDP has been replaced by a soft maximization log(
∑

exp(·)), and the
continuous action space enables closed form computation of the optimal policy.

While in principle any reference policy could be used (perhaps coming from an expert demonstration),
entropy regularization is a common choice, and has been shown to recover more adaptive, multi-modal
policies in large domains Haarnoja et al. (2017). As an illustrative example, consider a robot whose
task it is to navigate around some object. Suppose that two equally valid solutions exist, corresponding
to a trajectory around the obstacle to the left, and another to the right. Where a standard DQN-style
agent would collapse on one path or the other, in the entropy regularized problem the optimal solution
is a stochastic policy in which the agent chooses which path to take at random. Suppose that, after
training, the path to the left was blocked-off by a new obstacle. While the DQN-style agent would
struggle to recover from its firm commitment to the left path, the entropy-regularized agent is able to
adapt easily.

It is worth noting that unlike the standard MDP formulation, the optimal policies uncovered in the
LMDP formulation are stochastic. These have equivalent interpretations as being stochastic policies
over deterministic actions, or as deterministic policies over stochastic actions. Explicitly, although
the LMDP formalism transforms away the notion of discrete actions, the optimal solutions to LMDP
problems may always be realized in terms of stochastic policies over the discrete actions of the more
familiar MDP formulation.

2.1 THE MULTITASK LMDP

The linearity of the Bellman optimality condition implies a natural form of policy composition.
Suppose that we solve two LMDPs L1 = 〈S, Pπ̄, [Ri, R1

b]〉 and L2 = 〈S, Pπ̄, [Ri, R2
b]〉, which

operate in the same state and action space, but differ in their instantaneous boundary rewards,
and obtain the corresponding optimal policies z1 and z2. If we then encounter a third LMDP
L3 = 〈S, Pπ̄, [Ri, R3

b]〉 such that if r3
b = αr1

b + βr2
b , then the corresponding optimal policy is

immediately realizable as z3 = αz1 + βz2 Todorov (2009). Importantly, no further learning need
take place.

This property was exploited in Saxe et al. (2017), to develop a powerful multitasking framework. In
this setting, an agent faces a number of tasks which have the same state and action spaces, but differ

2

Under review as a conference paper at ICLR 2019

in their boundary reward functions. The multitask LMDP (MLMDP) operates by learning a set of
Nt tasks each defined as an LMDP Lt = 〈S, P,R = [ri, r

t
b]〉, t = 1, · · · , Nt. This set of LMDPs

represents an ensemble of tasks with different ultimate goals. These tasks may then be collected
into a task basis (or task library). By utilizing this library of pre-learned policies, when the agent
encounters a new task, it is able to immediately obtain the optimal policy by representing the policy
for the new task as a weighted blend of policies from the task library. If the new task is not exactly
realizable as a linear combination of tasks from the library, significant jump-start performance may
nevertheless be obtained by initializing the new task as an approximate blend of library tasks Saxe
et al. (2017). A particular instantiation of a set of tasks is referred to as being a task ‘module’.

2.2 THE HIERARCHICAL MLMDP

Hierarchical RL holds the promise of dramatically simplifying the learning problem by abstracting
away the finer details of the base problem, and instead solving a consistent, but simpler, higher layer
problem. By repeatedly applying this abstraction procedure, an agent may in principle overcome the
curse of dimensionality which typically occurs as the size of the state and action spaces increase.
Of course, this simply replaces one difficulty with another: instead of directly solving the original
problem, we need to solve the new problem of how to uncover a suitable abstraction in the first place.
Typically this abstraction is hand-crafted by a designer, however a number of techniques have been
proposed for autonomously uncovering useful abstractions under the banner of “subtask/options
discovery” Konidaris (2016); Stolle & Precup (2002); Bonarini et al. (2006).

These discovery procedures are themselves limited in that they uncover only a single layer of
abstraction. It is often not at all clear how these procedure might be recursed to uncover deep
representations akin to ‘options-over-options’ (but see Vigorito & Barto (2010)). Furthermore,
abstractions that involve temporally extended actions often suffer from the fact that they artificially
inflate the action space. This results in an exponential increase in the number of parameters to be
learned, and is often crippling. However, by leveraging the compositionality of the MLMDP, a simple
recursive scheme was described in Saxe et al. (2017) for constructing arbitrarily deep hierarchical
abstractions. This is achieved by stacking the multitask module discussed above (Saxe et al., 2017).
The stacking is realized by iteratively constructing higher order MLMDPs in which higher levels
select the instantaneous reward structure that defines the current task for lower levels in a feudal-like
architecture Dayan & Hinton (1993); Vezhnevets et al. (2017).

