
Published as a conference paper at ICLR 2019

LEARNING ACTIONABLE REPRESENTATIONS WITH
GOAL-CONDITIONED POLICIES

Dibya Ghosh, Abhishek Gupta, & Sergey Levine ∗
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94703, USA

ABSTRACT

Representation learning is a central challenge across a range of machine learning
areas. In reinforcement learning, effective and functional representations have the
potential to tremendously accelerate learning progress and solve more challenging
problems. Most prior work on representation learning has focused on generative
approaches, learning representations that capture all the underlying factors of vari-
ation in the observation space in a more disentangled or well-ordered manner. In
this paper, we instead aim to learn functionally salient representations: representa-
tions that are not necessarily complete in terms of capturing all factors of variation
in the observation space, but rather aim to capture those factors of variation that
are important for decision making – that are “actionable.” These representations
are aware of the dynamics of the environment, and capture only the elements of
the observation that are necessary for decision making rather than all factors of
variation, eliminating the need for explicit reconstruction. We show how these
learned representations can be useful to improve exploration for sparse reward
problems, to enable long horizon hierarchical reinforcement learning, and as a
state representation for learning policies for downstream tasks. We evaluate our
method on a number of simulated environments, and compare it to prior methods
for representation learning, exploration, and hierarchical reinforcement learning.

1 INTRODUCTION

Representation learning refers to a transformation of an observation, such as a camera image or state
observation, into a form that is easier to manipulate to deduce a desired output or perform a down-
stream task, such as prediction or control. In reinforcement learning (RL) in particular, effective
representations are ones that enable generalizable controllers to be learned quickly for challenging
and temporally extended tasks. While end-to-end representation learning with full supervision has
proven effective in many scenarios, from supervised image recognition (Krizhevsky et al., 2012) to
vision-based robotic control (Levine et al., 2015), devising representation learning methods that can
use unlabeled data or experience effectively remains an open problem.

Much of the prior work on representation learning in RL has focused on generative approaches.
Learning these models is often challenging because of the need to model the interactions of all
elements of the state. We instead aim to learn functionally salient representations: representations
that are not necessarily complete in capturing all factors of variation in the observation space, but
rather aim to capture factors of variation that are relevant for decision making – that are actionable.

How can we learn a representation that is aware of the dynamical structure of the environment? We
propose that a basic understanding of the world can be obtained from a goal-conditioned policy, a
policy that can knows how to reach arbitrary goal states from a given state. Learning how to execute
shortest paths between all pairs of states suggests a deep understanding of the environment dynam-
ics, and we hypothesize that a representation incorporating the knowledge of a goal-conditioned pol-
icy can be readily used to accomplish more complex tasks. However, such a policy does not provide
a readily usable state representation, and it remains to choose how an effective state representation

∗dibya.ghosh@berkeley.edu

1

Published as a conference paper at ICLR 2019

should be extracted. We want to extract those factors of the state observation that are critical for
deciding which action to take. We can do this by comparing which actions a goal-conditioned pol-
icy takes for two different goal states. Intuitively, if two goal states require different actions, then
they are functionally different and vice-versa. This principle is illustrated in the diagram in Figure 1.
Based on this principle, we propose actionable representations for control (ARC), representations in
which Euclidean distances between states correspond to expected differences between actions taken
to reach them. Such representations emphasize factors in the state that induce significant differences
in the corresponding actions, and de-emphasize those features that are irrelevant for control.

Figure 1: Actionable representa-
tions: 3 houses A, B, C can only
be reached by indicated roads. The
actions taken to reach A, B, C are
shown by arrows. Although A, B
are very close in space, they are
functionally different. The car has
to take a completely different road
to reach A, compared to B and C.
Representations zA, zB , zC learn
these functional differences to dif-
ferentiate A from B and C, while
keeping B and C close.

While learning a goal-conditioned policy to extract such a rep-
resentation might itself represent a daunting task, it is worth
noting that such a policy can be learned without any knowl-
edge of downstream tasks, simply through unsupervised ex-
ploration of the environment. It is reasonable to postulate that,
without active exploration, no representation learning method
can possibly acquire a dynamics-aware representation, since
understanding the dynamics requires experiencing transitions
and interactions, rather than just observations of valid states.
As we demonstrate in our experiments, representations ex-
tracted from goal-conditioned policies can be used to better
learn more challenging tasks than simple goal reaching, which
cannot be easily contextualized by goal states. The process of
learning goal-conditioned policies can also be made recursive,
so that the actionable representations learned from one goal-
conditioned policy can be used to quickly learn a better one.

Actionable representations for control are useful for a number
of downstream tasks: as representations for task-specific poli-
cies, as representations for hierarchical RL, and to construct
well-shaped reward functions. We show that ARCs enable
these applications better than representations that are learned
using unsupervised generative models, predictive models, and
other prior representation learning methods. We analyze struc-
ture of the learned representation, and compare the perfor-
mance of ARC with a number of prior methods on downstream
tasks in simulated robotic domains such as wheeled locomo-
tion, legged locomotion, and robotic manipulation.

2 PRELIMINARIES

Goal-conditioned reinforcement learning. In RL, the goal is to learn a policy πθ(at|st) that
maximizes the expected return Rt = Eπθ [

∑
t rt]. Typically, RL learns a single task that optimizes

for a particular reward function. If we instead would like to train a policy that can accomplish a
variety of tasks, we might instead train a policy that is conditioned on another input – a goal. When
the different tasks directly correspond to different states, this amounts to conditioning the policy π
on both the current and goal state. The policy πθ(at|st, g) is trained to reach goals from the state
space g ∼ S, by optimizing Eg∼S [Eπθ(a|s,g)(Rg))], where Rg is a reward for reaching the goal g.

Maximum entropy RL. Maximum entropy RL algorithms modify the RL objective, and instead
learns a policy to maximize the reward as well as the entropy of the policy (Haarnoja et al., 2017;
Todorov, 2006), according to π? = arg maxπ Eπ[r(s, a)] +H(π). In contrast to standard RL,
where optimal policies in fully observed environments are deterministic, the solution in maximum
entropy RL is a stochastic policy, where the entropy reflects the sensitivity of the rewards to the
action: when the choice of action has minimal effect on future rewards, actions are more random,
and when the choice of action is critical, the actions are more deterministic. In this way, the action
distributions for a maximum entropy policy carry more information about the dynamics of the task.

2

Published as a conference paper at ICLR 2019

Figure 2: An illustration of actionable representations. For a pair of states s1, s2, the divergence
between the goal-conditioned action distributions they induce defines the actionable distance DAct,
which in turn is used to learn representation φ.

3 LEARNING ACTIONABLE REPRESENTATIONS

In this work, we extract a representation that can distinguish states based on actions required to
reach them, which we term an actionable representation for control (ARC). In order to learn state
representations φ that can capture the elements of the state which are important for decision making,
we first consider defining actionable distances DAct(s1, s2) between states. Actionable distances
are distances between states that capture the differences between the actions required to reach the
different states, thereby implicitly capturing dynamics. If actions required for reaching state s1
are very different from the actions needed for reaching state s2, then these states are functionally
different, and should have large actionable distances. This subsequently allows us to extract a feature
representation(φ(s)) of state, which captures elements that are important for decision making.

