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ABSTRACT

Despite their success, generative adversarial networks (GANs) cannot easily gen-
erate structured objects like molecules or game maps. The issue is that such
objects must satisfy structural requirements (e.g., molecules must be chemically
valid, game maps must guarantee reachability of the end goal) that are difficult
to capture with examples alone. As a remedy, we propose constrained adversar-
ial networks (CANs), which embed the constraints into the model during training
by penalizing the generator whenever it outputs invalid structures. As in uncon-
strained GANs, new objects can be sampled straightforwardly from the generator,
but in addition they satisfy the constraints with high probability. Our approach
handles arbitrary logical constraints and leverages knowledge compilation tech-
niques to efficiently evaluate the expected disagreement between the model and
the constraints. This setup is further extended to hybrid logical-neural constraints
for capturing complex requirements like graph reachability. An extensive empiri-
cal analysis on constrained images, molecules, and video game levels shows that
CANs efficiently generate valid structures that are both high-quality and novel.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have shown impressive perfor-
mance on challenging tasks – like image generation (Karras et al., 2018), text-to-image (Zhang et al.,
2017), and style transfer (Zhu et al., 2017) – where the goal is to produce believable configurations.

A number of important applications, however, require to generate objects that are both credible and
feasible with respect to hard structural constraints. Examples include generating drug molecules,
which must satisfy chemical validity requirements, and game levels, where the goal must be reach-
able from the starting position. Recent studies (Guimaraes et al., 2017; De Cao & Kipf, 2018; Xue
& van Hoeve, 2019) observed that GANs struggle in these tasks. The main reason is that the train-
ing examples alone are insufficient to capture the feasibility constraints and thus to guide the model
toward producing valid objects.

As a remedy, we propose Constrained Adversarial Networks (CANs), a class of generative models
that extend GANs to structured domains. Given a set of examples drawn from a latent distribution
and a set of structural constraints, CANs learn to output valid structured with high probability. This
is achieved by augmenting the standard GAN loss with a penalty term that discourages the model
from producing infeasible structures. Since CANs inject the constraints directly into the learned
model, valid structures can be obtained with high probability by performing forward inference on
the generator, avoiding the need for costly sampling or optimization steps (Volz et al., 2018).

The penalty term is implemented using the semantic loss (SL) (Xu et al., 2018). The SL leverages
knowledge compilation (Darwiche, 2011) to represent arbitrary Boolean constraint as a circuit and
uses the latter to measure the mass allocated by the generator to infeasible objects. The procedure
is probabilistically sound, exact, and does not require sampling. Notably, the circuit, which can be
quite large depending on the complexity of the constraints, can be thrown away after learning.

In addition, we show how to extend the SL complex constraints that would normally lead to in-
tractably large circuits. This is accomplished by first using a neural network to map configurations
to a different space in which the structural constraints can be compactly encoded, and then applying
the SL to the latter. This enables us to deal with reachability on a graph, which is beyond the reach of
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standard SL. Finally, we show how the validity constraints baked into the generator can be enabled
or disabled during inference using ideas from InfoGANs Chen et al. (2016).

In summary, we contribute:

• Constrained Adversarial Networks (CANs), a generalization of GANs in which the gen-
erator is encouraged (at training time) to output valid structures with high probability via
forward inference.

• An extensive empirical analysis on structured objects like constrained images, molecules,
and video game levels showing that CANs generate structures that are stylistically coherent
with the training data.

• A decomposition of intractably complex constraints into a neural and logical components,
showcased on graph reachability for video game level synthesis.

2 UNCONSTRAINED GANS

Let X be the object space and Z some latent space. GANs (Goodfellow et al., 2014) are composed
of a generator g : Z → X and a discriminator d : X → [0, 1], both implemented as neural
networks. The discriminator is trained to recognize “real” objects x taken from the data distribution
Pr, while the generator is trained to map random latent vectors z ∈ Rm to “fake” objects that fool
the discriminator. Learning amounts to solving the minimax game:

min
g

max
d

fGAN(g, d) fGAN(g, d) := Ex∼Pr
[logPd(x)] + Ex∼Pg

[log(1− Pd(x))] (1)

Here Pg(x) is the distribution induced by the generator and Pd(x) := Pd(real |x) by the discrimina-
tor. It is worth noting that the value of the game defines (a constrained form of) the Jensen-Shannon
entropy and that Eq. 1 can be viewed as divergence minimization (Nowozin et al., 2016; Mescheder
et al., 2017). After training, new objects can be generated by sampling random vectors z and map-
ping them to object space with the generator x = g(z).