This recursive procedure is carried out by firstly augmenting the layer l state space S̃l = Sl ∪ Slt
with a set of Nt terminal boundary states Slt called subtask states. Transitioning into a subtask state
corresponds to a decision by the layer l MLMDP to access the next level of the hierarchy. The
transitions into the subtask states are governed by a new N l

t -by-N l
i passive dynamics matrix P lt . In

the augmented MLMDP, the full passive dynamics then become P̃ l = [P li ;P
l
b ;P

l
t], corresponding

to transitions to interior states, boundary states, and subtask states respectively. The higher layer
MLMDP is then defined by specifying transitions dynamics, [P l+1

i ;P l+1
b] and reward function [rl+1

i],
such that the higher layer MLMDP is consistent with the lower layer MLMDP (Saxe et al., 2017),
and solving the easier higher layer problem ultimately solves the base problem too. An example of
this hierarchical scheme is shown in Fig.(1). Notice that the new subtask states form a separate bona
fide LMDP Ll+1 = 〈St, [P l+1

i , P l+1
b], [Rl+1

i , Rb]〉. This forms the basis for subsequent recursion.

Solving the higher layer MLMDP will yield an optimal action al+1(·|s). This action shifts the passive
transition dynamics making some transitions more likely, indicating that they are desirable for the
current task, and others less likely, indicating that they should be avoided for the current task. The
instantaneous rewards for the lower layer are then set to be proportional to the difference between the
controlled and passive dynamic, rlt ∝ al+1

i (·|s)− pl+1
i (·|s).

In order to stack these modules, the subtask transition matrix P lt must be defined at each layer. It
was shown in Earle et al. (2018) that a suitable P lt could be recovered autonomously by finding a
low-rank approximation to the full task basis ZlRN×N at each layer. Intuitively, this exploits the
fact that there is often significant additional structure in the policies that make up the task basis.
By way of example, suppose that we are in a 4-rooms domain, and the task basis is comprised of
a policy to get to each individual state. A low-rank approximation of this basis should uncover the
fact that the polices are grouped by the room contains their goal state. Since the task basis Zl is the

3

Under review as a conference paper at ICLR 2019

Pb
(l+1) Pi

(l+1)

Base LMDP Higher layer LMDP

Pt
l

Augmented LMDP

Sb
Si

St

Figure 1: Recursively constructing higher layer MLMDPs. The base LMDP (LEFT) is specified
as a set of interior and boundary states Si, Sb, along with their corresponding instantaneous rewards
Ri, Rb, and state transition dynamics Pi, Pb. The recursion is realized by first augmenting the
base LMDP with an addition set of subtask states St (CENTER). In order to successfully integrate
these new states, the corresponding reward function Rt and transition dynamics [Pt, P

l+1
b , P l+1

i]
are suitably specified. The resulting construction is itself an LMDP, forming the basis for recursion
(RIGHT).

exponentiated cost-to-go for the composite policies, and are therefore strictly non-negative, Earle et al.
(2018) propose to utilize non-negative matrix factorization to uncover the low-rank approximation as
Zl ≈ DlW l, and set P lt = αDl. This allowing for the fully autonomous discovery of deep control
hierarchies. The method proceeds recursively by first constructing a task basis Zl, then finding a
low rank approximation of that basis and assigning P lt = αDl, and finally computing the transition
dynamics P l+1 and reward structure Rl+1 for the abstracted MLMDP.

Howver, a key limitation of the method presented in Earle et al. (2018) is that the computation of the
hierarchy happens in an off-line setting. While the method is therefore applicable to probabilistic
path planning and to multitask/multiagent RL, it cannot immediately be used online.

