
Published as a conference paper at ICLR 2019

GENERATING LIQUID SIMULATIONS WITH
DEFORMATION-AWARE NEURAL NETWORKS

Lukas Prantl, Boris Bonev & Nils Thuerey
Department of Computer Science
Technical University of Munich
Boltzmannstr. 3, 85748 Garching, Germany
{lukas.prantl,boris.bonev,nils.thuerey}@tum.de

ABSTRACT

We propose a novel approach for deformation-aware neural networks that learn
the weighting and synthesis of dense volumetric deformation fields. Our method
specifically targets the space-time representation of physical surfaces from liquid
simulations. Liquids exhibit highly complex, non-linear behavior under chang-
ing simulation conditions such as different initial conditions. Our algorithm cap-
tures these complex phenomena in two stages: a first neural network computes a
weighting function for a set of pre-computed deformations, while a second net-
work directly generates a deformation field for refining the surface. Key for suc-
cessful training runs in this setting is a suitable loss function that encodes the ef-
fect of the deformations, and a robust calculation of the corresponding gradients.
To demonstrate the effectiveness of our approach, we showcase our method with
several complex examples of flowing liquids with topology changes. Our repre-
sentation makes it possible to rapidly generate the desired implicit surfaces. We
have implemented a mobile application to demonstrate that real-time interactions
with complex liquid effects are possible with our approach.

1 INTRODUCTION

Learning physical functions is an area of growing interest within the research community, with
applications ranging from physical priors for computer vision problems Kyriazis & Argyros (2013),
over robotic control Schenck & Fox (2017), to fast approximations for numerical solvers Tompson
et al. (2017). While the underlying model equations for many physics problems are known, finding
solutions is often prohibitively expensive for phenomena on human scales. At the same time, the
availability of model equations allows for the creation of reliable ground truth data for training, if
enough computational resources can be allocated.

Water, and liquids in general, are ubiquitous in our world. At the same time, they represent an
especially tough class of physics problems, as the constantly changing boundary conditions at the
liquid-gas interface result in a complex space of surface motions and configurations. In this work
we present a novel approach to capture parametrized spaces of liquid behavior that is based on
space-time deformations. We represent a single 3D input surface over time as a four-dimensional
signed-distance function (SDF), which we deform in both space and time with learned deformations
to recover the desired physical behavior. To calculate and represent these deformations efficiently,
we take a two-stage approach: First, we span the sides of the original parameter region with pre-
computed deformations, and infer a suitable weighting function. In a second step, we synthesize a
dense deformation field for refinement. As both the parameter weighting problem and the deforma-
tion synthesis are highly non-linear problems, we demonstrate that neural networks are a particularly
suitable solver to robustly find solutions.

We will demonstrate that it is possible to incorporate the non-linear effects of weighted deforma-
tions into the loss functions of neural networks. In particular, we put emphasis on incorporating
the influence of deformation alignment into the loss gradients. This alignment step is necessary to
ensure the correct application of multiple consecutive deformations fields. The second stage of our

1

Published as a conference paper at ICLR 2019

algorithm is a generative model for deformation fields, for which we rely on a known parametriza-
tion of the inputs. Thus, in contrast to other generative models which learn to represent unknown
parametrization of data sets Radford et al. (2016), our models are trained with a known range and
dimensionality to parameter range, which serves as input.

Once trained, the models can be evaluated very efficiently to synthesize new implicit surface con-
figurations. To demonstrate its performance, we have implemented a proof-of-concept version for
mobile devices, and a demo app is available for Android devices in the Google Play store. Our
approach generates liquid animations several orders of magnitude faster than a traditional simulator,
and achieves effective speed up factors of more than 2000, as we will outline in Sec. 5. The central
contributions of our work are:

• A novel deformation-aware neural network approach to very efficiently represent large
collections of space-time surfaces with complex behavior.

• We show how to compute suitable loss gradient approximations for the sub-problems of
parameter and deformation inference.

• In addition we showcase the high performance of our approach with a mobile device im-
plementation that generates liquid simulations interactively.

2 RELATED WORK

Capturing physical behavior with learning has a long history in the field of learning. Early exam-
ples targeted minimization problems to determine physical trajectories or contact forces Bhat et al.
(2002); Brubaker et al. (2009), or plausible physics for interacting objects Kyriazis & Argyros (2013;
2014). Since initial experiments with physically-based animation and neural networks Grzeszczuk
et al. (1998), a variety of new deep learning based works have been proposed to learn physical
models from videos Battaglia et al. (2016); Chang et al. (2016); Watters et al. (2017). Others have
targeted this goal in specific settings such as robotic interactions Finn et al. (2016), sliding and
colliding objects Wu et al. (2015; 2016), billiard Fragkiadaki et al. (2015), or trajectories in height
fields Ehrhardt et al. (2017). The prediction of forces to infer image-space motions has likewise been
targeted Mottaghi et al. (2016a;b), while other researchers demonstrated that the stability of stacked
objects can be determined from single images Lerer et al. (2016); Li et al. (2016). In addition, the
unsupervised inference of physical functions poses interesting problems Stewart & Ermon (2017).
While these methods have achieved impressive results, an important difference to our method is that
we omit the projection to images. I.e., we directly work with three-dimensional data sets over time.

In the context of robotic control, physics play a particularly important role, and learning object
properties from poking motions Agrawal et al. (2016), or interactions with liquids Schenck & Fox
(2017) were targeted in previous work. Learning physical principles was also demonstrated for au-
tomated experiments with reinforcement learning Denil et al. (2016). Recently, first works have also
addressed replacing numerical solvers with trained models for more generic PDEs Farimani et al.
(2017); Long et al. (2017). In our work we target a more narrow case: that of surfaces deform-
ing based on physical principles. However, thanks to this narrow scope and our specialized loss
functions we can generate very complex physical effects in 3D plus time.