To formally define actionable distances, we build on the framework of goal-conditioned RL. We
assume that we have already trained a maximum entropy goal-conditioned policy πθ(a|s, g) that can
start at an arbitrary state s0 ∈ S in the environment, and reach a goal state sg ∈ S. Although this is a
significant assumption, we will discuss later how this is in fact reasonable in many settings. We can
extract actionable distances by examining how varying the goal state affects action distributions for
goal-conditioned policies. Formally, consider two different goal states s1 and s2. At an intermediate
state s, the goal-conditioned policy induces different action distributions πθ(a|s, s1) and πθ(a|s, s2)
to reach s1 and s2 respectively. If these distributions are similar over many intermediate states s,
this suggests that these states are functionally similar, while if these distributions are different, then
the states must be functionally different. This motivates a definition for actionable distances DAct as

DAct(s1, s2) = Es

[
DKL(π(a|s, s1)||π(a|s, s2)) +DKL(π(a|s, s2)||π(a|s, s1))

]
. (1)

The distance consists of the expected divergence over all initial states s (refer to Section B for
how we do this practically). If we focus on a subset of states, the distance may not capture action
differences induced elsewhere, and can miss functional differences between states. Since maximum
entropy policies learn unique optimal stochastic policies, the actionable distance is well-defined and
unambiguous. Furthermore, because max-ent policies capture sensitivity of the value function, goals
are similar under ARC if they require the same action and they are equally “easy” to reach.

We can use DAct to extract an actionable representation of state. To learn this representation φ(s),
we optimize φ such that Euclidean distance between states in representation space corresponds to
actionable distances DAct between them. This optimization yields good representations of state
because it emphasizes the functionally relevant elements of state, which significantly affect the ac-
tionable distance, while suppressing less functionally relevant elements of state. The problem is:

min
φ

Es1,s2

[
‖φ(s1)− φ(s2)‖2 −DAct(s1, s2)

]2
(2)

This objective yields representations where Euclidean distances are meaningful. This is not neces-
sarily true in the state space or in generative representations (Section 6.4). These representations
are meaningful for several reasons. First, since we are leveraging a goal-conditioned policy, they
are aware of dynamics and are able to capture local connectivity of the environment. Secondly, the
representation is optimized so that it captures only the functionally relevant elements of state.

3

Published as a conference paper at ICLR 2019

Requirement for Goal Conditioned Policy: A natural question to ask is whether needing a goal-
conditioned policy is too strong of a prerequisite. However, it is worth noting that the GCP can
be trained with existing RL methods (TRPO) using a sparse task-agnostic reward (Section 6.2, Ap-
pendix A.1) – obtaining such a policy is not especially difficult, and existing methods are quite capa-
ble of doing so (Nair et al. (2018)). Furthermore, it is likely not possible to acquire a functionality-
aware state representation without some sort of active environment interaction, since dynamics can
only be understood by observing outcomes of actions, rather than individual states. Importantly,
we discuss in the following section how ARCs help us solve tasks beyond what a simple goal-
conditioned policy can achieve.

4 USING ACTIONABLE REPRESENTATIONS FOR DOWNSTREAM TASKS

A natural question that emerges when learning representations from a goal-conditioned policy per-
tains to what such a representation enables over the goal-conditioned policy itself. Although goal-
conditioned policies enable reaching between arbitrary states, they suffer from fundamental limi-
tations: they do not generalize very well to new states, and they are limited to solving only goal-
reaching tasks. We show in our empirical evaluation that the ARC representation expands mean-
ingfully over these limitations of a goal-conditioned policy - to new tasks and to new regions of
the environment. In this section, we detail how ARCs can be used to generalize beyond a goal-
conditioned policy to help solve tasks that cannot be expressed as goal reaching (Section 4.1), tasks
involving larger regions of state space (Section 4.2), and temporally extended tasks which involve
sequences of goals (Section 4.3).

4.1 FEATURES FOR LEARNING POLICIES

Goal-conditioned policies are trained with only a goal-reaching reward, and so are unaware of re-
ward structures used for other tasks in the environment which do not involve simple goal-reaching.
Tasks which cannot be expressed as simply reaching a goal are abundant in real life scenarios such
as navigation under non-uniform preferences or manipulation with costs on quality of motion, and
for such tasks, using the ARC representation as input for a policy or value function can make the
learning problem easier. We can learn a policy for a downstream task, of the form πθ(a|φ(s)), using
the representation φ(s) instead of state s. The implicit understanding of the environment dynamics
in the learned representation prioritizes the parts of the state that are most important for learning,
and enables quicker learning for these tasks as we see in Section 6.6.

4.2 REWARD SHAPING

We can use ARC to construct better-shaped reward functions. It is common in continuous con-
trol to define rewards in terms of some distance to a desired state, oftentimes using Euclidean dis-
tance (Schulman et al., 2015; Lillicrap et al., 2015). However, Euclidean distance in state space is
not necessarily a meaningful metric of functional proximity. ARC provides a better metric, since it
directly accounts for reachability. We can use the actionable representation to define better-shaped
reward functions for downstream tasks. We define a shaping of this form to be the negative Euclidean
distance between two states in ARC space: −||φ(s1) − φ(s2)||2: for example, on a goal-reaching
task r(s) = rsparse(s, sg) − ||φ(s) − φ(sg)||2. This allows us to explore and learn policies even in
the presence of sparse reward functions.

One may wonder whether, instead of using ARCs for reward shaping, we might directly use the goal-
conditioned policy to reach a particular goal. As we will illustrate in Section 6.5, the representation
typically generalizes better than the goal-conditioned policy. Goal-conditioned policies typically
can be trained on small regions of the state space, but don’t extrapolate well to new parts of the
state space. We observe that ARC exhibits better generalization, and can provide effective reward
shaping for goals that are very difficult to reach with the goal-conditioned policy.

4.3 HIERARCHICAL REINFORCEMENT LEARNING

Goal-conditioned policies can serve as low-level controllers for hierarchical tasks which require
synthesizing a particular sequence of behaviours, and thus not expressible as a single goal-reaching

4

Published as a conference paper at ICLR 2019

objective. One approach to solving such tasks learns a high-level controller πmeta(g|s) via RL that
produces desired goal states for a goal-conditioned policy to reach sequentially (Nachum et al.,
2018). The high-level controller suggests a goal, which the goal conditioned policy attempts to
reach for several time-steps, following which the high-level controller picks a new goal. For many
tasks, naively training such a high-level controller which outputs goals directly in state space is
unlikely to perform well, since such a controller must disentangle the relevant attributes in the goal
for long horizon reasoning. We consider two schemes to use ARCs for hierarchical RL - learning a
high level policy which commands directly in ARC space or commands in a clustered latent space.