Goodfellow et al. (2014) have shown that, under idealized assumptions, the learned generator g
matches the data distribution, that is Pg = Pr. We report their theorem here for completeness:

Theorem 1. So long as (i) g and d are non-parametric, and (ii) the leftmost expectation in Eq. 1
is approximated arbitrarily well by the examples alone, any global equilibrium (g∗, d∗) of Eq. 1
satisfies Pd∗ ≡ 1

2 and Pg∗ ≡ Pr.

Finding Nash equilibria of non-convex games like Eq. 1 is notoriously hard, rendering GAN train-
ing very challenging. The most common optimization algorithm is alternating gradient descent,
whereby d and g are optimized sequentially, or the more well-understood simultaneous gradient
descent (Mescheder et al., 2017). A common failure state is mode collapse, whereby the generator
outputs objects concentrated in a tiny portion of the object space. A plethora of theoretical and em-
pirical remedies have been proposed, cf. (Salimans et al., 2016; Mescheder et al., 2018), including
using alternative divergences (Nowozin et al., 2016; Arjovsky et al., 2017) and encouraging smooth-
ness of the discriminator by, e.g., controlling the spectral norm of its parameters (Miyato et al.,
2018). In our experiments, we apply some of these strategies to stabilize training.

In structured tasks, the objects of interest are usually discrete. GANs can be adapted to such settings
by having the generator output a categorical distribution θ(z) overX and sampling objects from the
latter. Below, we will focus on stochastic generators of this kind, although alternatives do exist (Gul-
rajani et al., 2017). In this setting Pg(x) =

∫
Pg(x|z)p(z)dz =

∫
θ(z)p(z)dz = Ez[θ(z)].

3 GENERATING STRUCTURES WITH CANS

Our goal is to learn to generate structures x consistent with respect to some validity constraint ψ ac-
cording to some unobserved distribution Pr. Throughout, we will make the following assumptions:

1. A single validity constraint ψ is provided as input. This is without loss of generality: if
multiple constraints are necessary, then ψ can be taken to be their conjunction.
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2. The constraint ψ is compatible with the data distribution, that is, the support of Pr falls
entirely within the feasible region determined by ψ.

These assumptions hold in many tasks of interest, including all generative problems with known
well-formedness requirements. For the sake of simplicity, we restrict our study to binary (i.e. 0–
1) variables and logical constraints (aka formulas) only. This is a very general setup: any discrete
structured space can be encoded using binary variables and formulas, at the cost of a larger model.

Limitations of GANs Generators learned with the standard GAN training rule can output invalid
structures, for two main reasons. First, for non-trivial constraints ψ, any finite set of examples that
satisfy the constraint is insufficient to capture the full semantics of ψ. Second, in many cases of
interest the examples are not even consistent with ψ. This more challenging case shows that regular
GANs are easily lured into learning not to satisfy the constraint. More formally:
Corollary 1. Under the assumptions of Theorem 1, given a target distribution Pr, a constraint ψ
consistent with it, and a dataset of examples x sampled i.i.d. from a corrupted distribution P̃r 6= Pr
inconsistent with ψ, GANs associate non-zero mass to infeasible objects.

Indeed, by Theorem 1, the optimal generator satisfies Pg ≡ P̃r, which is inconsistent with ψ. Ergo,∑
x 1 {x 6|= ψ}Pg(x) > 0. We stress that Theorem 1 captures the intent of GAN training, and thus

this simple corollary shows that GANs are by design incapable of handling invalid examples.

Constrained adversarial networks In order to avoid these issues, constrained adversarial net-
works (CANs) take both the examples and the validity constraint into account during learning. More
specifically, the CAN value function is designed so that the generator maximizes the probability of
generating valid structures Pg(ψ) := Ex∼Pg

[1 {x |= ψ}], that is:

fCAN(g, d) := fGAN(g, d)− λ logPg(ψ) (2)

Here λ > 0 is a hyper-parameter controlling the importance of the constraint. Since the second term
is always non-negative, the CAN value function upper bounds the GAN one (Eq. 1).

The second term is the so-called semantic loss (SL), proposed in (Xu et al., 2018) to inject knowledge
into neural networks, and it is formally defined as SLψ (g) ∝ − logPg(ψ), where:

Pg(ψ) =
∑

x′ 1 {x′ |= ψ}Pg(x′) = Ez[
∑

x′∈X :x′|=ψ
∏
i : x′i=1 θi(z)

∏
i : x′i=0(1− θi(z))] (3)

Recall that θ(z) is the categorical distribution output by the generator g for z, while x′ |= ψ means
that x′ satisfies constraint ψ. Hence the sum runs over all configurations x′ consistent with ψ. The
SL can also be viewed as the negative log-likelihood of ψ w.r.t. the generator. This shows that, in
Eq. 2, the SL rewards the generator g proportionally to the mass it allocates to valid structures. Since
the SL is the negative logarithm of a polynomial in θ, it is fully differentiable (so long as Pψ(g) 6= 0,
which is always the case in practice).