Our method can be seen as a generative approach representing samples from a chaotic process.
In this context, the learned latent-space representation of regular generative models Masci et al.
(2011); Rezende et al. (2014); Goodfellow et al. (2014); Radford et al. (2016); Isola et al. (2017) is
replaced by the chosen parametrization of a numerical solver. Our model shares the goal to learn
flow physics based on examples with other methods Ladicky et al. (2015); Tompson et al. (2017);
Chu & Thuerey (2017), but in contrast to these we focus on 4D volumes of physics data, instead
of localized windows at single instances of time. Alternative methods have been proposed to work
with 4D simulation data Raveendran et al. (2014); Thuerey (2017), however, without being able
to capture larger spaces of physical behavior. Due to its focus on deformations, our work also
shares similarities with methods for optical flow inference and image correspondences Bailer et al.
(2016); Dosovitskiy et al. (2015); Ranjan & Black (2016); Ilg et al. (2016). A difference to these
approaches is that we learn deformations and their weighting in an unsupervised manner, without
explicit ground truth data. Thus, our method shares similarities with spatial transformer networks
(STNs) Jaderberg et al. (2015), and unsupervised approaches for optical flow Meister et al. (2017).

2

Published as a conference paper at ICLR 2019

However, instead of aligning two data sets, our method aims for representing larger, parametrized
spaces of deformations.

3 LEARNING DEFORMATIONS

We first explain our formulation of the simulation parameter space, which replaces the latent space
of other generative models such as autoencoders Masci et al. (2011), GANs Radford et al. (2016), or
auto-regressive models Van Oord et al. (2016). Given a Navier-Stokes boundary value problem with
a liquid-gas interface, we treat the interface over time as a single space-time surface. We work with
a set of these space-time surfaces, defined over a chosen region of the N-dimensional simulation
parameters α. We assume the parameters to be normalized, i.e. α ∈ [0, 1]

N . In practice, α could
contain any set of parameters of the simulation, e.g. initial positions, or even physical parameters
such as viscosity. We choose implicit functions φ(α) ∈ R4 → R to represent specific instances,
such that Γ(α) =

{
x ∈ R4;φ(α,x) = 0

}
is the space of surfaces parametrized by α that our

generative model should capture. In the following, φ and ψ will denote four-dimensional signed
distance functions. We will typically abbreviate φ(α) with φα to indicate that φα represents a set of
constant reference surfaces. While we will later on discretize all functions and operators on regular
Cartesian grids, we will first show the continuous formulation in the following.

a) b) c)

Figure 1: Three liquid surfaces after 60
time steps differing only by ±ε in ini-
tial conditions. Even this initially very
small difference can lead to large differ-
ences in surface position, e.g., the sheet
in b) strongly curving downward.

Deforming Implicit Surfaces Representing the whole
set φα is very challenging. Due to bifurcations and dis-
cretization artifacts φα represents a process that exhibits
noisy and chaotic behavior, an example for which can
be found in Fig. 1. Despite the complex changes in the
data, our goal is to find a manageable and reduced rep-
resentation. Thus, we generate an approximation of φα
by deforming a single initial surface in space and time.
We apply space-time deformations u : R4 → R4 to the
initial surface ψ0(x). As a single deformation is limited
in terms of its representative power to produce different
shapes, we make use of N sequential, pre-computed de-
formations, thus ui with i ∈ [1 · · ·N], each of which is
scaled by a scalar weight parameter βi, whose values are
normally between 0 and 1. This gives us the freedom to
choose how much of ui to apply. The initial surface de-
formed by, e.g., u1 is given by ψ0(x− β1u1).

The sequence of deformed surfaces by sequentially applying all pre-computed ui is given by
ψi(x,β) = ψi−1(x − βiui). It is crucial to align such sequences of Eulerian deformations with
each other. Here we employ the alignment from previous work Thuerey (2017), which we briefly
summarize in the following, as it influences the gradient calculation below. Each deformation i relies
on a certain spatial configuration for the input surface from deformation i− 1. Thus, when applying
ui−1 with a weight βi−1 < 1, we have to align ui correspondingly. Given the combined deformation
vsum(x,α) =

∑N
i=1 βiu

∗
i (x), with intermediate deformation fields u∗i−1(x) = ui−1(x − u∗i (x)),

we compute an inversely weighted offset field as vinv(x,α) = −
∑N
i=1(1 − βi)u

∗
i (x). This

offset field is used to align the accumulated deformations to compute the final deformation as
vfin(x + vinv(x,β),β) = vsum(x,β). vfin now represents all weighted deformations βiui merged
into a single vector field. Intuitively, this process moves all deformation vectors to the right location
for the initial surface ψ0, such that they can be weighted and accumulated.

To achieve the goal of representing the full set of target implicit surfaces φα our goal is to com-
pute two functions: the first one aims for an optimal weighting for each of the deformations in the
sequence, i.e. β, while the second function computes a final refinement deformation w after the
weighted sequence has been applied. We will employ two neural networks to approximate the two
functions, which we will denote as fp, and fd below. Both functions depend only on the simulation
parameters space α, i.e., fp(α) = β, and fd(α) = w.