Figure 3: Hierarchical RL with ARC.
Left: Directly commanding in ARC
space Right: Commanding a cluster in
ARC space

HRL directly in ARC space: ARC representations
provide a better goal space for high-level controllers,
since they de-emphasize components of the goal space
irrelevant for determining the optimal action. In this
scheme, the high-level controller πmeta(z|s) observes the
current state and generates a distribution over points in
the latent space. At every meta-step, a sample zh is
taken from πmeta(z|s) which represents the high level
command. zh is then translated into a goal gh via a de-
coder which is trained to reconstruct states from their cor-
responding goals. This goal gh can then be used to com-
mand the goal conditioned policy for several time steps,
before resampling again from πmeta. A high-level con-
troller producing outputs in ARC space does not need to
rediscover saliency in the goal space, which makes the
search problem less noisy and more accurate. We show
in Section 4.3 that using ARC as a hierarchical goal space
enables significant improvement for waypoint navigation tasks.

Clustering in ARC space: Since ARC captures the topology of the environment, clusters in ARC
space often correspond to semantically meaningful state abstractions. We utilize these clusters, with
the intuition that a meta-controller searching in “cluster space” should learn faster than directly
outputting states. In this scheme, we first build a discrete number of clusters by clustering the
points that the goal conditioned policy is trained on using the k-means algorithm within the ARC
representation space. We then train a high-level controller πmeta(c|s) which observes a state s and
generates a distribution over discrete clusters c. At every meta-step, a cluster sample ch is taken
from πmeta(c|s). A goal in state space gh is then chosen uniformly at random from points within the
cluster ch and used to command the GCP for several time steps before the next cluster is sampled
from πmeta. We train a meta-policy to output clusters, instead of states: πmeta(cluster|s). We see
that for hierarchical tasks with less granular reward functions such as room navigation, performing
RL in “cluster space” induced by ARC outperform cluster spaces induced by other representations,
since the distance metric is much more meaningful in ARC space.

5 RELATED WORK

The capability to learn effective representations is a major advantage of deep neural network models.
These representations can be acquired implicitly, through end-to-end training (Goodfellow et al.,
2016), or explicitly, by formulating and optimizing a representation learning objective. A classic
approach to representation learning is generative modeling, where a latent variable model is trained
to model the data distribution, and the latent variables are then used as a representation (Rasmus
et al., 2015; Dumoulin et al., 2016; Kingma & Welling, 2013; Finn et al., 2015; Ghadirzadeh et al.,
2017; Curran et al., 2015; Goroshin et al., 2015; Higgins et al., 2017). In the context of control and
sequence models, generative models have also been proposed to model transitions (Watter et al.,
2015; Assael et al., 2015; Zhang et al., 2018b; Kurutach et al., 2018). While generative models
are general and principled, they must not only explain the entirety of the input observation, but
must also generate it. Several methods perform representation learning without generation, often
based on contrastive losses (Sermanet et al., 2018; van den Oord et al., 2018; Belghazi et al., 2018;
Chopra et al., 2005; Weinberger & Saul, 2009). While these methods avoid generation, they either
still require modeling of the entire input, or utilize heuristics that encode user-defined information.

5

Published as a conference paper at ICLR 2019

In contrast, ARCs are directly trained to focus on decision-relevant features of input, providing a
broadly applicable objective that is still selective about which aspects of input to represent.

In the context of RL and control, representation learning methods have been used for many down-
stream applications (Lesort et al., 2018), including representing value functions (Barreto et al., 2016)
and building models (Watter et al., 2015; Assael et al., 2015; Zhang et al., 2018b). Our approach
is complementary: it can also be applied to these applications. Several works have sought to learn
representations that are specifically suited for physical dynamical systems (Jonschkowski & Brock,
2015) and that use interaction to build up dynamics-aware features (Bengio et al., 2017; Laversanne-
Finot et al., 2018). In contrast to Jonschkowski & Brock (2015), our method does not attempt to
encode all physically-relevant features of state, only those relevant for choosing actions. In con-
trast to Bengio et al. (2017); Laversanne-Finot et al. (2018), our approach does not try to determine
which features of the state can be independently controlled, but rather which features are relevant for
choosing controls. Srinivas et al. (2018) also consider learning representations through goal-directed
behaviour, but receives supervision through demonstrations instead of active observation. Related
methods learn features that are predictive of actions based on pairs of sequential states (so-called
inverse models) (Agrawal et al., 2016; Pathak et al., 2017; Zhang et al., 2018a). More recent work
such as (Burda et al., 2018b) perform a large scale study of these types of methods in the context
of exploration. Unlike ARC, which is learned from a policy performing long-horizon control, in-
verse models are not obliged to represent all relevant features for multi-step control, and suffer from
greedy reasoning.

6 EXPERIMENTS

The aim of our experimental evaluation is to study the following research questions:

1. Can we learn ARCs for multiple continuous control environments? What are the properties
of these learned representations?

2. Can ARCs be used as feature representations for learning policies quickly on new tasks?
3. Can reward shaping with ARCs enable faster learning?
4. Do ARCs provide an effective mechanism for hierarchical RL?

Full experimental and hyperparemeter tuning details are presented in the appendix.

6.1 DOMAINS

We study six simulated environments as illustrated in Figure 4: 2D navigation tasks in two settings,
wheeled locomotion tasks in two settings, legged locomotion, and object pushing with a robotic
gripper. The 2D navigation domains consist of either a room with a central divider wall or four
rooms. Wheeled locomotion involves a two-wheeled differential drive robot, either in free space
or with four rooms. For legged locomotion, we use a quadrupedal ant robot, where the state space
consists of all joint angles, along with the Cartesian position of the center of mass (CoM). The
manipulation task uses a simulated Sawyer arm to push an object, where the state consists of end-
effector and object positions. Further details are presented in Appendix C.

These environments present interesting representation learning challenges. In 2D navigation, the
walls impose structure similar to those in Figure 1: geometrically proximate locations on either side
of a wall are far apart in terms of reachability. The locomotion environments present an additional
challenge: an effective representation must account for the fact that the internal joints of each robot
(legs or wheel orientation) are less salient for long-horizon tasks than CoM. The original state rep-
resentation does not reflect this structure: joint angles expressed in radians carry as much weight
as CoM positions in meters. In the object manipulation task, a key representational challenge is to
distinguish between pushing the block and simply moving the arm in free space.

6.2 LEARNING THE GOAL-CONDITIONED POLICY AND ARC REPRESENTATION

We first learn a stochastic goal-conditioned policy parametrized by a neural network which outputs
actions given the current state and the desired goal. This goal-conditioned policy is trained using
a sparse reward using entropy-regularized Trust Region Policy Optimization (TRPO) (Schulman

6

Published as a conference paper at ICLR 2019

(a) 2D Wall (b) 2D Rooms (c) Wheeled (d) Wheeled Rooms (e) Ant (f) Pushing

Figure 4: The tasks in our evaluation. The 2D navigation tasks allow for easy visualization and
analysis, while the more complex tasks allow us to investigate how well ARC and prior methods can
discern the most functionally-relevant features of the state.

et al., 2015). For a discussion of the assumption about the existence of a goal-conditioned policy,
please refer to Section 3. Exact details about the training procedure, the reward function, and hy-
perparameters are presented in Appendix A.1. To train the ARC representation, we collect a dataset
of 500 trajectories with horizon 100 from the goal-conditioned policy, where each trajectory has an
arbitrary start state and intended goal state. We optimize Eqn 2 as a supervised learning problem us-
ing this dataset to train the representation, computing the relevant expectations by uniform sampling
from states in the dataset. A detailed outline of the training procedure, along with hyperparameter
and architecture choices, is presented in Appendix A.2.