3 LEARNING CONTROL HIERARCHIES ONLINE

While there are many situations in which a hierarchical representation might plausibly be computed
off-line, in a paradigm such as that of life-long learning, we would like our agents to be able to
construct a hierarchical representation online. This representation would constitute an abstraction of
the agent’s experience thus far, and would need to be incrementally adjusted as the agent experiences
more of the world and is better able to synthesis a global picture of their experience. The idea of
incrementally adjusting an abstract representation of a task is highly intuitive. As people, we are often
aware, not just of improving our performance on a task, but also of changing (and often simplifying)
our thinking about the task as we gain more experience. Here, we will periodically increase the
agent’s representational capacity by incrementally adding subtask states. This procedure is similar to
a number of methods for incremental learning on static problems in which additional hidden layers
are added to a standard ANN architecture.

An important question that naturally arises is that of when we should incorporate a new subtask.
Intuitively, since our subtasks constitute a spacial and temporal abstraction, we should add in a new
subtask only when we have seen a sufficient number of new states. Suppose we wanted to construct
an abstracted MLMDP with a state space 1/k the size of the base LMDP. We would then add in a
subtask for every k states the agent has seen. In practice we typically factor the state space such
that |S0|= kk, which determines both the depth of the hierarchy (we will have k layers) and the

4

Under review as a conference paper at ICLR 2019

abstraction factor for each layer (each layer has 1/k the number of state of the layer below it). We
refer to this notion as the ‘subtask genesis’ condition. More generally, when the multi-scale structure
of the domain is known a priori, the decomposition values for each layer may be explicitly specified.
For example, in a rooms domain, if we know that each room contains 25 states, then we may choose
a decomposition factor of kl = 25 for the base layer.

3.1 LAYER-WISE UPDATES

Since we are incrementally adding states to our MDPs, we need a way of mapping the parameters from
our old MDP onto our new MDP. Moreover, when a subtask is added, we need to make adjustments
to both the current MDP (which has received a new subtask state) and the higher layer MDP (which
has tacitly received a new interior state). Of course we will need to assume some default initialization
for the new parameters here. As a guiding principle we seek to extend our MDPs in such a way
as to assume as little as is possible about how the new state will integrate with the existing MDP.
We do this by initializing the new state with small uniform default values, and allowing subsequent
experience to shape the transition dynamics.

Updating the current MDP: the current MDP will now operate with a new subtask state N l
t →

N l
t + 1; depicted by the blue circles in Fig.(2). To define a consistent control task we are required

to update the transition dynamics P lt ∈ RN l
t+1 and the state costs qltR. Thereafter, the subtask

component of the agent’s task basis Zl:t, and controller zlt will also need to be extended. We assume
the previous components of Pt, governing the transition probabilities into the existing subtasks,
are unchanged, and only those elements depicted by the blues lines need to be specified. We then
initialize the transition probabilities into the new subtask to be uniform over the interior states. The
new state cost is initialized to be the mean of the existing subtask costs, qlt = 1/N l

t

∑
qt(si). The new

elements of the task basis and controller are initialized to one(s).

Updating the higher layer MDP: the higher layer MDP operates with a new interior state N l+1
i →

N l+1
i + 1, again depicted by the blue circle in Fig.(2). To define a consistent control task we are

required to update the transition dynamics P l+1
i , P l+1

b , and the state costs ql+1
i . Similarly, the interior

component of the agent’s task basis Zl+1
:i , and controller zl+1

i will need to be updated. Again, we
assume the previous components of Pi, Pb are unchanged, and that only those elements depicted by
the blue lines in Fig.(2) need to be specified. We assume that the new task cannot transition into a
boundary state, initializing the new components of P l+1

b to zero. We also take the new components
of P l+1

i to be uniform over the interior states. We initialize the state cost to the mean of the existing
interior states ql+1

i = 1/N l+1
i

∑
qi(si) , and the new elements of the task basis and controller are

initialized to one(s).

Essentially we have simply add a new state to our MDP, which is assumed to be loosely connected to
all other states, and to have average reward. While this provides no immediate benefit, the additional
representational capacity this provides to the higher layer will ultimately be utilized when these
additional weights are updated.

3.2 EXPLORATION BOOSTS VIA POLICY COMPOSITION

Exploration with a hierarchical control architecture promises the possibility of dramatically improving
exploration efficiency, since a 1-step transition in the higher layer MDP corresponds to a many-step
transition in the lower layer MDP. In this way the agent is essentially diffusing via a heavy-tailed
distribution; sometimes taking extended trajectories, and otherwise diffusing locally.