If the SL is given large enough weight, CANs are strongly encouraged to generate valid structures in
expectation. Under the preconditions of Theorem 1, it can be shown that or λ→∞ CANs generate
valid structures only:
Proposition 1. Under the assumptions of Corollary 1, CANs associate zero mass to infeasible ob-
jects, irrespective of the discrepancy between Pr and P̃r.

Intuitively, this holds because with λ =∞ any global equilibrium (g∗, d∗) of mingmaxd fCAN(g, d)
must minimize the second term. If g is non-parametric, then the minimum is attained with
logPg∗(ψ) = 0, which is equivalent to Pg∗(ψ) = 1. This in turn implies that Pg∗(¬ψ) = 0,
proving the claim. Of course, as with standard GANs, the prerequisites are often violated in prac-
tice. Regardless, Proposition 1 works as a sanity check, and shows that – in contrast to GANs –
CANs are appropriate for constrained generative tasks.

Computing the semantic loss Naı̈ve evaluation of the SL (Eq. 3) involves summing over all (ex-
ponentially many) possible configurations x′, which is intractable. More generally, computing the
SL amounts to weighted model counting, which is #P-complete (Chavira & Darwiche, 2008).

For many constraints of interest, however, the polynomial in Eq. 3 can be factorized into a much
more compact form and evaluated very efficiently. Following Xu et al. (2018), we make use of
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knowledge compilation to automatically factorize the polynomial by compiling it into an arithmetic
circuit (more specifically, into a sentential decision diagram (SDD) (Darwiche, 2011)). When the
resulting circuit is small enough, evaluation of the SL and of its gradient are extremely efficient, as
shown in (Xu et al., 2018).

The main downside of knowledge compilation is that, depending on the complexity of the constraint
ψ at hand, the compiled circuit may be very large. This is less of a problem during training, which is
often performed on powerful machines, but it can be an issue for inference – especially on embedded
devices. However, in CANs the circuit is not required for inference (as it consists of a simple forward
pass over the generator), and thus it can be thrown away after training. This means that CANs incur
no space penalty during inference when compared to GANs.

Dealing with intractable constraints When fed a particularly complex constraint, knowledge
compilation may produce a circuit too large even for the training stage. In this case, we approximate
the semantic loss by first mapping the objects from X to an application-specific space where ψ can
be expressed in compact form, and then use the semantic loss on top of the transformed objects. We
successfully employed this technique to synthesize mario levels where the goal tile is reachable from
the starting tile; all details are provided below. The same technique can be exploited for dealing with
very complex logical formulas beyond the reach of state-of-the-art knowledge compilation.

4 EXPERIMENTS

We implemented CANs using Tensorflow and used PySDD1 to compile the constraint into a compact
circuit for computing the Semantic Loss. We tested CANs using different generator architectures on
one synthetic and two real-world structured generative tasks2. In all cases, we evaluated the objects
generated by CANs and those of the baselines using three metrics (adopted from Samanta et al.
(2018)):

• validity is the proportion of sampled objects that are valid;

• novelty is the proportion of valid sampled objects that are not present in the training data;

• uniqueness is the proportion of valid unique (non-repeated) sampled objects;

Our experimental evaluation aims at answering the following questions:

• Q1 Can CANs with tractable constraints achieve better results than GANs?

• Q2 Can CANs with intractable constraints achieve better results than GANs?

• Q3 Can constraints be combined with rewards to achieve better results than using rewards
only?

4.1 CONSTRAINED IMAGES

In this synthetic experiment, we used CANs to generate small, strongly constrained bitmap images.
The training set is composed of 23, 040 black-and-white 20 × 20 images, each with a black back-
ground and two randomly placed random polygons – either a triangle (30% of the cases), a square
(30%), or a diamond (40%). The two polygons are always different from each other, fully contained
in the canvas, and do not overlap. The leftmost and rightmost columns are special, in that they con-
tain parity information about the image. More specifically, row r of the leftmost column encodes
the parity bit for all pixels in the left half of row r, see Fig. 1 (left) for an illustration. The rightmost
column does the same for the right half of the image. Fig. 1 (middle) shows a sample image. As
a baseline GAN, we implemented the generator and discriminator as deconvolutional and convolu-
tional networks, respectively, sampling from the concrete distribution (Maddison et al., 2016) and
using the vanilla loss. The CAN uses the same architecture, except for the extra semantic loss term
which encodes the parity constraints using XOR formulas.