6.3 COMPARISONS WITH PRIOR WORK

We compare ARC to other representation learning methods used in previous works for control:
variational autoencoders (Kingma & Welling, 2013) (VAE), variational autoencoders trained for
feature slowness (Jonschkowski & Brock, 2015) (slowness), features extracted from a predictive
model (Oh et al., 2015) (predictive model), features extracted from inverse models (Agrawal et al.,
2016; Burda et al., 2018a), and a naı̈ve baseline that uses the full state space as the representation
(state). Details of the exact objectives used to train these methods is provided in Appendix B.

For each downstream task in Section 4, we also compare with alternative approaches for solving the
task not involving representation learning. For reward shaping, we compare with VIME (Houthooft
et al., 2016), an exploration method based on novelty bonuses. For hierarchical RL, we compare with
option critic (Klissarov et al., 2017) and an on-policy adaptation of HIRO (Nachum et al., 2018). We
also compare to model-based reinforcement learning with MPC (Nagabandi et al., 2017), a method
which explicitly learns and uses environment dynamics, as compared to the implicit dynamics learnt
by ARC. Because sample complexity of model-based and model-free methods differ, all results with
model-based reinforcement learning indicate final performance.

To ensure a fair comparison between the methods, we provide the same information and trajectory
data that ARC receives to all of the representation learning methods. Each representation is trained
on the same dataset of trajectories collected from the goal-conditioned policy, ensuring that each
comparisons receives data from the full state distribution and meaningful transitions.

6.4 ANALYSIS OF LEARNED ACTIONABLE REPRESENTATIONS

(a) Wall (b) VAE Wall (c) ARC Wall (d) 4 Room (e) 4 Room VAE (f) 4 Room ARC

Figure 5: Visualization of ARC for 2D navigation. The states in the environment are colored to
help visualize their position in representation space. For the wall task, points on opposite sides of
the wall are clearly separated in ARC space (c). For four rooms, we see that ARCs provide a clear
decomposition into room clusters (f), while VAEs do not (e).

7

Published as a conference paper at ICLR 2019

We analyze the structure of ARC space for the tasks described in Section 6.1, to identify which
factors of state ARC chooses to emphasize, and how system dynamics affect the representation.

In the 2D navigation tasks, we visualize the original state and learned representations in Figure 5. In
both environments, ARC reflects the dynamics: points close by in Euclidean distance in the original
state space are distant in representation space when they are functionally distinct. For instance, there
is a clear separation in the latent space where the wall should be, and points on opposite sides of
the wall are much further apart in ARC space (Figure 5) than in the original environment and in the
VAE representation. In the room navigation task, the passages between rooms are clear bottlenecks,
and the ARC representation separates the rooms according to these bottlenecks.

W
he

el
ed

N
av

ig
at

io
n

Position
Car Angle

L
eg

ge
d

L
oc

om
ot

io
n

Position
Joint Angle

R
ob

ot
ic

M
an

ip
ul

at
io

n

Box Position
End-Effector

(a) Original State (b) VAE (c) ARC

Figure 6: Perturbation analysis (Section 6.4): Effective representations vary significantly with per-
turbations to functionally relevant elements of state (shown in orange), and less for secondary ele-
ments (shown in purple). ARC exhibits this property, with a spread orange region - robot CoM or
object position, and a suppressed purple region - joint angles and other secondary elements. The
VAE and naive state representations do not capture this saliency, containing spread purple regions.

The representations learned in more complex domains, such as wheeled or legged locomotion and
block manipulation, also show meaningful patterns. We aim to understand which elements of state
are being emphasized by the representation, by analyzing how distances in the latent space change
as we perturb various elements of state. (Fig 6). For each environment, we determine two factors
in the state: one which we consider salient for decision making (in orange), and one which is sec-
ondary (in purple). We expect a good representation to have a larger variation in distance as we
perturb the important factor than when we perturb the secondary factor. In the legged locomotion
environment, the CoM is the important factor and the joint angles are secondary. As we perturb the
CoM, the representation should vary significantly, while the effect should be muted as we perturb
the joints. For the wheeled environment, position of the car should cause large variations while the
orientation should be secondary. For the object pushing, we expect block position to be salient and
end-effector position to be secondary. Since distances in the high-dimensional representation space
are hard to visualize, we project [ARC, VAE, State] representations of perturbed states into 2 di-
mensions (Fig 6) using multi-dimensional scaling (MDS) (Borg & Groenen, 2005), which projects
points while preserving Euclidean distances. From Fig 6, we see that ARC captures the factors
of interest; as the important factor is perturbed the representation changes significantly (spread out
orange points), while when the secondary factor is perturbed the representation changes minimally
(close together purple points). This implies that for Ant, ARC captures CoM while suppressing joint
angles; for wheeled, ARC captures position while suppressing orientation; for block pushing, ARC
captures block position, suppressing arm movement. Both VAE representations and original state
space are unable to capture this.

6.5 LEVERAGING ACTIONABLE REPRESENTATIONS FOR REWARD SHAPING

As desribed in Section 4.2, distances in ARC space can be used for reward shaping to solve tasks
that present a large exploration challenge with sparse reward functions. We investigate this on two

8

Published as a conference paper at ICLR 2019

challenging exploration tasks for wheeled locomotion and legged locomotion (seen in Fig 7). We
acquire an ARC from a goal-conditioned policy in the region S where the CoM is within a 2m
square. The learned representation is then used to guide learning via reward shaping for learning a
goal-conditioned policy on a larger region S ′, where the CoM is within a square of 8m. The task is
to reach arbitrary goals in S ′, but with only a sparse goal completion reward, so exploration is chal-
lenging.We shape the reward with a term corresponding to distance between the representation of
the current and desired state: r(s, g) = rsparse−‖φ(s)−φ(g)‖2. To ensure fairness, all comparisons
initialize from the goal-conditioned policy on small region S and train on the same data. Further
details on the experimental setup for this domain can be found in Appendix A.3.

0 500 1000 1500 2000 2500 3000
Iterations

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
to

 G
oa

l (
m

)
Wheeled Navigation

ARC [Ours]
From Scratch
Hand Shaped

Inverse
Predictive Model
Slowness

Sparse
State
VAE

VIME
MBRL

0 500 1000 1500 2000 2500 3000
Iterations

0

1

2

3

4

D
is

ta
nc

e
to

 G
oa

l (
m

)

Ant

ARC [Ours]
From Scratch
Hand Shaped

Inverse
Predictive Model
Slowness

Sparse
State
VAE

VIME
MBRL

Figure 7: Learning new tasks with reward shaping in representation space. ARC representations are
more effective than other methods, and match the performance of a hand-specified shaping.