As discussed in Sec.(2.2), it is critical that the structure of the higher layer MDP is consistent with
the lower layer MDP. In the off-line setting, this consistency requirement is achieved analytically via
Eqns.(8,9) in Saxe et al. (2017). In an online setting, we need to make an initialization assumption
about the transition structure. In practice it is important that we obtain a reasonable estimate for these
dynamics otherwise the abstraction presented by the higher layer may be deleterious. Intuitively,
operating with a poor estimate for the higher layer dynamics is equivalent to selecting, in the options
framework, a poor options policy. This results in the agent having suboptimal local behaviour, until it
transitions into an area in which the macro policy can be changed. In principle, we can always ensure
that our estimate of the higher layer dynamics is sufficiently accurate by simply using a large enough

5

Under review as a conference paper at ICLR 2019

Pb
(l+1) Pi

(l+1)Pt
l

Sb
Si

St

Nt = 1 Nt = 3Nt = 2

Figure 2: Adding an additional subtask state. The representational capacity of the hierarchy is
incrementally increased by periodically adding a new subtask state. This state is suitably integrated
into the problem, by specifying the associated transition and reward structures. Note that this
procedure is defined layer-wise, and that additional subtask states are added at all levels of the
hierarchy.

buffer. Of course, this in an intrinsically limited approached. We found that in practice it is possible
to achieve good performance using a much smaller buffer size, if the agent is further equipped
with a count based exploration boost. Intuitively this ensures that our agent explores enough of the
surrounding states early on, to obtain a reasonable sample estimate of the higher layer dynamics.

Throughout the trajectory we maintain a vector of state visits f . A composite exploration policy
zlexp is constructed by computing zlexp = Zlwl, where wl = ef−µ(f) is the baseline adjusted state-
frequency count. This simple construction makes rich use of the fact that policies compose in the
MLMDP setting. Specifically, while the directed behaviours of a number of policies are aligned,
the agent is strongly driven to pursue those initiatives. Alternatively, when directed behaviours
conflict, the exploration boost is flat, and does not bias the agent’s exploration. Said differently,
the agent explores with consideration of their knowledge of the full space, not just their immediate
surroundings. This approach over providing a count-based exploration boost over higher layer policies
is conceptually similar to the count-based feature exploration considered in recent work Machado
et al. (2018).

3.3 BALANCING DRIVERS: STRUCTURED AND UNSTRUCTURED EXPLORATION

A useful taxonomy for classical exploration strategies divides approaches into those that deliver
undirected exploration (such as drawing states via the Boltzmann distribution), direct exploration
which directly utilizes some of the agent’s experience (such as state-count based methods), and model
based methods. But combining the count-based exploration boost, the higher layer policies, and the
base layer controller, we demonstrate that our agent utilizes elements of all three of these conceptual
approaches concurrently.

At any point in time, our agent must balance multiple (potentially conflicting) drivers. Firstly, their
actions may be driven by their primary policy zbase which seeks to direct the agent to a goal state, but
operates locally (missing the big picture). In the LMDP setting the optimal policy is stochastic and
next-states are drawn from a Boltzmann distribution of the state-value function, scaled by the passive
dynamics. Secondly, the agent’s actions may be driven by a higher layer policy zhl which also seeks
to direct the agent to a goal region, but operates more globally (missing finer details). The higher
layer policy is delivered by an abstracted MLMDP which models the base problem. Finally, the agent
may be driven by an exploration policy zexp which rewards infrequently visited states (at the cost
of achieving the stated goal). This exploration boost is tantamount to a classical state-count based

6

Under review as a conference paper at ICLR 2019

c) d)

N
u

m
b

e
r

o
f

S
u

b
ta

s
k
s

Steps0 100

0

30

0

States 2000

@250

@500

@750

@1000

0 1 2 3 4 2

0

0

1

9

9

1

9

8

1

9

7

1

9

6

a)

…

b)

States Steps

C
o

u
n

t

P
e
rc

e
n

ta
g

e
 S

e
e
n

2000
0

90

0
0

100
Flat

Hierarchical

Exploration

Online

Flat

Hierarchical

Exploration

Online

1000

Figure 3: Learning the hierarchy online can improve exploration. a) The online policy is able
to more reliably reach further than either the exploration policy, or the hierarhical policy (without
exploration). b) With hierarchy, the agent is able to see more of the space earlier on. Rather than
dithering at early states, the agent utilizes the higher layer policies to jump to the right boundary
of its experience before exploring locally. c) The number of subtasks grows consistently with the
number of steps taken by the agent. This suggests that the agent is being pushed to the frontier of its
experience, seeing new states, and instantiating new subtasks. d) Heatmap plots of the exponentiated
value function for the created subtasks, show how the subtasks tile the space. Notice that the number
of subtasks grows as the agent takes more steps in the domain.