1URL:https://pypi.org/project/PySDD/
2Details can be found in the Appendix. Our code is publicly available at the URL:ANONYMIZED
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Figure 1: Left: illustration of the parity constraint at the left border. Middle: example from the
synthetic dataset. Right: comparison of validity, novelty and uniqueness between CAN and GAN.

Fig. 1 (right) shows the results in terms of validity, novelty and uniqueness computed over 300
objects generated using CANs (with λ = 1) and Vanilla GANs, where novelty and uniqueness are
computed over the subset of valid objects. CANs generate more valid objects, improving at the same
time both novelty and uniqueness. These results allow to answer Q1 affirmatively. Note that in this
experiment, using CANs over Vanilla GANs results in a negligible training overhead. On average,
training CANs takes 30 minutes against the 27 minutes taken by Vanilla GANs.

4.2 SUPER MARIO BROS LEVEL GENERATION

In the next experiment we show how CANs can help in the challenging task of learning to generate
videogame levels from user-authored content. While procedural approaches to videogame level
generation have successfully been used for decades, the application of machine learning techniques
in the creation of (functional) content is a relatively new area of research (Summerville et al., 2018).
On the one hand, modern video game levels are characterized by aesthetical features that cannot
be formally encoded and thus are difficult to implement in a procedure, which motivates the use
of ML techniques for task. On the other hand, the levels have often to satisfy a set of functional
(hard) constraints that are easy to guarantee when the generator is hand-coded but pose challenges
for current machine learning models.

In the following, we show how the semantic loss can be used to encode useful hard constraints in
the context of videogame level generation. These constraints might be functional requirements that
apply to every generated object or might be contextually used to steer the generation towards objects
with certain properties. In our empirical analysis, we focus on Super Mario Bros (SMB), possibly
one of the most studied video games in tile-based level generation. See Section 5 for related work
in SMB level generation.

Recently, Volz et al. (2018) applied Wasserstein GANs (WGANs) (Arjovsky et al., 2017) to SMB
level generation. The approach works by first training a generator in the usual way, then using
an evolutionary algorithm called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to
search for the best latent vectors according to a user-defined fitness function on the corresponding
levels. We stress that this technique is orthogonal to CANs and the two can be combined together.
Nonetheless, in the following we compare CANs with CMA-ES, as both techniques can be used to
steer the network towards the generation of playable levels, i.e. having a feasible path3 from the
left-most to the right-most column of the level. Pictures in 2 shows two SMB levels generated by
our CAN using the semantic loss.

In CMA-ES, the fitness function doesn’t have to be differentiable and the playability can be com-
puted on the output of an A* agent playing the level. Having the SL to steer the generation towards
playable levels is not trivial, since it requires a differentiable definition of playability. Encoding the
reachability of the right-most column with a propositional formula on the level variables x is unfea-
sible (consider the size of the formula resulting from unrolling and grounding a compact first-order
encoding). For this reason, our CAN applies the semantic loss to a different probability distribu-
tion θ over binary variables r, with the intended meaning that ri is true if and only if the tile xi is

3According to the game’s physics.
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Figure 2: Illustration of two 14× 28 tiles Super Mario Bros levels generated by CANs.

Network type Mario Level Tested samples Validity Uniqueness Novely Training time Inference time per sample
Baseline mario-1-3 1000 9.80% 100% 100% 1 h 15 min ∼ 40 ms

MarioGAN + CMA-ES mario-1-3 1000 65.90% 100% 100% 1 h 15 min ∼ 22 min
CAN mario-1-3 1000 71.60% 100% 100% 1 h 21 min ∼ 40 ms

Baseline mario-3-3 1000 13.00% 100% 100% 1 h 11 min ∼ 40 ms
MarioGAN + CMA-ES mario-3-3 1000 64.20% 100% 100% 1 h 11 min ∼ 22 min

CAN mario-3-3 1000 62.30% 100% 100% 1 h 16 min ∼ 40 ms

Table 1: Results of using the semantic loss instead of post-processing with CMA-ES. Levels mario-
1-3 and mario-3-3 has been chosen due to their higher complexity in being solved. The table shows
the validity, uniqueness and novelty of samples after a testing session with A*. A valid sample is
one that can be completely solved by the A* agent. The semantic loss has been activated from epoch
3000. Each run has lasted 5000 epochs with all the default hyper parameters defined in Volz et al.
(2018)

reachable (in expectation) from the first column in the level x, with x sampled from the generator’s
multinomial distribution γ over tiles. Encoding the playability of a level is straightforward in r,
although the problem becomes finding a fully differentiable transformation PR : Γ→ Θ.

