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ABSTRACT

Self-attention-based Transformer has demonstrated the state-of-the-art perfor-
mances in a number of natural language processing tasks. Self-attention is able to
model long-term dependencies, but it may suffer from the extraction of irrelevant
information in the context. To tackle the problem, we propose a novel model called
Explicit Sparse Transformer. Explicit Sparse Transformer is able to improve the
concentration of attention on the global context through an explicit selection of
the most relevant segments. Extensive experimental results on a series of natural
language processing and computer vision tasks, including neural machine trans-
lation, image captioning, and language modeling, all demonstrate the advantages
of Explicit Sparse Transformer in model performance. We also show that our
proposed sparse attention method achieves comparable or better results than the
previous sparse attention method, but significantly reduces training and testing
time. For example, the inference speed is twice that of sparsemax in Transformer
model.

1 INTRODUCTION

Understanding natural language requires the ability to pay attention to the most relevant information.
For example, people tend to focus on the most relevant segments to search for the answers to their
questions in mind during reading. However, retrieving problems may occur if irrelevant segments
impose negative impacts on reading comprehension. Such distraction hinders the understanding
process, which calls for an effective attention.

This principle is also applicable to the computation systems for natural language. Attention has been
a vital component of the models for natural language understanding and natural language generation.
Recently, [Vaswani et al.|(2017) proposed Transformer, a model based on the attention mechanism
for Neural Machine Translation(NMT). Transformer has shown outstanding performance in natural
language generation tasks. More recently, the success of BERT (Devlin et al., [2018)) in natural
language processing shows the great usefulness of both the attention mechanism and the framework
of Transformer.

However, the attention in vanilla Transformer has a obvious drawback, as the Transformer assigns
credits to all components of the context. This causes a lack of focus. As illustrated in Figure [I]
the attention in vanilla Transformer assigns high credits to many irrelevant words, while in Explicit
Sparse Transformer, it concentrates on the most relevant k£ words. For the word “tim”, the most
related words should be "heart” and the immediate words. Yet the attention in vanilla Transformer
does not focus on them but gives credits to some irrelevant words such as “him”.

Recent works have studied applying sparse attention in Transformer model. However, they either add
local attention constraints (Child et al.| 2019) which break long term dependency or hurt the time
efficiency (Martins & Astudillol [2016). Inspired by [Ke et al.|(2018]) which introduce sparse credit
assignment to the LSTM model, we propose a novel model called Explicit Sparse Transformer
which is equipped with our sparse attention mechanism. We implement an explicit selection method
based on top-k selection. Unlike vanilla Transformer, Explicit Sparse Transformer only pays attention
to the k most contributive states. Thus Explicit Sparse Transformer can perform more concentrated
attention than vanilla Transformer.
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tim (target word, means ‘heart’ in vietnamese)

Figure 1: Illustration of self-attention in the models. The orange bar denotes the attention score of
our proposed model while the blue bar denotes the attention scores of the vanilla Transformer. The
orange line denotes the attention between the target word “tim” and the selected top-k positions in the
sequence. In the attention of vanilla Transformer, “tim” assigns too many non-zero attention scores to
the irrelevant words. But for the proposal, the top-k largest attention scores removes the distraction
from irrelevant words and the attention becomes concentrated.

We first validate our methods on three tasks. For further investigation, we compare our methods
with previous sparse attention methods and experimentally answer how to choose k in a series of
qualitative analyses. We are surprised to find that the proposed sparse attention method can also help
with training as a regularization method. Visual analysis shows that Explicit Sparse Transformer
exhibits a higher potential in performing a high-quality alignment. The contributions of this paper are
presented below:

e We propose a novel model called Explicit Sparse Transformer, which enhances the concen-
tration of the Transformer’s attention through explicit selection.

e We conducted extensive experiments on three natural language processing tasks, including
Neural Machine Translation, Image Captioning and Language Modeling. Compared with
vanilla Transformer, Explicit Sparse Transformer demonstrates better performances in the
above three tasks. Specifically, our model reaches the state-of-the-art performances in the
IWSLT 2015 English-to-Vietnamese translation.

e Compared to previous sparse attention methods for transformers, our methods are much
faster in training and testing, and achieves better results.