Splitting the problem into fp and fd is important, as each of the pre-computed deformations
weighted by fp only covers a single trajectory in the space of deformed surfaces. In the follow-

3

Published as a conference paper at ICLR 2019

Initial surface

Pre-comp. deformations

Chosen point

Parameter network Apply weighted
deformations

Deformation
network

Apply
deformation Slice & Display

↵
�

 0

ui

 ̃ w final
Initialization

Figure 2: This illustration gives an overview of our algorithm. It works in two stages, a weighting
and refinement stage, each of which employs a neural network to infer a weighting function and a
dense deformation field, respectively.

ing, we employ an optical flow solve from previous work to pre-compute deformations between the
inputs Thuerey (2017), which deform the input for the extrema of each original parameter dimen-
sion αi. E.g., for a two-dimensional parameter space this yields two deformations along the sides
of the unit cube. This first step robustly covers rough, large scale deformations. As a second step,
we employ fd, which is realized as a generative CNN, to infer a deformation for refining the solu-
tion. Below we will explain the resulting equations for training. The full equations for applying the
deformations, and a full derivation of our loss functions can be found in the supplemental materials.
To shorten the notation, we introduce the helper function D(xi,α), which yields a deformed set of
coordinates in R4 depending on α that incorporates the deformation sequence weighted by fp(α),
and a refinement deformation from fd(α).

We express the overall goal in terms of minimizing the L2 distance between the deformed and the
target implicit surfaces for all possible values in the parameter space α, using β and w as degrees
of freedom:

argmin
β,w

L,L =

∫
‖ψ0(D(xi,α))− φα‖22 dα . (1)

Our work addresses the problem of how to compute weighting of the deformations and on synthe-
sizing the refinement field. The main difficulty lies in the non-linearity of the deformations, which
is why we propose a novel method to robustly approximate both functions with NNs: fp will be
represented by the parameter network to compute β, and we make use of a deformation network
that to generate w. We employ relatively simple neural networks for both functions. Key for training
them is encoding the effect of deformations in the loss functions to make the training process aware
of their influence. Hence, we will focus on describing the loss functions for both networks and the
corresponding discretized gradients in the following.

Learning Deformation Weights For training the NNs we propose the following objective func-
tion, which measures the similarity of a known reference surface φα and the corresponding, ap-
proximated result ψ0(x,α) for a parameter value α. We introduce the numerical equivalent of the
continuous L2 loss from Eq. (1) as

L =
1

2

∑
i

(ψ0(D(xi,α))− φα(xi))
2

∆xi , (2)

which approximates the spatial integral via the sum over all sample points i with corresponding
evaluation positions xi ∈ R4, where ∆xi = ‖xi − xi−1‖ is constant in our case. This corresponds
to a regular grid structure, where the loss is accumulated per cell. The central challenge here is
to compute reliable gradients for D, which encapsulates a series of highly non-linear deformation
steps. We first focus on inferring β, with w = 0.

The gradient of Eq. (2) with respect to one component of the deformation parameters βj is then
given by

d
dβj

L =
∑
i

(
− ∂

∂βj
vfin(xi + vinv(xi,β),β) · ∇ψ0(xi − vfin(xi,β))

)
(ψ0(xi,β)− φα(xi)) ,

(3)
where the first term on the sum over i in parentheses represents the gradient of the deformed initial
surface. Here we compute the derivative of the full deformation as ∂

∂βj
vfin(xi + vinv(xi,β),β) =

u∗i (xi). The offset by vinv on the left hand side indicates that we perform a forward-advection step
for this term. Details of this step, and for the full derivation of the gradient are given in Appendix B.1.

4

Published as a conference paper at ICLR 2019

Initial surface Reference surface+ Parameter network

After parameter network + Deformation network Reference surface

 0 �

� w

�↵

�↵

Figure 3: An example of our parameter learning approach. F.l.t.r.: the initial undeformed surface, the
surface deformed by the weighting from the trained parameter network, and the reference surface
only. The reference surface is shown again in the middle in light brown for comparison. The
weighted deformations especially match the left liquid arm well, while there are not enough degrees
of freedom in the pre-computed deformations to independently raise the surface on the right side.

A trained NN with this loss functions yields an instance of fp, with which we can infer adjusted
deformation weights fp(α) = β.

Learning to Generate Deformations Based on β, we apply the deformation sequence ui. The
goal of our second network, the deformation network fd, is to compute the refinement deformation
w. In contrast to the pre-computed ui, fd(α) = w now directly depends on α, and can thus capture
the interior of the parameter space. Given the initial surface ψ0 deformed by the set of βiui, which
we will denote as ψ̃ below, the refinement deformation is applied with a final deformation step as
ψ(x) = ψ̃ (x−w(x, α)).

In order to compute the gradient of the deformation loss, we introduce the indicator function χj(x)
for a single deformation vector wj of w. We found it useful to use a fine discretization for the
implicit surfaces, such as ψ, and lower resolutions for w. Hence, each discrete entry wj can act on
multiple cells of ψ, which we enumerate with the help of χj . Now the derivative of Eq. (1) for a
fixed β with respect to a single deformation vector wj of w is given by

d
dwj

L = −
∑
i

χj(xi)∇ψ̃(xi −w(xi,α))
(
ψ̃(xi,α)− φα(xi)

)
. (4)

The full derivation of this gradient is given in Appendix B.2. Our approach for deformation learning
can be regarded as an extension of STNs Jaderberg et al. (2015) for dense, weighted fields, and
semi-Lagrangian advection methods. The parameter network corresponds to an STN which learns
to combine and weight known deformation fields. The deformation network, on the other hand,
resembles the thin plate spline STNs, where a network generates an offset for each cell center,
which is then used to sample a deformed image or grid. Note that in our case, this sampling process
corresponds to the semi-Lagrangian advection of a fluid simulation.

Training Details For fp we use a simple structure with two fully connected layers, while fd like-
wise contains two fully connected layers, followed by two or more four-dimensonal de-convolution
layers. All layers use ReLU activation functions. Details can be found in App. B, Fig. 12.

In practice, we also found that a small amount of weight decay andL2 regularization of the generated
deformations can help to ensure smoothness. Thus, the loss function of the deformation network,
with regularization parameters γ1 and γ2 is

Lt = L+ γ1||θ||2 + γ2||w||2 , (5)
where θ denotes the network weights. In addition, regular SDFs can lead to overly large loss values
far away from the surface due to linearly increasing distances. Thus, we apply the tanh() function
to the SDF values, in order to put more emphasis on the surface region.