As shown in Fig 7, ARC demonstrates faster learning speed and better asymptotic performance over
all compared methods, when all are initialized from the goal conditioned policy trained on the small
region. This can be attributed to the fact that, unlike the other representation learning algorithms, the
ARC representation explicitly optimizes for functional distances in latent space, which generalizes
well to a larger domain since the functionality in the new space is preserved. The performance
of ARC is similar to a hand-designed reward shaping corresponding to distance in COM space,
corroborating Figure 6 that ARC considers CoM to be the most salient feature. We notice that
representations which are dynamics-aware (ARC, predictive models, inverse models) outperform
VIME, which uses a novelty-based exploration strategy without considering environment dynamics,
indicating that effectively incorporating dynamics information into representations can help tackle
exploration challenges in large environments.

6.6 LEVERAGING ACTIONABLE REPRESENTATIONS AS FEATURES FOR LEARNING POLICIES

25 50 75 100 125 150 175 200
Iterations

500

450

400

350

300

Av
er

ag
e

R
et

ur
n

Ant

ARC [Ours]
Inverse
Predictive Model

Slowness
State
VAE

MBRL
GCP

Figure 8: ARCs as policy fea-
tures. Top: Reach-while-avoiding
task Bottom: Task learning curves

We consider using the ARC representation as a feature space
for learning policies for tasks that cannot be expressed with a
goal-reaching objective. We consider a quadruped ant robot
task which requires the agent to reach a target (shown in green
in Fig 8) while avoiding a dangerous region (shown in red in
Fig 8). Instead of learning a policy from state π(a|s), we learn
a policy using a representation φ as features π(a|φ(s)). It is
important to note that this task cannot be solved directly by a
goal-conditioned policy (GCP), and a GCP attempting to reach
the specified goal will walk through the dangerous region and
receive a reward of -760. The reward function for this task and
other experimental details are noted in Appendix A.4.

Although all the methods ultimately learn to solve the task,
policies using ARC features learn at a significantly faster rate
(Figure 8). Policies using ARC features solve the task by Itera-
tion 100, by which point all other methods can only solve with
5% success. We attribute the rapid learning progress to the ability of ARC to emphasize elements of
the state that are important for multi-timestep control, rather than greedy features discovered by re-
construction or one-step prediction. Features which emphasize elements important for control make
learning easier because they reduce redundancy and noise in the input, and allows the RL algorithm
to effectively assign credit. We further note that other representation learning methods learn only as
fast as the original state representation, and model-based MPC controllers (Nagabandi et al., 2017)
also perform suboptimally. It is important to note that the same representation can be used to quickly
train many different tasks, amortizing the cost of training a GCP.

9

Published as a conference paper at ICLR 2019

6.7 BUILDING HIERARCHY FROM ACTIONABLE REPRESENTATIONS

Figure 9: Waypoint
and multi-room HRL
tasks

We consider using ARC representations to control high-level controllers for
learning temporally extended navigation tasks in room and waypoint navi-
gation settings, as described in Section 4. In the multi-room environments,
the agent must navigate through a sequence of 50 rooms in order, receiving
a sparse reward when it enters the correct room. In waypoint navigation,
the ant must reach a sequence of waypoints in order with a similar sparse
reward. These tasks are illustrated in Fig 9, and are described in detail in
Appendix A.5.

We evaluate the two schemes for hierarchical reasoning with ARCs detailed
in Section 4.3: commanding directly in representation space or through a k-means clustering of the
representation space. We train a high-level controller πh with TRPO which outputs as actions either
a direct point in the latent space zh or a cluster index ch, from which a goal gh is decoded and
passed to the goal-conditioned policy to follow for 50 timesteps. Exact specifications and details are
in Appendix A.5 and A.6.

0 50 100 150
Iterations

10

20

30

R

oo
m

s
Pa

ss
ed

Room Navigation in Cluster Space

ARC [Ours]
HIRO Clusters

Inverse
Predictive Model

Slowness
VAE

0 50 100 150
Iterations

0

10

20

30

40

R

oo
m

s
Pa

ss
ed

Wheeled Room Navigation

ARC [Ours]
HIRO Clusters
Inverse

Option-Critic
Predictive Model
Slowness

TRPO
VAE

0 50 100 150
Iterations

0

10

20

30

40

C

he
ck

po
in

ts
 P

as
se

d

Ant Waypoint

ARC [Ours]
Inverse
Option-Critic

Predictive Model
Slowness
State

TRPO
VAE

Figure 10: Comparison on hierarchical tasks. ARCs perform significantly better than other repre-
sentation methods, option-critic, and commanding goals in state space

Using a hierarchical meta-policy with ARCs performs significantly better than those using alterna-
tive representations which do not properly capture abstraction and environment dynamics (Fig 10).
For multi-rooms, ARC clusters very clearly capture different rooms (Fig 5), so commanding in
cluster space reduces redundancy in action space, allowing for effective exploration. ARC likely
works better than commanding goals in spaces learned by other representation learning algorithms,
because the learned ARC space is more structured for high-level control, which makes search and
clustering simpler. Semantically similar states like two points in the same room end up in the same
ARC cluster, thus simplifying the high-level planning process for the meta-controller. As compared
to learning from scratch via TRPO and standard HRL methods such as option critic (Klissarov et al.,
2017) and an on-policy adaptation of HIRO (Nachum et al., 2018), commanding in representation
space enables more effective search and high-level control. The failure of TRPO and option-critic,
algorithms not using a goal-conditioned policy, emphasizes the task difficulty and indicates that a
goal-conditioned policy trained on simple reaching tasks can be re-used to solve long-horizon prob-
lems. Commanding in ARC space is better than in state space using HIRO because state space has
redundancies which makes search challenging.

7 DISCUSSION

In this work, we introduce actionable representations for control (ARC), which capture representa-
tions of state important for decision making. We build on the framework of goal-conditioned RL
to extract state representations that emphasize features of state that are functionally relevant. The
learned state representations are implicitly aware of the dynamics, and capture meaningful distances
in representation space. ARCs are useful for tasks such as learning policies, HRL and exploration.
While ARC are learned by first training a goal-conditioned policy, learning this policy using off-
policy data is a promising direction for future work. Interleaving the process of representation
learning and learning of the goal-conditioned policy promises to scale ARC to more general tasks.

Acknowledgements This research was supported by Berkeley DeepDrive, Honda, an ONR Young
Investigator Program Award, Google, and computational resources from Amazon. Abhishek Gupta
was supported by an NSF Graduate Research Fellowship. We thank Pim de Haan, Aviv Tamar,
Vitchyr Pong, and Ignasi Clavera for helpful insights and discussions.

10

Published as a conference paper at ICLR 2019

REFERENCES

Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke
by poking: Experiential learning of intuitive physics. CoRR, abs/1606.07419, 2016.

John-Alexander M. Assael, Niklas Wahlström, Thomas B. Schön, and Marc Peter Deisenroth. Data-
efficient learning of feedback policies from image pixels using deep dynamical models. CoRR,
abs/1510.02173, 2015.