2 PREMIERS

The review to the attention mechanism and the attention-based framework of Transformer can be
found in Appendix

3 EXPLICIT SPARSE TRANSFORMER

Lack of concentration in the attention can lead to the failure of relevant information extraction. To
this end, we propose a novel model, Explicit Sparse Transformer, which enables the focus on only
a few elements through explicit selection. Compared with the conventional attention, no credit will
be assigned to the value that is not highly correlated to the query. We provide a comparison between
the attention of vanilla Transformer and that of Explicit Sparse Transformer in Figure
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Figure 2: The comparison between the attentions of vanilla Transformer and Explicit Sparse Trans-
former and the illustration of the attention module of Explicit Sparse Transformer. With the mask
based on top-k selection and softmax function, only the most contributive elements are assigned with
probabilities.

Explicit Sparse Transformer is still based on the Transformer framework. The difference is in
the implementation of self-attention. The attention is degenerated to the sparse attention through
top-k selection. In this way, the most contributive components for attention are reserved and
the other irrelevant information are removed. This selective method is effective in preserving
important information and removing noise. The attention can be much more concentrated on the most
contributive elements of value. In the following, we first introduce the sparsification in self-attention
and then extend it to context attention.

In the unihead self-attention, the key components, the query Q[lo, d], key K[l k, d] and value V[l d],
are the linear transformation of the source context, namely the input of each layer, where Q = Wox,
K = Wka and V = Wy z. Explicit Sparse Transformer first generates the attention scores P as
demonstrated below:

_ oKt
Vi

Then the model evaluates the values of the scores P based on the hypothesis that scores with larger
values demonstrate higher relevance. The sparse attention masking operation M(-) is implemented
upon P in order to select the top-k contributive elements. Specifically, we select the k largest element
of each row in P and record their positions in the position matrix (¢, j), where k is a hyperparameter.
To be specific, say the k-th largest value of row 1 is t;, if the value of the j-th component is larger
than ¢;, the position (4, j) is recorded. We concatenate the threshold value of each row to form a

P (D

vector t = [t1,12,- - ,11,]. The masking functions M(-, -) is illustrated as follows:
P;; if P;; > t; (k-th largest value of row ¢
MP Ry = T ST = K 2
—oo if P;; < t; (k-th largest value of row ¢)

With the top-k selection, the high attention scores are selected through an explicit way. This is
different from dropout which randomly abandons the scores. Such explicit selection can not only
guarantee the preservation of important components, but also simplify the model since k is usually a
small number such as 8, detailed analysis can be found in[5.2] The next step after top-k selection is
normalization:

A = softmax(M(P, k)) 3)

where A refers to the normalized scores. As the scores that are smaller than the top k largest scores
are assigned with negative infinity by the masking function M (-, -), their normalized scores, namely
the probabilities, approximate 0. We show the back-propagation process of Top-k selection in
The output representation of self-attention C' can be computed as below:

C=AV “)
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Model En-De En-Vi De-En
ConvS2S (Gehring et al.,[2017) 25.2 - -
Actor-Critic (Bahdanau et al.,[2017) - - 28.5
NPMT+LM (Huang et al.||2017) - 28.1  30.1
SACT (Lin et al., 2018) - 20.1 -
Var-Attn (Deng et al.| [2018) - - 33.7
NP2MT |Feng et al.| (2018) - 30.6  31.7
Transformer (Vaswani et al.,[2017) 284 - -
RNMT (Chen et al.,[2018) 28.5 - -
Fixup (Zhang et al.||2019) 29.3 - 345
Weighted Transformer (Ahmed et al.,|2017) 28.9 - -
Universal Transformer (Dehghani et al.| |2018) 28.9 - -
Layer-wise Coordination (He et al.||2018)) 29.1 - -
Transformer(relative position) (Shaw et al.,2018)  29.2 - -
Transformer (Ott et al.}, [2018) 29.3 - -
DynamicConv (Wu et al.;[2019) 29.7 - 35.2
Local Joint Self-attention (Fonollosa et al.,|2019)  29.7 - 35.7
Trasformer(impl.) 290.1 30.6 353
Explicit Sparse Transformer 29.4 31.1 35.6

Table 1: Results on the En-De, En-Vi and De-En test sets. Compared with the baseline models,
Explicit Sparse Transformer reaches improved performances, and it achieves the state-of-the-art
performances in En-Vi and De-En.

The output is the expectation of the value following the sparsified distribution A. Following the
distribution of the selected components, the attention in the Explicit Sparse Transformer model can
obtain more focused attention. Also, such sparse attention can extend to context attention. Resembling
but different from the self-attention mechanism, the () is no longer the linear transformation of the
source context but the decoding states s. In the implementation, we replace @) with Wgs, where W
is still learnable matrix.