Special care is required for boundary conditions, i.e, the sides of our domain. Assuming constant
values outside of the discretized domain, i.e. ∂ψ(x)/∂n = 0 for all x at the domain sides leads
to vanishing gradients ∇ψ(x) = 0 in App. B, Eq. (4). We found this causes artificial minima and
maxima in the loss function impeding the training process. Hence, we extrapolate the SDF values
with ∂ψ(x)/∂n = ±1 in order to retrieve non zero gradients at the domain sides.

To train both networks we use stochastic gradient descent with an ADAM optimizer and a learning
rate of 10−3. Training is performed separately for both networks, with typically 1000 steps for fd,

5

Published as a conference paper at ICLR 2019

0

0.025

0.05

0.075

0.1

Liquid 2D Flat Drop Stairs

Initial + Parameters + Deformation

0

0.25

0.5

0.75

1

Liquid 2D Flat Drop Stairs

Initial + Parameters + Deformation

Loss (absolute) Loss (normalized)

Initial +Parameters +Deformation

Liquid 2D 0.0876 0.0521 0.0234

Flat 0.0403 - 0.0121

Drop 0.0431 0.024 0.0096

Stairs 0.0953 0.0537 0.0299

Loss (numeric)

�1

Figure 4: Ablation study for our method. We evaluated the average loss for a test data set of the
different data sets discussed in the text. Left: numeric values, again as a graph (center), and a graph
of the loss values normalized w.r.t. initial surface loss on the right. Our method achieves very
significant and consistent reductions across the very different data sets.

Initial surface Reference surface+ Parameter network

After parameter network + Deformation network Reference surface

 0 �

� w

�↵

�↵

Figure 5: An example of our deformation learning approach. F. l. t. r.: the result after applying
weighted deformations, and with an additional deformation from a trained deformation network.
Both show the reference surface in light brown in the background, which is shown again for com-
parison on the right. The inferred deformation manages to reconstruct large parts of the two central
arms which can not be recovered by any weighting of the pre-computed deformations (left).

and another ca. 9000 steps for fd. Full parameters can be found in App. B, Table 2. As training data
we generate sets of implicit surfaces from liquid simulations with the FLIP method Bridson (2015).
For our 2D inputs, we use single time steps, while our 4D data concatenates 3D surfaces over time to
assemble a space-time surface. Working in conjunction, our two networks capture highly complex
behavior of the fluid space-time surface φα over the whole parameter domain. We will evaluate the
influence of the networks in isolation and combination in the following.

4 EVALUATION

In order to evaluate our method, we first use a two-dimensional parameter space with two dimen-
sional implicit surfaces from a liquid simulation. An overview of the space of 2156 training samples
of size 1002 can be found in the supplemental materials. For our training and synthesis runs, we
typically downsample the SDF data, and use a correspondingly smaller resolution for the output of
the deformation network, see Appendix C.2, Table 2. The effect of our trained networks in terms of
loss reductions is shown on the left side of Fig. 4 under Liquid 2D. As baseline we show the loss
for the undeformed surface w.r.t. the test data samples. For this 2D data set, employing the trained
parameter network reduces the loss to 59.4% of the initial value. Fig. 3 shows the surface of an
exemplary result. Although our result does not exactly match the target due to the constraints of the
pre-computed deformations, the learned deformation weights lead to a clear improvement in terms
of approximating the target.

The inferred deformation of our deformation network further reduces the surface loss to 26.6% of its
initial value, as shown in Fig. 4. This is equivalent to a reduction to 44.8% compared the result after
applying the weighted deformations. Note that the graphs in this figure correspond to an ablation
study: starting with the loss for the undeformed surface, over using only the parameter network, to
deformations for a flat surface, to our full algorithm. An example surface for these two-dimensional
cases can be found in Fig. 5. This figure compares the surface after applying weighted and in-
ferred deformations, i.e. our full method (right), with a surface deformed by only by deformations
weighted by the parameter network (left). The NN deformation manages to reconstruct the two arm
in the center of the surface, which the pre-computed deformations fail to capture. It is also apparent

6

Published as a conference paper at ICLR 2019

Figure 6: Eight examples of the learned deformations for a flat initial surface. For each pair the
reference surfaces are depicted in yellow and the deformed results in blue. The trained model learns
to recover a significant portion of the large-scale surface motion over the whole parameters space.

drop_res070000_025000_066666:
frames 2,10,25

a) b) c)

Figure 7: Each pair shows the reference surface in transparent brown, and in purple on the left the
deformed surface after applying the precomputed deformations. These surfaces often significantly
deviate from the brown target, i.e. the visible purple regions indicates misalignments. In cyan on
the right, our final surfaces based on the inferred deformation field. These deformed surface match
the target surface closely, and even recover thin features such as the central peak in (c).

that despite the improvement, this surface does not reach the tip of the arms. This is caused by regu-
larization over the varying set of target surfaces, leading to an averaged solution for the deformation.
Additional examples for this two dimensional setup can be found in the supplemental video.

4D Surface Data Next we consider complete space-time data sets in four dimensions. with a
three dimensional parameter space α. The three parameter dimensions are x- and y-coordinates of
the initial drop position, as well as its size. We use a total of 1764 reference SDFs with an initial
resolution of 1004, which are down-sampled to a resolution of 404. To illustrate the capabilities of
the deformation network, we start with a completely flat initial surface as ψ0, and train the defor-
mation network to recover the targets. As no pre-computed deformations are used for this case, we
do not train a parameter network. The flat initial surface represents an especially tough case, as the
network can not rely on any small scale details in the reference to match with the features of the
targets. Despite this difficulty, the surface loss is reduced to 30% of the initial loss purely based on
the deformation network. A set of visual examples can be seen in Fig. 6. Due to the reduced reso-
lution of the inferred deformation w.r.t. the SDF surface, not all small scale features of the targets
are matched. However, the NN manages to reconstruct impact location and size very well across the
full parameter space. Additional 2D and 4D results can be found in the supplemental materials.