We approximate PR with a feedforward neural network P̂R. Our approach consists in pretraining
P̂R with synthetic data {(γi, θ̂i)}, consisting of syntetic distributions labelled using the tile-based
pathfinder provided in Summerville et al. (2016). Inputs γi are collected from previous runs of the
generator, while θ̂i are computed by sampling 100 levels from γi and averaging the reachability of
each tile using the pathfinder’s output. The data generation process is inexpensive, allowing to train
P̂R to reasonable performance for the task.

We adopt the same experimental setting, WGAN architecture and training procedure of Volz et al.
(2018). The structured objects are 14 × 28 tile-based representations of SMB levels (e.g. Fig. 2)
and the training data is obtained by sliding a 28 tiles window over levels from the Video game level
corpus (Summerville et al., 2016). In this experiment we train on individual levels, as in (Volz et al.,
2018), to be consistent with MarioGAN, but we stress that CANs can be trained on multiple levels.

Our semantic loss, applied on the output of the approximated reachability map P̂R, encodes that at
least 4 tiles of the right-most column are reachable. This choice is supported by two observations:
if a tile is reachable, the same will probably be neighbours and the approximation given by P̂R may
satisfy too easily a constraint asking for only 1 reachable tile in the rightmost column.

Table 1 shows the playability, novelty and uniqueness of a batch of 1000 levels generated respec-
tively by the CAN with a forward pass (with λ = 0.01, which validation experiments showed to be a
reasonable trade-off between SL and discriminator loss) and by CMA-ES using the default parame-
ters for the search. Novelty and Uniqueness are notably higher compared to the syntetic case due to
a much larger output space4. Results show that CANs achieve comparable results on the first level,
and substantial improvements on the second. Moreover, no significant negative effects can be seen
on the generated material with respect to the quality of the ones generated by the original GAN.

Moreover, at the cost of pretraining P̂R (1h35m on a 8-core machine with a GTX1080Ti), CANs
avoid the execution of the A* agent during the generation, sampling high quality objects in millisec-
onds. On the other side, the training cost is slightly lower (∼ 20% less), but each run of CMA-ES, to
find a single best individual, takes between 20 and 25 minutes on the previously described machine.

4The size of the output space is 13(14×28) solutions (with 13 being the number ofdifferent tiles)
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Reward for Semantic loss validity uniqueness diversity QED SA logP

QED + SA + logP False 97.4 2.4 91.0 47.0 84.0 65.0
True 96.59 (2.52) 2.52 (0.25) 98.81 (2.04) 51.75 (1.55) 90.74 (5.48) 73.62 (1.14)

uniqueness False 99.19 (0.19) 4.75 (2.35) 66.87 (6.39) 50.10 (1.68) 37.26 (9.55) 32.89 (4.55)
True 99.27 (0.16) 17.41 (3.07) 91.28 (2.87) 41.54 (1.89) 43.99 (8.38) 33.94 (2.16)

Table 2: Results of using the semantic loss on the MolGAN architecture. The diversity score is
obtained by comparing sub-structures of generated samples against a random subset of the dataset. A
lower score indicates a higher amount of repetitions between the generated samples and the dataset.
The first row refers to the results reported in the MolGAN paper. Experiments were run 8 times each
(rows 2, 3, 4) to obtain mean and std values, the latter in parentheses.

Combining the two approaches and refining the constraints for the generation of state-of-the-art
Super Mario levels is a promising research direction and is left for future work.

With these results, we can answer Q2 affirmatively.

4.3 MOLECULE GENERATION

In the next experiment, we test how effective is SL in conjunction with different forms of supervision
on the task of generating molecules with certain desirable chemical properties. Specifically, we
consider MolGANs (De Cao & Kipf, 2018), a model that combines the adversarial loss with a
reinforcement learning objective, used to maximize the druglikeness, sythesizability and solubility
of the generated molecules. The reward is computed by a network that is trained to match the
score provided by an external cheminformatics software. In contrast with our previous experimental
settings, here the structured objects are undirected graphs of bounded maximum size, represented
by discrete tensors that encode the atom/node type (padding atom (no atom), Carbon, Nitogren,
Oxygen, Fluorine) and the bound/edge type (padding bond (no bond), single, double, triple and
aromatic bond).

As confirmed by both the results reported by the authors of MolGANs and our previous experiments,
providing an additional loss term might perturbate the already unstable adversarial game, possibly
incurring in mode collapse. In the following, we explore the use of SL beyond the satisfaction of
given constraints. Specifically, we observe that the formula can involve the latent variables too, and
we show how this can be leveraged to increase the diversity of the generator’s output and to mitigate
the mode collapse. This can be achieved by using a portion of the latent vector (whose values are
in the [0, 1] domain) to trigger on and off SL terms that promote the presence of specific atoms in
the molecule. Specifically, we apply the SL to MolGANs, making use of 4 latent dimensions to
control the presence of one of the 4 types of atoms considered in the experiment. Each dimension
represents the probability of having at least one atom of that type in the molecule, no matter the
position. Assigning SL terms to specific subregion of the latent space is a general approach that can
potentially be used to achieve some level of controllable constrained generation via the latent codes.
We defer this research direction to future work.