In brief, the attention in our proposed Explicit Sparse Transformer sparsifies the attention weights.
The attention can then become focused on the most contributive elements, and it is compatible
to both self-attention and context attention. The simple implementation of this method is in the

Appendix [A.4]

4 RESULTS

We conducted a series of experiments on three natural language processing tasks, including neural
machine translation, image captioning and language modeling. Detailed experimental settings are in
Appendix

4.1 NEURAL MACHINE TRANSLATION

Dataset To evaluate the performance of Explicit Sparse Transformer in NMT, we conducted
experiments on three NMT tasks, English-to-German translation (En-De) with a large dataset,
English-to-Vietnamese (En-Vi) translation and German-to-English translation (De-En) with two
datasets of medium size. For En-De, we trained Explicit Sparse Transformer on the standard dataset
for WMT 2014 En-De translation. The dataset consists of around 4.5 million sentence pairs. The
source and target languages share a vocabulary of 32K sub-word units. We used the newstest 2013
for validation and the newstest 2014 as our test set. We report the results on the test set.

For En-Vi, we trained our model on the dataset in IWSLT 2015 (Cettolo et al., [2014)). The dataset
consists of around 133K sentence pairs from translated TED talks. The vocabulary size for source
language is around 17,200 and that for target language is around 7,800. We used 512012 for validation,
and tst2013 for testing and report the testing results. For De-En, we used the dataset in IWSLT
2014. The training set contains 160K sentence pairs and the validation set contains 7K sentences.
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Model BLEU4 METEOR CIDEr
SAT |Bazzani et al.| (2018b) 28.2 24.8 92.3
SCST|Rennie et al. (2017) 32.8 26.7 106.5
NBT Lu et al.[(2018) 34.7 27.1 107.2
AdaAtt|Lu et al.| (2017) 332 26.6 108.5
ARNN Bazzani et al.|(2018a) 339 27.6 109.8
Transformer 353 27.7 113.1
UpDown |Anderson et al.|(2018) 36.2 27.0 113.5
Explicit Sparse Transformer 35.7 28.0 113.8

Table 2: Results on the MSCOCO Karpathy test split.

Following [Edunov et al.| (2018)), we used the same test set with around 7K sentences. The data were
preprocessed with byte-pair encoding (Sennrich et al.,|2016). The vocabulary size is 14,000.

Result Table[I] presents the results of the baselines and our Explicit Sparse Transformer on the
three datasets. For En-De, Transformer-based models outperform the previous methods. Compared
with the result of Transformer (Vaswani et al., 2017), Explicit Sparse Transformer reaches 29.4 in
BLEU score evaluation, outperforming vanilla Transformer by 0.3 BLEU score. For En-Vi, vanilla
Transformelﬂ reaches 30.2, outperforming the state-of-the-art method (Huang et al., 2017). Our
model, Explicit Sparse Transformer, achieves a new state-of-the-art performance, 31.1, by a margin of
0.5 over vanilla Transformer. For De-En, we demonstrate that Transformer-based models outperform
the other baselines. Compared with Transformer, our Explicit Sparse Transformer reaches a better
performance, 35.6. Its advantage is +0.3. To the best of our knowledge, Explicit Sparse Transformer
reaches a top line performance on the dataset.

4.2 IMAGE CAPTIONING

Dataset We evaluated our approach on the image captioning task. Image captioning is a task that
combines image understanding and language generation. We conducted experiments on the Microsoft
COCO 2014 dataset (Chen et al., 2015a). It contains 123,287 images, each of which is paired 5
with descriptive sentences. We report the results and evaluate the image captioning model on the
MSCOCO 2014 test set for image captioning. We used the publicly-available splits provided by
Karpathy & Li/ (2015). The validation set and test set both contain 5,000 images.

Result Table 2| shows the results of the baseline models and Explicit Sparse Transformer on the
COCO Karpathy test split. Transformer outperforms the mentioned baseline models. Explicit Sparse
Transformer outperforms the implemented Transformer by +0.4 in terms of BLEU-4, +0.3 in terms of
METEOR, +0.7 in terms of CIDEr. , which consistently proves its effectiveness in Image Captioning.