André Barreto, Rémi Munos, Tom Schaul, and David Silver. Successor features for transfer in
reinforcement learning. CoRR, abs/1606.05312, 2016.

Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, and Aaron C. Courville. MINE:
mutual information neural estimation. CoRR, abs/1801.04062, 2018.

Emmanuel Bengio, Valentin Thomas, Joelle Pineau, Doina Precup, and Yoshua Bengio. Indepen-
dently controllable features. CoRR, abs/1703.07718, 2017.

I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling: Theory and Applications. Springer,
2005.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
Large-scale study of curiosity-driven learning. In arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learning. CoRR, abs/1808.04355, 2018b.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA, pp. 539–546,
2005. doi: 10.1109/CVPR.2005.202.

William Curran, Tim Brys, Matthew E. Taylor, and William D. Smart. Using PCA to efficiently
represent state spaces. CoRR, abs/1505.00322, 2015.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martı́n Arjovsky, Olivier Mastropi-
etro, and Aaron C. Courville. Adversarially learned inference. CoRR, abs/1606.00704, 2016.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Learn-
ing visual feature spaces for robotic manipulation with deep spatial autoencoders. CoRR,
abs/1509.06113, 2015.

Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Mårten Björkman. Deep predictive policy train-
ing using reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017, pp. 2351–
2358, 2017. doi: 10.1109/IROS.2017.8206046.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Ross Goroshin, Michaël Mathieu, and Yann LeCun. Learning to linearize under uncertainty. In Ad-
vances in Neural Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 1234–1242,
2015.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. CoRR, abs/1702.08165, 2017.

Irina Higgins, Arka Pal, Andrei A. Rusu, Loı̈c Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: improving zero-shot
transfer in reinforcement learning. In Proceedings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 1480–1490, 2017.

11

Published as a conference paper at ICLR 2019

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Curiosity-driven exploration in deep reinforcement learning via bayesian neural networks. CoRR,
abs/1605.09674, 2016.

Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors. Auton.
Robots, 39(3):407–428, 2015. doi: 10.1007/s10514-015-9459-7.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114,
2013.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end
for continuous action tasks. CoRR, abs/1712.00004, 2017. URL http://arxiv.org/abs/
1712.00004.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States., pp. 1106–1114, 2012.

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J. Russell, and Pieter Abbeel. Learning plannable
representations with causal infogan. CoRR, abs/1807.09341, 2018.

Adrien Laversanne-Finot, Alexandre Péré, and Pierre-Yves Oudeyer. Curiosity driven exploration
of learned disentangled goal spaces. In 2nd Annual Conference on Robot Learning, CoRL 2018,
Zürich, Switzerland, 29-31 October 2018, Proceedings, pp. 487–504, 2018.

Timothée Lesort, Natalia Dı́az Rodrı́guez, Jean-François Goudou, and David Filliat. State represen-
tation learning for control: An overview. CoRR, abs/1802.04181, 2018.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. CoRR, abs/1504.00702, 2015.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. CoRR,
abs/1509.02971, 2015.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. CoRR, abs/1805.08296, 2018.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. CoRR,
abs/1708.02596, 2017.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. CoRR, abs/1807.04742, 2018.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh. Action-
conditional video prediction using deep networks in atari games. CoRR, abs/1507.08750, 2015.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, CVPR Workshops, Honolulu, HI, USA, July 21-26, 2017, pp. 488–489, 2017.
doi: 10.1109/CVPRW.2017.70.

Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-
supervised learning with ladder network. CoRR, abs/1507.02672, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pp. 1889–1897, 2015.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Aus-
tralia, May 21-25, 2018, pp. 1134–1141, 2018. doi: 10.1109/ICRA.2018.8462891.

12

http://arxiv.org/abs/1712.00004
http://arxiv.org/abs/1712.00004

Published as a conference paper at ICLR 2019

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks. arXiv preprint arXiv:1804.00645, 2018.

Emanuel Todorov. Linearly-solvable markov decision problems. In Advances in Neural Information
Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006, pp. 1369–1376,
2006.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A. Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. In Advances in Neu-
ral Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 2746–2754, 2015.

Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 10:207–244, 2009. doi: 10.
1145/1577069.1577078.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning.
CoRR, abs/1804.10689, 2018a.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, and Sergey Levine.
SOLAR: deep structured latent representations for model-based reinforcement learning. CoRR,
abs/1808.09105, 2018b.

13

Published as a conference paper at ICLR 2019

A EXPERIMENTAL DETAILS

A.1 TRAINING THE GOAL-CONDITIONED POLICY

We train a stochastic goal-conditioned policy π(·|s, g) using TRPO with an entropy regularization
term, where the goal space G coincides with the state space S. In every episode, a starting state and
a goal state s, g ∈ S are sampled from a uniform distribution on states, with a sparse reward given
of the form below, where ε is task-specific, and listed in the table below.

r(s, g) =

{
0 ‖s− g‖∞ > ε

ε− ‖s− g‖∞ ‖s− g‖∞ < ε

For the Sawyer environment, although this sparse reward formulation can learn a goal-conditioned
policy, it is highly sample inefficient, so in practice we use a shaped reward as detailed in Appendix
C. For all of the other environments, in the free space and rooms environments, the goal-conditioned
policy is trained using a sparse reward.

The goal-conditioned policy is parameterized as πθ(a|s, g) ∼ N (µθ(s, g),Σθ). The mean, µθ(·, ·)
is a fully-connected neural network which takes in the state and the desired goal state as a concate-
nated vector, and has three hidden layers containing 150, 100, and 50 units respectively. Σ is a
learned diagonal covariance matrix, and is initially set to Σ = I .

Navigation Wheeled Navigation Ant Navigation Sawyer Pushing

State/Goal Space Dimension 2 6 15 6
Action Space Dimension 2 2 7 3
Sparse Reward Threshold (ε) 0.1 0.5 1 0.3
Trajectories per Iteration 100 200 250 500
Steps in Trajecotry 50 100 200 100
Iterations 200 1000 2000 2000
Entropy Penalty 1 1 0.1 0.1
Learning Rate .01 .02 .02 .01

A.2 TRAINING THE REPRESENTATION

After training a goal-conditioned policy π on the specified region of interest, we collect 500 tra-
jectories each of length 100 timesteps, where each trajectory starts at an arbitrary start state, going
towards an arbitrary goal state, selected exactly as the goal-conditioned policy was trained in Ap-
pendix A.1. This dataset was chosen to be large enough so that the collected dataset has full cov-
erage of the entire state space. Each of the representation learning methods evaluated is trained on
this dataset, which means that each learning algorithm receives data from the full state space, and
witnesses meaningful transitions between states (st, st+1).

We evaluate ARCs against representations minimizing reconstruction error (VAE, slowness) and
representations performing one-step prediction (predictive model, inverse dynamics). For each rep-
resentation, each component is parametrized by a neural network with ReLU activations and linear
outputs, and the objective function is optimized using Adam with a learning rate of 10−3, holding
out 20% of the trajectories as a validation set. We perform coarse hyperparameter sweeps over vari-
ous hyperparameters for all of the methods, including the dimensionality of the latent state, the size
of the neural networks, and the parameters which weigh the various terms in the objectives. The
exact objective functions for each representation are detailed further in Appendix B.