Once we introduce a regular initial surface for ψ0, in this case the zero parameter configuration with
the drop in one corner of the domain with the largest size, our networks perform even better than
for the 2D data discussed above. The weighted deformations lead to a loss reduction to 55.6% of
the initial value, and the learned deformation reduce the loss further to 22.2% of the baseline loss
(Fig. 4). An example is shown in Fig. 7. In contrast to the flat surface test, the network deformation
can now shift and warp parts of ψ0, such as the rim of the splash of Fig. 7 to match the targets.

5 ADDITIONAL RESULTS WITH IMPLICIT SURFACES IN 4D

Our method yields highly reduced representations which can be used to very efficiently synthe-
size simulation results. To demonstrate the representational capabilities and the performance of our
method, we have integrated the evaluation pipeline for our trained networks into an Android appli-
cation. As our method yields an implicit surface as 4D array, visualizing the resulting animation
is very efficient. We render slices of 3D data as implicit surfaces, and the availability of a full

7

Published as a conference paper at ICLR 2019

a) b)

Figure 8: a) Liquid drop data set example: several 3D surfaces of a single simulation data point in
φα. b) An example splash generated by our method, visualized interactively.

3D representations makes it possible to add curvature-based shading and secondary particle effects
on the fly. In this context, please also consider the supplemental materials, which contain these
sequences in motion. They are available at: https://ge.in.tum.de/publications/
2017-prantl-defonn/.

Performance One of the setup available in this app is the liquid drop setup with 3D parameter
space described above. With this setup a user can release drops of liquid at varying positions and
of varying size. An example reference and generated result can be found in Fig. 8. For this liquid
drop setup, evaluating the network takes 69ms on average, and assembling the final deformation
field another 21.5ms. We use double buffering, and hence both tasks are evaluated in a background
thread. Rendering the implicit surface takes an average of 21ms, with an average frame rate of 50
fps. The original simulation for the drop setup of Fig. 8 took 530 seconds on average with a parallel
implementation to generate a single 4D surface data point.Assuming a best-case slowdown of only
4x for the mobile device, it would require more than 32 minutes to run the original simulation there.
Our app generates and renders a full liquid animation in less than one second in total. Thus, our
algorithm generates the result roughly 2000 times faster than the regular simulation. Our approach
also represents the space of more than 1700 input simulations, i.e., more than 17GB, with less than
30MB of storage.

Stairs A next setup, shown in Fig. 9, captures a continuous flow around a set of obstacles. Liquid
is generated in one corner of the simulation domain, and then flows in a U-shaped path around a wall,
down several steps. In the interactive visualization, green arrows highlight in- and outflow regions.
The three dimensional parametrization of this setup captures a range of positions for the wall and
two steps leading to very different flow behaviors for the liquid. In this case the data set consists of
1331 SDFs, and our app uses an output resolution of 504. The corresponding loss measurements can
be found in the right graphs of Fig. 4. As with the two previously discussed data sets, our approach
leads to very significant reductions of the surface loss across the full parameter space, with a final
residual loss of 31.3% after applying the learned deformation. Due to larger size of the implicit
surfaces and the inferred deformation field, the performance reduces to a frame rate of 30 fps on
average, which, however, still allows for responsive user interactions.

Discussion Our approach in its current form has several limitations that are worth mentioning.
E.g., we assume that the space of target surfaces have a certain degree of similarity, such that a single
surface can be selected as initial surface ψ0. In addition, our method currently does not make use of
the fact that the inputs are generated by a physical process. E.g., it would be highly interesting for
future work to incorporate additional constraints such as conservation laws, as currently our results
can deviate from an exact conservation of physical properties. E.g., due to its approximating nature
our method can lead to parts of the volume disappearing and appearing over time. Additionally, the
L2 based loss can lead to rather smooth results, here approaches such as GANs could potentially
improve the results.

6 CONCLUSIONS

We have presented a novel method to generate space-time surfaces with deformation-aware neural
networks. In particular, we have demonstrated the successful inference of weighting sequences of
aligned deformations, and the generation of dense deformation fields across a range of varied inputs.
Our method exhibits significant improvements in terms surface reconstruction accuracy across the
full parameter range. In this way, our networks can capture spaces of complex surface behavior, and

8

https://ge.in.tum.de/publications/2017-prantl-defonn/
https://ge.in.tum.de/publications/2017-prantl-defonn/

Published as a conference paper at ICLR 2019

b)a)

Figure 9: a) Three example configurations from our stairs data set. b) The interactive version of the
stair setup shown in the demo app. Notice how the flow around the central wall obstacle changes.
As the wall is shifted right, the flow increases corresonpondingly.

allow for real-time interactions with physics effects that are orders of magnitudes slower to compute
with traditional solvers.

Beyond liquid surfaces, our deformation networks could also find application for other types of
surface data, such as those from object collections or potentially also moving characters. Likewise,
it could be interesting to extend our method in order to infer deformations for input sets without an
existing parametrization.

REFERENCES

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by poking:
Experiential learning of intuitive physics. In Advances in Neural Information Processing Systems, pp. 5074–
5082, 2016.

Christian Bailer, Kiran Varanasi, and Didier Stricker. Cnn-based patch matching for optical flow with thresh-
olded hinge loss. arXiv preprint: 1607.08064, 2016.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for learning
about objects, relations and physics. In Advances in Neural Information Processing Systems, pp. 4502–4510,
2016.

Kiran S Bhat, Steven M Seitz, Jovan Popović, and Pradeep K Khosla. Computing the physical parameters of
rigid-body motion from video. In European Conference on Computer Vision, pp. 551–565. Springer, 2002.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387310738.