4.3 LANGUAGE MODELING

Dataset EnwikiSE]is large-scale dataset for character-level language modeling. It contains 100M
bytes of unprocessed Wikipedia texts. The inputs include Latin alphabets, non-Latin alphabets,
XML markups and special characters. The vocabulary size 205 tokens, including one for unknown
characters. We used the same preprocessing method following (Chung et al.|(2015). The training set
contains 90M bytes of data, and the validation set and the test set contains SM respectively.

Result Table[3]shows the results of the baseline models and Explicit Sparse Transformer-XL on the
test set of enwiki8. Compared with the other strong baselines, Transformer-XL can reach a better
performance, and Explicit Sparse Transformer outperforms Transformer-XL with an advantage.

"While we did not find the results of Transformer on En-Vi, we reimplemented our vanilla Transformer with
the same setting.
Zhttp://mattmahoney.net/dc/text.html
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Model | Params BPC
LN HyperNetworks (Ha et al., 2016) 27T 1.34
LN HM-LSTM (Chung et al.,2016) 35M 1.32
RHN (Zilly et al.[|2017) 46M 1.27
Large FS-LSTM-4 (Mujika et al.,[2017) 47M 1.25
Large mLSTM (Krause et al.||2016) 46M 1.24
Transformer (Al-Rfou et al.,2018) 44M 1.11
Transformer-XL (Dai et al., [ 2019) 41M 1.06
Adaptive-span (Sukhbaatar et al.|[2019) 39M 1.02
Explicit Sparse Transformer-XL | 41M 1.05

Table 3: Comparison with state-of-the-art results on enwiki8. Explicit Sparse Transformer-XL refers
to the Transformer with our sparsification method.

Method En-Vi De-En Training Speed (tokens/s) Inference Speed (tokens/s)
Transformer 30.6 353 49K 7.0K
Sparsemax (Martins & Astudillo,2016) - 31.2 39K 3.0K
Entmax-1.5 (Peters et al.,2019) 309 35.6 40K 49K
Entmax-alpha (Correia et al.,[2019) - 35.5 13K 0.6K
Proposal 31.1 356 48K 6.6K

Table 4: In the Transformer model, the proposed method, top-k selection before softmax is faster
than previous sparse attention methods and is comparable in terms of BLEU scores.

5 DISCUSSION

In this section, we performed several analyses for further discussion of Explicit Sparse Transformer.
First, we compare the proposed method of topk selection before softmax with previous sparse
attention method including various variants of sparsemax (Martins & Astudillol 20165 (Correia et al.|
2019; Peters et al., [2019). Second, we discuss about the selection of the value of k. Third, we
demonstrate that the top-k sparse attention method helps training. In the end, we conducted a series
of qualitative analyses to visualize proposed sparse attention in Transformer.

5.1 COMPARISON WITH OTHER SPARSE ATTENTION METHODS

We compare the performance and speed of our method with the previous sparse attention method on
the basis of strong implemented transformer baseline. The training and inference speed are reported
on the platform of Pytorch and IWSLT 2014 De-En translation dataset, the batch size for inference is
set to 128 in terms of sentence and half precision training(FP-16) is applied.

As we can see from Table 4] the proposed sparse attention method achieve the comparable results as
previous sparse attention methods, but the training and testing speed is 2x faster than sparsemax and
10x faster than Entmax-alpha during the inference. This is due to the fact that our method does not
introduce too much computation for calculating sparse attention scores.

The other group of sparse attention methods of adding local attention constraints into attention (Child
et al.,2019; Sukhbaatar et al., 2019), do not show performance on neural machine translation, so we
do not compare them in Table 4]

3We borrow the implementation of Entmax1.5 in Tensorflow from https://github.com/
deep-spin/entmax) and the implementation of Sparsemax, Entmax-1.5, Entmax-alpha in Pytorch from
https://gist.github.com/justheuristic/60167e77a95221586be315ae527c3cbd. We
have not found a reliable Tensorflow implementation of sparsemax and entmax-alpha in the transformer (we
tried to apply the official implementation of sparsemax in Tensorflow to tensor2tensor, but it reports loss of
NaN.)


https://github.com/deep-spin/entmax
https://github.com/deep-spin/entmax
https://gist.github.com/justheuristic/60167e77a95221586be315ae527c3cbd
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Figure 3: Analyse the value of K on IWSLT En-Vi and De-En datasets. “’inf” denotes the special
case of the Explicit Sparse Transformer where all positions may be attended, same as the origin
Transformer.