method. The compositionality of the MLMDP allows for these drivers to be employed concurrently
in a natural way, by simply combining the relevant desirability functions. In practice our agent acts,
at all times, under the composite policy:

zeff = α1zbase + α2zexp + α3zhl, (2)

where the αi are taken to be fixed weighting parameters. More generally, it is very likely that the
agent would benefit from a dynamic update to this weighting scheme, although this is not considered
in the present work. Intuitively the agent would benefit from a preference for an exploration policy
early on, and for an abstracted policy later as it acquires more experience on the task.

4 RESULTS

There are two separate, but equally important results contained herein. The first is that the proposed
method can uncover a deep hierarchical abstraction of the task ensemble in a completely online
fashion. The abstractions we uncover with the online method converge to those uncovered analytically
in Saxe et al. (2017), and in a batch-offline setting in Earle et al. (2018). Convergence here has a
double meaning; the online method converges to the correct value estimates for the higher layer
dynamics and reward structures as more samples are seen, but it also converges to the correct higher
layer MLMDP structure by incrementally growing the abstracted MDP, adding states only as the

7

Under review as a conference paper at ICLR 2019

Domain

Task
Room 1 Room 2 Room 19 Room 20

Task 1

Task 2

…

…

…

Number of rewards

Steps (‘1000)

Re
wa

rd
s

0 50
0

10

a) b)

Hierarchical
Count based
Boltzmann

Figure 4: Exploration with hierarchical policies a) Our agent operates in a corridor-of-rooms
domain. At any point in time, the task is specified as a single goal room, in which 50% of the
states are rewarded. When the agent reaches a rewarded state, the goal room is reset randomly. This
corresponds to a foraging task in which the agent must explore both globally and locally. b) The
number of goals reached by the agent in a finite horizon task of 50,000 steps. The hierarchical agent
is better suited to the task owing to its ability to operate over an abstracted representation of the
domain.

additional representation capacity is required. Once the hierarchy is in place, significant performance
gains can be expected when the agent is faced with new tasks.

Secondly, we show that the process of learning the hierarchical structure online does not significantly
slow down learning. In fact, it can actually improve exploration over the flat implementation! This is
due to the fact that our method is incrementally growing and solving the higher layer abstractions
online. In this way the agent is able to make use of a distilled form of its previous experience to
efficiently traverse regions of the state space it has already explored. Mathematically, this has the
effect of reducing the diffusion length between disparate regions of the state space.

In order to achieve the exploration improvements in the online setting, we further exploited the
compositionality afforded by the MLMDP framework, to balance the directed behaviours of the
base policy, higher layer policy, and exploration policy. The compounding effect of these drivers is
disentangled in Fig.(3). Here, the agent operates in a 200-state 1D corridor. The agent begins always
on the left-most end of the corridor, and explores the domain with a finite horizon of 1,000 steps.
We measure the progress that the agent is able to make along the corridor under each exploration
protocol. All results are averaged over 100 runs.

When the task is to reach a singleton goal state, the agent can do no better than explore each state
individually. There is no implicit abstraction of the task ensemble or domain that aids learning.
However this is typically not the case with real world tasks. A taxi driver seeks to drop off a
passenger, and is rewarded for doing so; he is not concerned with the specific configuration of joint
angles that resulted in the completion of the task. Said differently, there is a region in the parameter
space in which rewards are clumped together corresponding to an abstract representation of the task.
To mimic the property of tasks being represented by regions, rather than singleton states, we consider
the following task setup; a simple scalable extension of the standard rooms domain. An agent operates
in a corridor of 20 rooms, each of which is a 5-by-5 grid world. The rooms are connected to their
left and right neighbours by a single state at the middle of the corresponding wall (see Fig.(4)). A
goal room is then randomly selected and rewards are placed at 50% of its states. The agent then
explores the domain until it encounters one of the rewards. At this point the remaining rewards in
the goal room are removed, and a new goal room is randomly selected. The agent continues in this
vein for a finite time horizon of 50,000 steps. This task is motivated by a foraging metaphor in which
an animal must explore a space both hierarchically (to find the right room) and locally (to find the
right state). We compare the performance of our agent equipped with a learned hierarchy against two
optimistically initialized Q-learning agents: the first drawing states from a Boltzmann distribution,
and the second utilizing state-count based exploration boosts.