Robert Bridson. Fluid Simulation for Computer Graphics. CRC Press, 2015.

Marcus A Brubaker, Leonid Sigal, and David J Fleet. Estimating contact dynamics. In Computer Vision, 2009
IEEE 12th International Conference on, pp. 2389–2396. IEEE, 2009.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional object-based
approach to learning physical dynamics. arXiv:1612.00341, 2016.

Mengyu Chu and Nils Thuerey. Data-driven synthesis of smoke flows with CNN-based feature descriptors.
ACM Trans. Graph., 36(4)(69), 2017.

Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Battaglia, and Nando de Freitas. Learning to
perform physics experiments via deep reinforcement learning. arXiv preprint arXiv:1611.01843, 2016.

Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Caner Hazirbas, Vladimir Golkov, Patrick van der Smagt,
Daniel Cremers, Thomas Brox, et al. Flownet: Learning optical flow with convolutional networks. In
International Conference on Computer Vision (ICCV), pp. 2758–2766. IEEE, 2015.

Sebastien Ehrhardt, Aron Monszpart, Niloy J Mitra, and Andrea Vedaldi. Learning a physical long-term pre-
dictor. arXiv:1703.00247, 2017.

Amir Barati Farimani, Joseph Gomes, and Vijay S Pande. Deep learning the physics of transport phenomena.
arXiv:1709.02432, 2017.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through
video prediction. In Advances in neural information processing systems, pp. 64–72, 2016.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive models
of physics for playing billiards. arXiv preprint arXiv:1511.07404, 2015.

9

Published as a conference paper at ICLR 2019

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information process-
ing systems, pp. 2672–2680, 2014.

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator: Fast neural network emulation
and control of physics-based models. In Proceedings of the 25th annual conference on Computer graphics
and interactive techniques, pp. 9–20. ACM, 1998.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox. Flownet
2.0: Evolution of optical flow estimation with deep networks. arXiv preprint: 1612.01925, 2016.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. CVPR, 2017.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Advances in
neural information processing systems, pp. 2017–2025, 2015.

Nikolaos Kyriazis and Antonis Argyros. Physically plausible 3d scene tracking: The single actor hypothesis.
In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 9–16. IEEE, 2013.

Nikolaos Kyriazis and Antonis Argyros. Scalable 3d tracking of multiple interacting objects. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 3430–3437. IEEE, 2014.

Lubor Ladicky, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. Data-driven fluid
simulations using regression forests. ACM Trans. Graph., 34(6):199, 2015.

Michael Lentine, Mridul Aanjaneya, and Ronald Fedkiw. Mass and momentum conservation for fluid simula-
tion. In Symposium on Computer Animation, pp. 91–100. ACM, 2011.

Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block towers by example. In Interna-
tional Conference on Machine Learning, pp. 430–438, 2016.

Wenbin Li, Seyedmajid Azimi, Ales Leonardis, and Mario Fritz. To fall or not to fall: A visual approach to
physical stability prediction. arXiv preprint arXiv:1604.00066, 2016.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. arXiv:1710.09668,
2017.

Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolutional auto-encoders for
hierarchical feature extraction. Artificial Neural Networks and Machine Learning–ICANN 2011, pp. 52–59,
2011.

Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Unsupervised learning of optical flow with a bidirec-
tional census loss. arXiv preprint arXiv:1711.07837, 2017.

Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi. Newtonian scene under-
standing: Unfolding the dynamics of objects in static images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3521–3529, 2016a.

Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi. ”what happens if...” learning to
predict the effect of forces in images. In European Conference on Computer Vision, pp. 269–285. Springer,
2016b.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. Proc. ICLR, 2016.

Anurag Ranjan and Michael J. Black. Optical flow estimation using a spatial pyramid network. CoRR,
abs/1611.00850, 2016. URL http://arxiv.org/abs/1611.00850.

Karthik Raveendran, Nils Thuerey, Chris Wojtan, and Greg Turk. Blending Liquids. ACM Trans. Graph., 33
(4):10, August 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Proc. ICML, Vol. 32, pp. II–1278–II–1286, 2014.

Connor Schenck and Dieter Fox. Reasoning about liquids via closed-loop simulation. arXiv:1703.01656, 2017.

Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics and domain knowl-
edge. In AAAI, pp. 2576–2582, 2017.

10

http://arxiv.org/abs/1611.00850

Published as a conference paper at ICLR 2019

Nils Thuerey. Interpolations of Smoke and Liquid Simulations. ACM Trans. Graph., 36(1):15, July 2017.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian fluid sim-
ulation with convolutional networks. In International Conference on Machine Learning, pp. 3424–3433,
2017.

Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In International
Conference on Machine Learning, pp. 1747–1756, 2016.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti.
Visual interaction networks: Learning a physics simulator from video. In Advances in Neural Information
Processing Systems, pp. 4542–4550, 2017.

Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum. Galileo: Perceiving physical
object properties by integrating a physics engine with deep learning. In Advances in neural information
processing systems, pp. 127–135, 2015.

Jiajun Wu, Joseph J Lim, Hongyi Zhang, Joshua B Tenenbaum, and William T Freeman. Physics 101: Learning
physical object properties from unlabeled videos. In BMVC, volume 2:6, pp. 7, 2016.

11

Published as a conference paper at ICLR 2019

Appendix: Generating Liquid Simulations with
Deformation-aware Neural Networks

This supplemental document will first detail the necessary steps to align multiple, weighted defor-
mation fields. Afterwards, we will derive the gradients presented in the paper for the parameter and
deformation networks, and then present additional results.