In this experiment, we augment MolGAN with our constraints conditioned on the latent variables,
starting from the first epoch. We consider two different variants of the reward network. In the first
setting, the network implicitly rewards validity and the maximization of the three chemical prop-
erties at once: QED (druglikeness), SA (synthesizability) and logP (solubility). The experimental
setting and evaluation metrics are identical to De Cao & Kipf (2018) except for the introduction of
the SL, we thus report the same results for the baseline. In the second setting, the reward is propor-
tional to the diversity of the generated batch, thus boosting the generator uniqueness. In this case,
the training stops when the validity reaches 0.99.

The results, as shown in Table 2, indicate that the SL term is boosting the diversity of the generated
molecules without negatively affecting the other metrics with both reward functions. This prelimi-
nary results seem to suggest that CANs can be successfully coupled with a reinforcement learning
objective, answering Q3 affermatively. In this setting, using CANs produced a negligible overhead
during the training with respect to the original model, providing further evidence that the technique
doesn’t heavily impact on the training.
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5 RELATED WORK

Deep generative modeling has recently enjoyed substantial progress with the introduction of au-
toregressive models (Van Oord et al., 2016), variational autoencoders (VAEs) (Kingma & Welling,
2014; Rezende et al., 2014), flow-based approaches (Dinh et al., 2014), and GANs (Goodfellow
et al., 2014). However, none of these approaches is designed to generate structures.

Traditional approaches to such tasks, like graphical models (Koller & Friedman, 2009; Richardson
& Domingos, 2006) and probabilistic grammars (Talton et al., 2012), are ill-suited for complex tasks
like image generation and do not support efficient inference under constraints. Tractable probabilis-
tic circuits (e.g., probabilistic sentential decision diagrams (Kisa et al., 2014)) leverage knowledge
compilation techniques – like CANs – and sport high capacity, efficient inference, and support for
constraints, but they require the circuit even at inference time, meaning that inference can have large
space requirements. Further, the runtime of inference depends on the size of the circuit. In contrast,
inference in CANs boils down to a forward pass over the generator and does not rely on the circuit
output by knowledge compilation. Finally, although solver-based approaches to constrained discrete
sampling like (Ermon et al., 2013; Chakraborty et al., 2014) guarantee validity of the samples, they
are also much slower than CANs and do not support learning the distribution from data.

Injecting knowledge into learned models, and neural networks in particular, is a long-standing aim
of machine learning. Early approaches include grounding-specifica Markov Logic Networks (Lippi
& Frasconi, 2009), which combine Markov logic with neural networks. More recent models include
target-specific architectures (Rocktäschel & Riedel, 2017; Donadello et al., 2017), as well as frame-
works based on probabilistic logics (Manhaeve et al., 2018) and T-norms (Marra et al., 2019). Other
recent approaches include also constraint learning component (Wang et al., 2019; Sourek et al.,
2018). However, none of these models is at the same time generative and probabilistic.

Posterior regularization (PR) has been used to introduce logic background knowledge into deep
discriminative (Hu et al., 2016) and discriminative models (Hu et al., 2018). Like the Semantic
Loss, PR can convert arbitrary discrete constraints into a loss. In addition, it does not require the
target model to have an explicit density. The major downside of the PR is that it is not semantically
consistent: rewriting a constraint (by applying e.g. De Morgan’s laws) can lead to different loss
functions. This never happens with the SL. Further, unlike the approach of (Hu et al., 2018), CANs
do not need to define and train an approximate variational distribution: the SL is computed directly
on the generator.

A number of machine learning techniques were applied to Super Mario Bros level generation, e.g.
LSTMs (Summerville & Mateas, 2016), probabilistic graphical models (Guzdial & Riedl, 2016) and
multi-dimensional Markov Chain Monte Carlo (Snodgrass & Ontanón, 2016). Torrado et al. (2019)
leverages GANs, but differs from our work in that they consider level generation only and they
constrain the mixture of tiles appearing in the level5. This technique cannot be easily generalized
to arbitrary constraints. Many approaches to molecule generation use VAEs (Gómez-Bombarelli
et al., 2018; Kusner et al., 2017; Dai et al., 2018). Closest to MolGANs are ORGANs (Guimaraes
et al., 2017) and Sequence Tutor (Jaques et al., 2017), both using a reinforcement learning objective
(with SeqGANs and RNNs respectively) to generate molecules as sequences in SMILE encoding.
Finally, the approach of Seff et al. (2019) use MCMC to sample graph representations of valid
molecules. Compared to CANs, their approach requires an expensive inference procedure based on
Gibbs sampling, which must be additionally bootstrapped by providing a valid configuration. When
the space is constrained by an arbitrary logical formula, as in our case, this last step is NP-complete.