8

Under review as a conference paper at ICLR 2019

5 CONCLUSION

We present a method that is able to learn deep hierarchical control architectures in a fully online
way. Moreover, we demonstrate in a toy domain that the agent is able to make use of its partial
experience to-date to improve learning. In order to improve sample efficiency, we introduce a new
exploration paradigm in multiple exploration initiatives operate concurrently to great effect. We
compare the proposed method to some standard exploration strategies in a simple tabular domain
requiring significant exploration. In future work we plan to extend the method to incorporate function
approximators to extend the key conceptual advancements to large state and action spaces.

REFERENCES

P.L. Bacon and D. Precup. The option-critic architecture. In NIPS Deep Reinforcement Learning
Workshop, 2015.

A. Bonarini, A. Lazaric, and M. Restelli. Incremental Skill Acquisition for Self-motivated Learning
Animats. In S. Nolfi, G. Baldassare, R. Calabretta, J. Hallam, D. Marocco, O. Miglino, J.-A.
Meyer, and D. Parisi (eds.), Proceedings of the Ninth International Conference on Simulation of
Adaptive Behavior (SAB-06), volume 4095, pp. 357–368, Heidelberg, 2006. Springer Berlin.

Peter. Dayan and Geoff. Hinton. Feudal Reinforcement Learning. In NIPS, 1993.

Adam C Earle, Andrew M Saxe, and Benjamin Rosman. Hierarchical Subtask Discovery with
Non-Negative Matrix Factorization. ICLR, pp. 1–11, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement Learning with
Deep Energy-Based Policies. 2017.

H.J. Kappen. Linear theory for control of nonlinear stochastic systems. Physical Review Letters, 95
(20):1–4, 2005.

J. Zico Kolter and Andrew Y. Ng. Near-Bayesian exploration in polynomial time. ICML, pp. 1–8,
2009.

George. Konidaris. Constructing abstraction hierarchies using a skill-symbol loop. IJCAI, 2016-Janua
(Dietterich 2000):1648–1654, 2016.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. arXiv preprint arXiv:1807.11622, 2018.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter Space Noise for Exploration.
pp. 1–18, 2017.

McFarlane Roger. A Survey of Exploration Strategies in Reinforcement Learning. pp. 1–10, 1999.

Andrew M Saxe, Adam C Earle, and Benjamin Rosman. Hierarchy Through Composition with
Multitask LMDPs. ICML, 70:3017–3026, 2017.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence Between Policy Gradients and Soft Q
-Learning. pp. 1–15, 2017.

Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing Exploration In Reinforcement
Learning With Deep Predictive Models. pp. 1–11, 2015.

M. Stolle and D. Precup. Learning options in reinforcement learning. Abstraction, Reformulation,
and Approximation, 2371:212–223, 2002.

Richard S Sutton and Satinder Singh. Between MDPs and Semi-MDPs: A Framework for Temporal
Abstraction in Reinforcement Learning. PhD Proposal, 1(1999), 2015.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #Exploration: A Study of Count-Based Exploration for Deep
Reinforcement Learning. (Nips), 2016.

9

Under review as a conference paper at ICLR 2019

Emanuel. Todorov. Linearly-solvable Markov decision problems. In NIPS, 2006.

Emanuel. Todorov. Compositionality of optimal control laws. In NIPS, 2009.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. FeUdal Networks for Hierarchical Reinforcement Learning. arXiv,
2017.

Christopher M Vigorito and Andrew G Barto. Intrinsically Motivated Hierarchical Skill Learning in
Structured Environments. IEEE Transactions on Autonomous Mental Development, 2(2):132–143,
6 2010.

10

	Introduction
	Preliminaries
	The Multitask LMDP
	The Hierarchical MLMDP

	Learning Control Hierarchies Online
	Layer-wise Updates
	Exploration Boosts Via Policy Composition
	Balancing Drivers: Structured and Unstructured Exploration

	Results
	Conclusion