Valid BLEU
Valid BLEU
w
o
w

Task Base T T&P
En-Vi (BLEU) 274 277 278

Table 5: Results of the ablation study of the sparsification at different phases on the En-Vi test set.
“Base” denotes vanilla Transformer. “T” denotes only adding the sparsification in the training phase,
and “T&P” denotes adding it at both phases as the implementation of Explicit Sparse Transformer
does.

5.2 HOW TO SELECT A PROPER K?

The natural question of how to choose the optimal k& comes with the proposed method. We compare
the effect of the value of &k at exponential scales. We perform experiments on En-Vi and De-En from
3 different initializations for each value of K, and report the mean BLEU scores on the valid set.
The figure [3]shows that regardless of the value of 16 on the En-Vi dataset, the model performance
generally rises first and then falls as & increases. Under the setting of the k € {4, 8, 16, 32}, setting
the value of k to 8 achieves consistent improvements over the

5.3 DO THE PROPOSED SPARSE ATTENTION METHOD HELPS TRAINING?

We are surprised to find that only adding the sparsification in the training phase can also bring an
improvement in the performance. We experiment this idea on IWSLT En-Vi and report the results on
the valid set in Table[5] . The improvement of 0.3 BLEU scores shows that vanilla Transformer may
be overparameterized and the sparsification encourages the simplification of the model.

5.4 Do THE EXPLICIT SPARSE TRANSFORMER ATTEND BETTER?

To perform a thorough evaluation of our Explicit Sparse Transformer, we conducted a case study and
visualize the attention distributions of our model and the baseline for further comparison. Specifically,
we conducted the analysis on the test set of En-Vi, and randomly selected a sample pair of attention
visualization of both models.

The visualization of the context attention of the decoder’s bottom layer in Figure (a)] The attention
distribution of the left figure is fairly disperse. On the contrary, the right figure shows that the sparse
attention can choose to focus only on several positions so that the model can be forced to stay focused.
For example, when generating the phrase “for thinking about my heart”(Word-to-word translation
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(a) Attention of the bottom layer (b) Attention of the top layer

Figure 4: Figure is the attention visualization of Transformer and Figure [4(b)|is that of the
Explicit Sparse Transformer. The red box shows that the attentions in vanilla Transformer at most
steps are concentrated on the last token of the context.

from Vietnamese), the generated word cannot be aligned to the corresponding words. As to Explicit
Sparse Transformer, when generating the phrase “with all my heart”, the attention can focus on the
corresponding positions with strong confidence.

The visualization of the decoder’s top layer is shown in Figure From the figure, the context
attention at the top layer of the vanilla Transformer decoder suffers from focusing on the last source
token. This is a common behavior of the attention in vanilla Transformer. Such attention with wrong
alignment cannot sufficiently extract enough relevant source-side information for the generation. In
contrast, Explicit Sparse Transformer, with simple modification on the vanilla version, does not suffer
from this problem, but instead focuses on the relevant sections of the source context. The figure
on the right demonstrating the attention distribution of Explicit Sparse Transformer shows that our
proposed attention in the model is able to perform accurate alignment.

6 RELATED WORK

Attention mechanism has demonstrated outstanding performances in a number of neural-network-
based methods, and it has been a focus in the NLP studies (Bahdanau et al.| [2014). A number of
studies are proposed to enhance the effects of attention mechanism (Luong et al., | 2015 Vaswani et al.|
2017; Ke et al., [2018)). [Luong et al.|(2015) propose local attention and |Yang et al.| (2018) propose
local attention for self-attention. [Xu et al.| (2015]) propose hard attention that pays discrete attention
in image captioning. |Chandar et al.|(2016) propose a combination soft attention with hard attention
to construct hierarchical memory network. |Lin et al.|(2018) propose a temperature mechanism to
change the softness of attention distribution. [Shen et al.| (2018)) propose an attention which can select
a small proportion for focusing. It is trained by reinforcement learning algorithms (Williams, |1992).
In terms of memory networks, Rae et al.|(2016)) propose to sparse access memory

Child et al.|(2019) recently propose to use local attention and block attention to sparsify the trans-
former. Our approach differs from them in that our method does not need to block sentences and still
capture long distance dependencies. Besides, we demonstrate the importance of Explicit Sparse Trans-
former in sequence to sequence learning. Although the variants of sparsemax (Martins & Astudillol
2016; |Correia et al.,|2019; |Peters et al., 2019) improve in machine translation tasks, we empirically
demonstrate in|5.1|that our method introduces less computation in the standard transformer and is
much faster than those sparse attention methods on GPUs.