6 CONCLUSION

We presented Constrained Adversarial Networks (CANs), a generalization of GANs in which the
generator is encouraged during training to output valid structures. CANs make use of the semantic
loss (Xu et al., 2018) to measure the mass allocated by the generator to invalid structures and penalize
the latter accordingly. As in GANs, generating (likely) valid structures then amounts to a simple
forward pass of the generator. Importantly, the data structures used by the SL – which can be large
if the structural constraints are very complex – can be discarded after training. Our framework

5This work is a pre-print and the code is not publicly available yet, so no comparison could be made.
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was proven to be effective in different structured generative tasks, improving the validity of the
generated structures (on average) while keeping the computational cost of training under control
and substantially reducing inference runtimes. We also showed how the constraints to be turned on
and off at inference time, suggesting different uses for the SL, namely promoting diversity of the
generator’s outputs. Finally, our level generation experiment shows how to transform structures to a
space in which the structural constraints are easier to encode and more compact.
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Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
els with kl-control. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1645–1654. JMLR. org, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. 2018.

Diederik Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference
on Learning Representations, 2014.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential de-
cision diagrams. In Fourteenth International Conference on the Principles of Knowledge Repre-
sentation and Reasoning, 2014.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.
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A IMPLEMENTATION DETAILS

A.1 CONSTRAINED IMAGES

The deep neural network for this experiment is based on a Deep Convolutional Generative Adversar-
ial Networks (DCGANs) (Radford et al., 2015). Batch Normalization (BN) and ReLU are applied
between the layers of the generator G. While Leaky ReLU with a slope of 0.2 has been used for the
discriminator D. In the last layer of the generator we apply a gumbel-sigmoid activation function
(GS).

For the training, Adam optimizer has been used with β1 = 0.5 and β2 = 0.999. The learning rate is
constant throughout the training (250 epochs) and is equal to 0.0001. The batch size used during
the experiments has been set to 64. Layers have been initialized using Xavier initialization for the
generator and Orthogonal initialization for the discriminator. Finally, the size of the latent vector
has been set to 64 and sampled from a normal distribution with mean = 0.0 and std = 1.0
Table 3 shows the network architecture.

Part Input Shape→ Output Shape Layer Type Kernel Stride

G

(64)→ (1024) Fully Conn. - -
(1024)→ (3200) Fully Conn. - -
(3200)→ (h

4
, w

4
, 128) Reshape

(h
4

, w
4

, 128)→ (h
2

, w
2

, 64) Deconv. 5× 5 2 ×2
(h
2

, w
2

, 64)→ (h, w, 1) Deconv. 5× 5 2 ×2

D

(h, w, 1)→ (h
2

, w
2

, 64) Conv. 5× 5 2 ×2
(h
2

, w
2

, 64)→ (h
4

, w
4

, 128) Conv. 5× 5 2 ×2
(h
4

, w
4

, 128)→ (3200) Reshape
(3200)→ (1024) Fully Conn. - -
(1024)→ (32) Fully Conn. - -
(32)→ (1) Fully Conn. - -

Table 3: Constrained Images network architecture.

A.2 SUPER MARIO BROS LEVEL GENERATION

The deep neural network for this experiment is based on the DCGANs used in (Volz et al., 2018).
Batch Normalization (BN) and ReLU are applied between the layers of the generator G. While
Leaky ReLU with a slope of 0.2 has been used for the discriminator D. In the last layer of the
generator we apply a Softmax activation function to obtain probabilities that are finally given as
inputs to the Semantic Loss. On the other hand, the generation of samples is done through the
application, always on the generator, of a stretched Softmax function followed by a Tensorflow
OneHotCategorical layer, which allows to samples levels. In our opinion, this is a best way of
generating objects with respect to the simple argmax applied directly on the generator by (Volz
et al., 2018).

The networks have been trained using the WGAN guidelines (Arjovsky et al., 2017). Thus, the
number of iterations on the discriminator has been set to 5 for each iteration on the generator. RM-
SProp has been used as loss optimizer, with the learning rate constant throughout the training (10000
epochs) and equal to 0.00005. The batch size used during the experiments has been set to 32. Layers
have been initialized using Normal initializer for both the generator and the discriminator. More-
over, weight clipping is applied on the layers of D with c equals to 0.01. Finally, the size of the
latent vector has been set to 64 and sampled from a normal distribution N (0, 1)
Table 4 shows the network architecture (as said, each layer is followed by batch normalization and
by a ReLU/Leaky ReLU activation function).