A.3 REWARD SHAPING

We test the reward shaping capabilities of the learned representations with a set of navigation tasks
on the Wheeled and Ant tasks. A goal-conditioned policy π is trained on a n× n meter square of
free space, and representations are learned (as specified above) on trajectories collected in this small
region. We then attempt to generalize to an m×m meter square (where m >> n), and consider the
set of tasks of reaching an arbitrary goal in the larger region: a start state and goal state are chosen

14

Published as a conference paper at ICLR 2019

uniformly at random every episode. The environment setup is identical to that in Appendix A.1,
although with a larger region, and policy training is done the same with two distinctions. Instead of
training with the sparse reward rsparse(s, g), we train on a ”shaped” surrogate reward

rshaped,φ(s, g) = rsparse(s, g)− α‖φ(s)− φ(g)‖2

where α weights between the euclidean distance and the sparse reward terms. Second, the pol-
icy is initialized to the parameters of the original goal-conditioned policy π which was previously
trained on the small region to help exploration. As a heuristic for the best possible shaping term,
we compare with a ”hand-specified” In addition to reward shaping with the various representations,
we also compare to a dedicated exploration algorithm, VIME (Houthooft et al., 2016), which also
uses TRPO as a base algorithm. Understanding that different representation learning methods may
learn representations with varying scales, we performed a hyperparameter sweep on α for all the
representation methods. For VIME, we performed a hyperparameter sweep on η. The parameters
used for TRPO are exactly those in Appendix A.1, albeit for 3000 iterations.

A.4 FEATURES FOR POLICIES

We test the ability of the representation to be used as features for a policy learning some downstream
task within the Ant environment. The downstream task is a ”reach-while-avoid” task, in which the
Ant requires the quadruped robot to start at the point (−1.5,−1.5) and reach the point (1.5, 1.5)
while avoiding a circular region centered at the origin with radius 1 (all units in meters). Letting
dgoal(s) be the distance of the agent to (1.5, 1.5) and dorigin(s) to be the distance of the agent to
the origin, the reward function for the task is

r(s) = −dgoal(s)− 4 ∗ 1{dorigin(s) < 1}

For any given representation φ(s), we train a policy which uses the feature representation as input as
follows. We use TRPO to train a stochastic policy π(a|φ(s)), which is of the formN (µθ(φ(s)),Σθ).
The mean is a fully connected neural network which takes in the representation, and has two layers
of size 50 each, and Σ is a learned diagonal covariance matrix initially set to Σ = I . Note that
gradients do not flow through the representation, so only the policy is adapted and the representation
is fixed for the entirety of the experiment.

A.5 HIERARCHICAL REINFORCEMENT LEARNING IN LATENT SPACE

We provide comparisons on using the learned representation to direct a goal-conditioned pol-
icy for long-horizon sequential tasks. In particular, we consider a waypoint reaching task
for the Ant, in which the agent must navigate to a sequence of 50 target locations in order:
{(x1, y1), (x2, y2), . . . (x50, y50)}. The agent receives as input the state of the ant and the check-
point number that it is currently trying to reach (encoded as a one-hot vector). When the agent gets
within 0.5m of the checkpoint, it receives +1 reward, and the checkpoint is moved to the next point,
making this a highly sparse reward. Target locations are sampled uniformly at random from a 8× 8
meter region, but are fixed for the entirety of the experiment.

We consider learning a high-level policy πh(zh|s) which outputs goals in latent space, which are
then executed by a goal-conditioned policy as described in Appendix A.1. Specifically, when the
high-level policy outputs a goal in latent space zh, we use a reconstruction network ψ, which is
described below, to receive a goal state gh = ψ(zh). The goal-conditioned policy executes for 50
timesteps according to π(a|s, gh). The high-level policy is trained with TRPO with the reward being
equal to the sum of the rewards obtained by running the goal-conditioned policy for every meta-step.
We parametrize the high-level policy πh(zh|s) as having a Gaussian distribution in the latent space,
with the mean being specified as a MLP with two layers of 50 units and Tanh activations, and the
covariance as a learned diagonal matrix independent of state.

To allow the latent representation z to provide commands for the goal-conditioned policy, we sep-
arately train a reconstruction network ψ which minimizes the loss function Es[‖ψ(φ(s)) − s‖2].
For any latent z, we can now use ψ(z) as an input into the goal-conditioned policy. Note that an
alternative method of providing commands in latent space is to train a new goal-conditioned policy

15

Published as a conference paper at ICLR 2019

πφ, which is trained to minimize the loss Es,g[DKL(πφ(·|s, φ(g))‖π(·|s, g))], however to main-
tain abstraction between the representation and the goal-conditioned policy, we choose the former
approach.

A.6 HIERARCHICAL REINFORCEMENT LEARNING IN CLUSTER SPACE

We provide comparisons on using the learned representation to direct a goal-conditioned policy in
cluster space, as described in Section 4. We consider navigation through a sequence of rooms in
order in the rooms and wheeled rooms environment, as visualized in Figure 4. A sequence of 50
checkpoints are sampled uniformly from the four rooms with the extra constraint that the same room
is never repeated two checkpoints in a row (that is, each checkpoint is chosen to be any of the four
rooms), and held fixed for the entirety of the experiment. The agent is tasked with going through
these rooms in order, receiving a +1 reward every time it enters the appropriate room. The policy
receives as input the state of the agent, and which number checkpoint the agent is currently trying
to reach (encoded as a 50-dimensional one-hot vector).

After having learned a representation φ using some set of trajectory data, as described in Appendix
A.2, we run k-means clustering on states in the trajectory data to cluster latent states in the repre-
sentation into k components. We then consider learning a high-level policy πh(ch|s) which outputs
a cluster between {1 . . . k}. Given a cluster number ch from the high-level policy, the low-level
policy samples a latent state zh uniformly from the cluster, and then proceeds to command a learnt
goal-conditioned policy exactly as described in Appendix A.5.

Specifically, we learn a high-level policy of the form πh(ch|s) ∼ Categorical(pθ(s)) using TRPO
where the probabilities for each cluster are specified by a neural network πθ which has two layers
of 50 units each, with Tanh activations, and a final Softmax activation to normalize outputs into the
probability simplex.

We performed hyperparameter sweeps over k - the number of clusters - for each representation
method.

B BENCHMARK REPRESENTATIONS

We provide the loss functions that are used to train each of the representations evaluated in our
work. All representations are trained on a dataset of trajectories D = {τi}ni=1. We use the notation
s ∼ D to denote sampling a state uniformly at random from a trajectory uniformly at random from
the dataset. We use the notation st, st+1 ∼ D to denote sampling a state and the state right after it
according to the same uniform sampling scheme.