A DEFORMATION ALIGNMENT

As before, φα denotes the reference signed distance functions (SDFs) of our input parameter space,
while ψ denotes instances of a single input surface, typically deformed by our algorithm. We will
denote the single initial surface without any deformations applied with ψ0. Here, we typically use
the zero point of our parameter space, i.e., ψ0 = φα0

, with α0 = 0. Hence, we aim for deforming
ψ0 such that it matches all instances of φα as closely as possible.

For the pre-computed, end-point deformations, it is our goal to only use a single deformation for
each dimension of the parameter space α. Thus u1 will correspond to α1 and be weighted by β1,
and we can apply β1u1 to compute a deformation for an intermediate point along this dimension.
Given the sequence of pre-computed deformations {u1,u2, . . . ,uN} and a point in parameter space
{β1, . . . , βN} a straight-forward approach is to apply each deformation sequentially

ψ1(x,β) = ψ0(x− β1u1)

ψ2(x,β) = ψ1(x− β2u2)

...
ψN (x,β) = ψN−1(x− βNuN). (6)

However, there are two disadvantages to this approach. The main problem is that the deformations
ui are only meaningful if applied with βi = 1.

Thus, if a previous deformation wasn’t applied fully with a weight of 1, each subsequent deformation
will lead to an accumulation of deformation errors. The second disadvantage of this simple method

Setup

Previous work for β1 = 0.5, β2 = 1

Improved alignment for β1 = 0.5, β2 = 1

u1 u2

β1u1 β2u2

Reference solution
β1 = 0.5, β2 = 1

Aligned result (ours)v V

Solutions

Undesirable shape

Figure 10: Illustration of our deformation alignment procedure.

12

Published as a conference paper at ICLR 2019

is the fact that many advection steps have to be applied in order to arrive at the final deformed
SDF. This also affects performance as each advection step introduces additional computations, and
scattered memory accesses. This is best illustrated with the an example, shown in Fig. 10. In row
1) the first two figures in red show two pre-computed end-point deformations (red arrows). The first
one (u1) moves a drop to the right, while u2 changes its size once it has reached its final position.
Images with deformations show the source in dark blue, and the deformed surface in light blue. In
this example, the two deformations should be combined such that the horizontal position and the
drop size can be independently controlled by changing β1 and β2. E.g., on the top right, a correct
solution for β1 = 0.5, β2 = 1 is shown. Row 2) of Fig. 10 shows how these deformations are
applied in previous work: The second deformation acts on wrong parts of the surface, as the drop
has not reached its left-most position for β1 = 0.5. The undesirable result in this case is a partially
deformed drop, shown again in the middle row on the right.

We present an alternative approach which aligns the deformation fields to the final position of the
deformation sequence. Then, all aligned deformation fields can simply be accumulated by addition,
and applied to the input in a single step. To do this, we introduce the intermediate deformation fields:

u∗N (x) = uN (x),

u∗N−1(x) = uN−1(x− u∗N (x)),

u∗N−2(x) = uN−2(x− u∗N (x)− u∗N−1(x)),

...
u∗1(x) = u1(x− u∗N (x)− u∗N−1(x) . . .− u∗2(x)). (7)

Each u∗i is moved by all subsequent deformations u∗j , j ∈ [i + 1 · · ·N], such that it acts on the
correct target position under the assumption that βi = 1 (we will address the case of βi 6= 1
below). The Eulerian representation we are using means that advection steps look backward to
gather data, which in our context means that we start with the last deformation uN to align previous
deformations. Using the aligned deformation fields u∗ we can include β and assemble the weighted
intermediate fields

vsum(x,β) =

N∑
i=1

βiu
∗
i (x) (8)

and an inversely weighted correction field

vinv(x,β) = −
N∑
i=1

(1− βi)u∗i (x). (9)

The first deformation field vsum represents the weighted sum of all aligned deformations, weighted
with the correct amount of deformation specified by the deformation weights βi. The second defor-
mation vinv intuitively represents the offset of the deformation field vsum from its destination caused
by the β weights. Therefore, we correct the position of vsum by this offset with the help of an
additional forward-advection step calculated as:

vfin(x + vinv(x,β),β) = vsum(x,β), (10)

This gives us the final deformation field vfin(x,β). It is important to note that the deformation vsum
for a position x is assembled at a location x′ that is not known a-priori. It has to be transported to x
with the help of vinv, as illustrated in Fig. 11.
This correction is not a regular advection step, as the deformation is being ’pushed’ from x +
vinv(x,β) to x. In order to solve this advection equation we use an inverse semi-Lagrangian step,
inspired by algorithms such as the one by Lentine et al. Lentine et al. (2011), pushing values forward
with linear interpolation. As multiple values can end up in a single location, we normalize their
contribution. Afterwards, we perform several iterations of a ”fill-in” step to make sure all cells in
the target deformation grid receive a contribution (we simply extend and average deformation values
from all initialized cells into uninitialized regions).

The deformed SDF is then calculated with a regular advection step applying the final, aligned defor-
mation with

ψ(x,β) = ψ0(x− vfin(x,β)). (11)

13

Published as a conference paper at ICLR 2019

(a)

x′

x

vsum(x′)

vinv(x′)

(b)

x′

x
vfinal(x)

Figure 11: This figure illustrates the forward advection process: Both deformation vsum and the
correction vinv are initially located at x′ in (a). vinv is applied to yield the correct deformation at
location x, as shown in (b).

Based on our correction step from Eq. (10) this method now respects the case of partially applied
deformations. As the deformations u∗(x) are already aligned and don’t depend on β, we can pre-
compute them. To retrieve the final result it is now sufficient to sum up all deformations in vsum and
vinv, then apply one forward-advection step to compute vfin, and finally deform the input SDF by
applying semi-Lagrangian advection. While our method is identical with alignment from previous
work Thuerey (2017) for βi = 1, it is important for practical deformations with weights βi 6= 1.