The feedforward neural network P̂R has been implemented using a CNN with the architecture in
Table 5.
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Part Input Shape→ Output Shape Layer Type Kernel Stride

G

(32)→ (1, 1, 32) Reshape. - -
(1, 1, 32)→ (h

8
, w

8
, 16) Deconv. 4× 4 1× 1

(h
8

, w
8

, 16)→ (h
4

, w
4

, 8) Deconv. 4× 4 2× 2
(h
4

, w
4

, 8)→ (h
2

, w
2

, 4) Deconv. 4× 4 2× 2
(h
2

, w
2

, 4)→ (h, w, 13) Deconv. 4× 4 2× 2

D

(h, w, 13)→ (h
2

, w
2

, 64) Conv. 4× 4 2× 2
(h
2

, w
2

, 64)→ (h
4

, w
4

, 128) Conv. 4× 4 2× 2
(h
4

, w
4

, 128)→ (h
8

, w
8

, 256) Conv. 4× 4 2× 2
(h
8

, w
8

, 256)→ (1, 1, 1) Conv. 4× 4 1× 1

Table 4: Super Mario Bros Level Generation network architecture.

Input Shape→ Output Shape Layer Type Kernel Stride

(h, w, 13)→ (h, w, 8) Conv. 3× 3 1× 1
(h, w, 8)→ (h, w, 16) Conv. 5× 5 1× 1
(h, w, 16)→ (h, w, 24) Conv. 7× 7 1× 1
(h, w, 24)→ (h, w, 32) Conv. 9× 9 1× 1
(h, w, 32)→ (h, w, 64) Conv. 11× 11 1× 1
(h, w, 64)→ (h, w, 96) Conv. 13× 13 1× 1
(h, w, 96)→ (h, w, 128) Conv. 15× 15 1× 1
(h, w, 128)→ (h, w, 192) Conv. 17× 17 1× 1
(h, w, 192)→ (h, w, 32) Fully Conv. - -
(h, w, 32)→ (h, w, 2) Fully Conv. - -

Table 5: Reachability Network architecture.

A.3 MOLECULE GENERATION

The MolGAN architecture is composed of three networks, the generator G, the discriminator D and
the reward networkR. D andR share the same architecture, but are trained with different objectives.
R must estimate either the product of the QED, SA, logP metrics, or the uniqueness of a batch of
samples. All these metrics are in [0, 1] so that R should output 1 given a perfect sample (w.r.t. the
aforementioned metrics) or a batch made of different samples. G is optimized to produce samples
that maximize the output of R and are convincing to D, on top of that, the semantic loss is also
applied.
While R is trained in parallel with D and G, the loss of G with respect to the output of R is
activated only after 150 epochs, at which point the adversarial loss stops being used. The semantic
loss is applied to G from the start to the end of the training. The weight of the semantic loss is equal
to 0.9, whereas the adversarial loss of G has a weight of 0.1.
Improved WGAN is used as the adversarial loss betweenG andD (ncritic = 5), whereasR is trained
to estimate the desired target by mean squared error, and G is trained with deep deterministic policy
gradient w.r.t. the output of R, which is seen as a reward to maximize.
Training is ongoing until a stop condition is met, either the uniqueness of the batch falling below 0.2
if R is an estimator of the three chemical properties, or the validity reaching 0.99 if R should output
the uniqueness of the batch. During training, the learning rate is set at a constant value of 0.001, the
batch size is 32 and there is no dropout. Adam with beta1 = 0.9 and beta2 = 0.999 is the optimizer
of choice. Batch discrimination is used.
Results are obtained by evaluating a batch of 5000 generated samples.
The input noise z has dimension 32 if the semantic loss is not applied, 36 if it is applied; with the
first 32 dimensions sampled from a standard normal distribution and the last four from a uniform
distribution in [0, 1].
The maximum number of nodes for each molecule is 9, with 5 possible atom types and 5 bond types.
Each molecule is represented by two matrices, one mapping each node to a label, and one adjacency
matrix informing about the presence or lack of edges between nodes, and their type.
The input noise is received by G and processed by three fully connected layers of 128, 256, 512
units each, while tanh acts as the activation function; a linear projection followed by a softmax is
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then applied to the output of the last layer to have it matching the size of the adjacency matrices.
D and R share the same architecture (no parameters are shared), based on two relational graph
convolutions (De Cao & Kipf, 2018) of 64, 32 hidden units, followed by an aggregation as in (De Cao
& Kipf, 2018) to obtain a graph level representation of 128 features. Two fully connected layers of
128, 1 units then reduce the graph embedding to a single output value, with tanh as the activation
for the hidden layer and with sigmoid being applied on the output in the case of R.
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