• ARC - After precomputingDact:a matrix of actionable distances, we train a neural network
φ to minimize

Dact(si, sj) = Es∼D [DKL(π(a|s, si)‖π(a|s, sj))]

L(φ) = Es∼D
[
Es′∼D

[
‖‖φ(s)− φ(s′)‖ −Dact(s, s

′)‖2
]]

• VAE (Kingma & Welling, 2013) - Given qφ(z|x) = N (µφ(x), σφ(x)), pθ(x|z) =
N (ψθ(z), I), and p(z) = N (0, I)

L(φ, θ) = Es∼D
[
Ez∼qφ(x) [log pθ(x|z)− βDKL(qθ(z|x)‖p(z)]

]
Here µφ, σφ, ψθ are all neural networks, and β is a tunable hyperparameter. The log-
likelihood term is equivalent to minimizing mean squared error.

• Slowness (Jonschkowski & Brock, 2015) - Given qφ(z|x) = N (µφ(x), σφ(x)), pθ(x|z) =
N (ψθ(z), I), and p(z) = N (0, I)

L(φ, θ) = E(st,st+1)∼D
[
Ez∼qφ(st) [log pθ(st|z)− βDKL(qθ(z|x)‖p(z))− α‖µθ(st+1 − µθ(st)‖]

]
Here µφ, σφ, ψθ are all neural networks, and α, β are tunable hyperparameters. The log-
likelihood terms are equivalent to minimizing mean squared error.

16

Published as a conference paper at ICLR 2019

• Predictive Model (Oh et al., 2015) - Given z = φ(st), ẑt+1 = f(z, a) and ψ(z) = ŝ, we

L(φ, f, ψ) = E(st,at,st+1)∼D
[
‖st+1 − ψ(f(φ(st), at))‖22

]
where φ is the learnt representation,f a model in representation space, and ψ a reconstruc-
tion network retrieving are all neural networks.

• Inverse Model (Burda et al., 2018a) - Given zt = φ(st), ẑt+1 = f(zt, a), ât+1 =
g(zt, zt+1)

L(φ, f, g) = E(st,at,at+1)∼D
[
‖at − g(φ(st), φ(st+1))‖22 + β‖φ(st+1)− f(φ(st), at)‖22

]
Here, φ is the learnt representation, f is a learnt model in the representation space, and g is
a learnt inverse dynamics model in the representation space. β is a hyperparameter which
controls how forward prediction error is balanced with inverse prediction error.

C TASK DESCRIPTIONS

• 2D Navigation This environment consists of an agent navigating to points in an environ-
ment, either with a wall as in Figure 4a or with four rooms, as in Figure 4b. The state
space is 2-dimensional, consisting of the Cartesian coordinates of the agent. The agent
has acceleration control, so the action space is 2-dimensional. Downstream tasks for this
environment include reaching target locations in the environment and navigating through a
sequence of 50 rooms.

• Wheeled Navigation This environment consists of a car navigating to locations in an empty
region, or with four rooms, as illustrated in Figure 4. The state space is 6-dimensional,
consisting of the Cartesian coordinates, heading, forward velocity, and angular velocity of
the car. The agent controls the velocity of both of its wheels, resulting in a 2-dimensional
action space. Goal-conditioned policies are trained within a 3× 3 meter square.
Downstream tasks for wheeled navigation include reaching target locations in the envi-
ronment, navigating through sequences of rooms, and navigating through sequences of
waypoints.

• Ant This task requires a quadrupedal ant robot navigating in free space.The state space is
15-dimensional, consisting of the Cartesian coordinates of the ant, body orientation as a
quaternion, and all the joint angles of the ant. The agent must use torque control to control
it’s joints, resulting in an 8-dimensional action space. Goal conditioned policies are trained
within a 2× 2 meter square.
Downstream tasks for the ant include reaching target locations in the environment, navi-
gating through sequences of waypoints, and reaching target locations while avoiding other
locations.

• Sawyer This environment involves a Sawyer manipulator and a freely moving block on
a table-top. The state space is 6-dimensional, consisting of the Cartesian coordinates of
the end-effector of the Sawyer, and the Cartesian coordinates of the block. The Sawyer is
controlled via end-effector position control with a 3-dimensional action space.
Because training a goal-conditioned policy takes an inordinate number of samples for the
Sawyer environment, we instead use the following shaped reward to train the GCVF where
h(s) is the position of the hand and o(s) is the position of the object

rshaped(s, g) = rsparse(s, g)− ‖h(s)− o(s)‖ − 2‖o(s)− o(g)‖

D HYPERPARAMETER TUNING

We perform hyperparameter tuning on three ends: one to discover appropriate parameters for each
representation for each environment which are then held constant for the experimental analysis,
then on the downstream applications, to choose a scaling factor for reward shaping (see Appendix
A.3), and to choose the number of clusters for the hierarchical RL experiments in cluster space (see
Appendix A.6).

17

Published as a conference paper at ICLR 2019

To discover appropriate parameters for each representation for the legged and wheeled locomotion
environments, we evaluate representations on the downstream reward-shaping task, performing a
hyperparameter sweep on latent dimension and the parameters which weigh the various terms in the
representation learning objectives. We keep the network architecture fixed for each representation
and each task. We emphasize carefully here that the ARC representation requires no parameters to
tune beyond the size of the latent dimension, and we perform a hyperparameter sweep on the penalty
terms to ensure that other methods aren’t improperly penalized. On the size of the latent dimension,
we sweep over {2, 3, 4} for wheeled locomotion and {3, 5, 7, 9, 11} for the ant. For the relative
weighting for the penalty terms for the comparison representations (defined by β in Appendix B),
we evaluate possible values β ∈ {4−2, 4−1, 1, 41, 42}. These representations are then fixed and used
for all the downstream applications.

For reward shaping, we tune the relative scales between the sparse reward and the shaping term,
(denoted by α in Appendix A.3) over possible values α ∈ {1, 41, 42, 43, 44} for each representation
on both the legged and wheeled locomotion environments. Tuning for α is required because the
representations may have different latent dimensions and different scales, and chose to perform this
hyperparameter sweep instead of adding a term to the representation learning objectives to ensure
uniformity in scale. For performing k-means clustering on the HRL cluster experiments, we sweep
over possible values k ∈ {4, 5, 6, 7, 8} for each representation on the room navigation tasks for 2D
and wheeled navigation, but however found that most representations were robust to choice of the
number of clusters.

18

	Introduction
	Preliminaries
	Learning Actionable Representations
	Using Actionable Representations for Downstream Tasks
	Features for Learning Policies
	Reward Shaping
	Hierarchical Reinforcement Learning

	Related Work
	Experiments
	Domains
	Learning the Goal-Conditioned Policy and ARC Representation
	Comparisons with Prior Work
	Analysis of Learned Actionable Representations
	Leveraging Actionable Representations for Reward Shaping
	Leveraging Actionable Representations as Features for Learning Policies
	Building Hierarchy from Actionable Representations

	Discussion
	Experimental Details
	Training the Goal-Conditioned Policy
	Training the Representation
	Reward Shaping
	Features for Policies
	Hierarchical Reinforcement Learning in Latent Space
	Hierarchical Reinforcement Learning in Cluster Space

	Benchmark Representations
	Task Descriptions
	Hyperparameter Tuning