7 CONCLUSION

In this paper, we propose a novel model called Explicit Sparse Transformer. Explicit Sparse Trans-
former is able to make the attention in vanilla Transformer more concentrated on the most contributive
components. Extensive experiments show that Explicit Sparse Transformer outperforms vanilla Trans-
former in three different NLP tasks. We conducted a series of qualitative analyses to investigate the
reasons why Explicit Sparse Transformer outperforms the vanilla Transformer. Furthermore, we find
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an obvious problem of the attention at the top layer of the vanilla Transformer, and Explicit Sparse
Transformer can alleviate this problem effectively with improved alignment effects.
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A APPENDIX

A.1 BACKGROUND
A.1.1 ATTENTION MECHANISM

Bahdanau et al.|(2014) first introduced the attention mechanism to learn the alignment between the
target-side context and the source-side context, and [Luong et al.|(2015) formulated several versions
for local and global attention. In general, the attention mechanism maps a query and a key-value pair
to an output. The attention score function and softmax normalization can turn the query @) and the
key K into a distribution «. Following the distribution «, the attention mechanism computes the
expectation of the value V' and finally generates the output C'

Take the original attention mechanism in NMT as an example. Both key X € R™*? and value
V e R™*? are the sequence of output states from the encoder. Query @ € R™*¢ is the sequence of
output states from the decoder, where m is the length of (), n is the length of K and V, and d is the
dimension of the states. Thus, the attention mechanism is formulated as:

C = softmax(f(Q, K))V (5)

where f refers to the attention score computation.

A.1.2 TRANSFORMER

Transformer (Vaswani et al., 2017), which is fully based on the attention mechanism, demonstrates
the state-of-the-art performances in a series of natural language generation tasks. Specifically, we
focus on self-attention and multi-head attention.

The ideology of self-attention is, as the name implies, the attention over the context itself. In the
implementation, the query @, key K and value V' are the linear transformation of the input x, so
that Q = Wz, K = Wk and V = Wyx where Wg, Wik and Wy, are learnable parameters.
Therefore, the computation can be formulated as below:

T
C = softmax (QZ > 74 6)

where d refers to the dimension of the states.

The aforementioned mechanism can be regarded as the unihead attention. As to the multi-head
attention, the attention computation is separated into g heads (namely 8 for basic model and 16 for
large model in the common practice). Thus multiple parts of the inputs can be computed individually.
For the ¢-th head, the output can be computed as in the following formula:

. (@) g@&T .
O = softmax <Q\/[di> V@ (7
k

where C'(!) refers to the output of the head, @), KV and V) are the query, key and value of
the head, and dj, refers to the size of each head (d;, = d/g). Finally, the output of each head are
concatenated for the output:

02[0(1)7... LW L ’C(g)] (8)
In common practice, C' is sent through a linear transformation with weight matrix W, for the final
output of multi-head attention.

However, soft attention can assign weights to a lot more words that are less relevent to the query.
Therefore, in order to improve concentration in attention for effective information extraction, we study
the problem of sparse attention in Transformer and propose our model Explicit Sparse Transformer.
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A.2 EXPERIMENTAL DETAILS

We use the default setting in|Vaswani et al.|(2017)) for the implementation of our proposed Explicit
Sparse Transformer. The hyper parameters including beam size and training steps are tuned on the
valid set.

Neural Machine Translation Training For En-Vi translation, we use default scripts and hyper-
parameter setting of tensothensmE] v1.11.0 to preprocess, train and evaluate our model. We use the
default scripts of fairse(f] v0.6.1 to preprocess the De-En and En-De dataset. We train the model on
the En-Vi dataset for 35K steps with batch size of 4K. For IWSLT 2015 De-En dataset, batch size
is also set to 4K, we update the model every 4 steps and train the model for 90epochs. For WMT
2014 En-De dataset, we train the model for 72 epochs on 4 GPUs with update frequency of 32 and
batch size of 3584. We train all models on a single RTX2080TI for two small IWNSLT datasets and
on a single machine of 4 RTX TITAN for WMT14 En-De. In order to reduce the impact of random
initialization, we perform experiments with three different initializations for all models and report the
highest for small datasets.

Evaluation We use case-sensitive tokenized BLEU score (Papinenti et al., 2002) for the evaluation of
WMT14 En-De, and we use case-insensitive BLEU for that of IWSLT 2015 En-Vi and IWSLT 2014
De-En following [Lin et al.|(2018). Same as [Vaswani et al.| (2017)), compound splitting is used for
WMT 14 En-De. For WMT 14 En-De and IWSLT 2014 De-En, we save checkpoints every epoch
and average last 10 checkpoints every 5 epochs, We select the averaged checkpoint with best valid
BLEU and report its BLEU score on the test set. For IWSLT 2015 En-Vi, we save checkpoints every
600 seconds and average last 20 checkpoints.

Image Captioning We still use the default setting of Transformer for training our proposed Explicit
Sparse Transformer. We report the standard automatic evaluation metrics with the help of the COCO
captioning evaluation toolkitE] (Chen et al.,[2015b), which includes the commonly-used evaluation
metrics, BLEU-4 Papineni et al.| (2002), METEOR Denkowski & Lavie|(2014), and CIDEr|Vedantam
et al.[|(2015)).

Language Models We follow [Dai et al,| (2019) and use their implementation for our Explicit
Sparse Transformer. Following the previous work (Chung et al.|[2015; |Dai et al.,[2019), we use BPC
(E[loge P(xt + 1]ht)]), standing for the average number of Bits-Per-Character, for evaluation. Lower
BPC refers to better performance. As to the model implementation, we implement Explicit Sparse
Transformer-XL, which is based on the base version of Transforrner—XLE] Transformer-XL is a model
based on Transformer but has better capability of representing long sequences.

A.3 THE BACK-PROPAGATION PROCESS OF TOP-K SELECTION

The masking function M (-, -) is illustrated as follow:

P;; if P;; > t; (k-th largest value of row 7)
M(P,k)i; = . . )
—oo if P;; < t; (k-th largest value of row )
Denote M = M(P, k). We regard ¢; as constants. When back-propagating,
OM;;
=0 (i£korj#l 10
5p. =0 (i#korj#l) (10)
OM;; B 1 if P;; > t; (k-th largest value of row ) (11
OP;; 10 if P;; < t; (k-th largest value of row %)

*https://github.com/tensorflow/tensor2tensor
Shttps://github.com/pytorch/fairseq
Shttps://github.com/tylin/coco-caption

"Due to our limited resources (TPU), we did not implement the big version of Explicit Sparse Transformer-
XL.
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The next step after top-k selection is normalization:
A = softmax(M (P, k)) (12)

where A refers to the normalized scores. When backpropagating,

lo Ik
A, OA;; OMpnn
0Py 2;3%% 0Py (13
8Aij OMy,
= 14
OMjy 0Py 14
8Aij

_ ) a3, if P;; > t; (k-th largest value of row %)

0 if P;; <t; (k-th largest value of row %)

(15)
The softmax function is evidently differentiable, therefore, we have calculated the gradient involved
in top-k selection.

A.4 IMPLEMENTATION

Figure 5] shows the code for the idea in case of single head self-attention, the proposed method is
easy to implement and plug in the successful Transformer model.
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import torch
import torch.nn. functional as F

def sparse_dot_product (key, value, query, k=0):

Key module of the Sparse Transformer,

same time efficiency as the origin self attentic

Compute the context vector and the attention vectors.

Args:

key ( FloatTensor ): set of key_len
dim]

set of key len

key vectors [batch, key_len,

value { FloatTensor ):

value vectors [batch, key len, dim]

set of quer;

query ( FloatTensor ) :

query vectors [batch, v_len,

quer;
k ("int') select top k positions
Returns:
('FloatTensor , FloatTensor )
#* putput context vectors [batch,
# one of the attention vectors [batch,

# 1) Calculate self attention scores.

scores = torch.matmul (quer)', key. ‘transpose(ﬂ, 3

?)

# 2) Compute the sparse attention mask and mask out

# with small magnitude
if k > key.size( [1]:

k = key.size() [1]
il

v, _ = torch. topk(scores, k)
# print(value)
vk = v[:,
mask_k = torch.lt(scores, vk)

:, —1].unsqueeze(2). expand_as(scores)

scores = scores.masked fill (mask k, -1e18)
# 3) Normalize and compute context vectors.
attn = F.softmax (scores)
context = torch.matmul (attn, value)

return context, attn

len’

dim]

query_len,

the

dim]”

# bs, query_len, key_len

attention values

Figure 5: Code for the main idea in Pytorch
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