Our method is illustrated in row 3) of Fig. 10. In the bottom left we see the deformation field
vsum from previous work. It is also the starting point of our improved alignment, but never applied
directly. Our method corrects vsum by transforming it into vfin, bottom center, which acts on the
correct spatial locations. In this example, it means that the expanding velocities from u2 are shifted
left to correctly expand the drop based on its initial position. Our method successfully computes the
intended result, as shown in the bottom right image.

This algorithm for aligning deformations will be our starting point for learning the weights β. After
applying the weighted deformations, we adjust the resulting surface we an additional deformation
field generated by a trained model. In the following, we will derive gradients for learning the weight-
ing as well as the refinement deformation.

B LEARNING DEFORMATIONS

As outlined in the main document, we aim for minimizing the L2 loss between the final deformed
surface and the set of reference surfaces φα, i.e.:

L =
1

2

∑
i

(ψ0(D(xi,α))− φα(xi))
2
, (12)

where D(xi,α) denotes the joint application of all weighted and generated deformation fields.

B.1 LEARNING DEFORMATION WEIGHTING

We will first focus on the parameter network to infer the weighting of the pre-computed deformation
fields based on the input parameters α. Thus, the NN has the goal to compute β(α) ∈ RN =
(β1(α), . . . , βN (α)) in order to minimize Eq. (12). The application of the deformations weighted
by β includes our alignment step from Sec. A, and hence the neural networks needs to be aware of
its influence. To train the parameter network, we need to specify gradients of Eq. (12) with respect
to the network weights θi. With the chain rule we obtain d

dθlij
L = dβ

dθlij

dL
dβ . Since the derivative

of the network output βi with respect to a specific network weight θlij is easily calculated with
backpropagation Bishop (2006), it is sufficient for us to specify the second term. The gradient of
Eq. (12) with respect to the deformation parameter βi is given by

d
dβi

L =
∑
j

d
dβi

ψ(xj ,β) [ψ(xj ,β)− φα(xj)] , (13)

14

Published as a conference paper at ICLR 2019

where we have inserted Eq. (11). While the second term in the sum is easily computed, we need to
calculate the first term by differentiating Eq. (11) with respect to βi, which yields

d
dβi

ψ(x,β) = − d
dβi

vfin(x,β) · ∇ψ0(x− vfin(x,β)). (14)

As the gradient of ψ0 is straight forward to compute, d
dβi

vfin(x,β) is crucial in order to compute
a reliable derivative. It is important to note that even for the case of small corrections vinv(x,β),
Eq. (10) cannot be handled as another backward-advection step such as vfin(x,β) = vsum(x −
vinv(x,β),β). While it might be tempting to assume that differentiating this advection equation
will produce reasonable outcomes, it can lead to noticeable errors in the gradient. These in turn
quickly lead to diverging results in the learning process, due to the non-linearity of the problem.

The correct way of deriving the change in vfin(x,β) is by taking the total derivative of vsum(x,β) =
vfin(x + vinv(x,β),β) with respect to βi:

d
dβi

vsum(x,β)

=
∂

∂βi
vfin(x + vinv(x,β),β) + JV (x + vinv(x,β),β)

∂

∂βi
vinv(x,β), (15)

where, JV (x + vinv(x,β),β) denotes the Jacobian of vfin with respect to x, evaluated at x +
vinv(x,β). Rearranging Eq. (15) and inserting vsum and vinv yields

∂

∂βi
vfin(x + vinv(x,β),β) (16)

=
d

dβi
vsum(x,β)− JV (x + vinv(x,β),β)

∂

∂βi
vinv(x,β)

=
d

dβi

N∑
i=1

βiu
∗
i (x) + JV (x + vinv(x,β),β)

∂

∂βi

N∑
i=1

(1− βi)u∗i (x)

= [1− JV (x + vinv(x,β),β)]u∗i (x). (17)

We note that the Jacobian in the equation above has small entries due to the smooth nature of the
deformations vfin. Thus, compared to the unit matrix it is small in magnitude. Note that this rela-
tionship is not yet visible in Eq. (15). We have verified in experiments that JV does not improve the
gradient significantly, and we thus set this Jacobian to zero, arriving at

∂

∂βi
vfin(x + vinv(x,β),β) ≈ u∗i (x), (18)

where the u∗ are the deformation fields aligned for the target configuration from Eq. (7). We use
Eq. (18) to estimate the change in the final deformation fields for changes of the i-th deformation
parameter. We see that this equation has the same structure as Eq. (10). On the left-hand side, we
have ∂

∂βi
vfin, evaluated at x + vinv(x,β), whereas u∗i on the right-hand side is evaluated at x. To

calculate d
dβi

vfin(x,β) then, we can use the same forward-advection algorithm, which is applied to
the correction in Eq. (10). With this, we have all the necessary components to assemble the gradient
from Eq. (13) for training the parameter network with back-propagation.

B.2 LEARNING TO GENERATE DEFORMATIONS

Our efforts so far have been centered around producing a good approximation of φα, with a set
of given end-point deformations {u0, . . . ,un}. The performance of this method is therefore in-
herently constrained by the amount of variation we can produce with the deformation inputs. To
allow for more variation, we propose to generate an additional space-time deformation field w(α),
that changes with the simulation parameters α. Once again, we model this function with a neural
network, effectively giving the network more expressive capabilities to directly influence the final
deformed surface.

For this network we choose a structure with a set of four-dimensional deconvolution layers that
generate a dense space-time deformation field. We apply the trained deformation with an additional

15

Published as a conference paper at ICLR 2019

4

16

32

2592

34

24

16

44

54 104

reshape

8 8

↵ � ↵
inin out

out

Parameter network: Deformation network:

w

Figure 12: Overview of our two neural networks. While the parameter network (left) is simple,
consisting of two fully connected layers, its cost functions allows it to learn how to apply multiple
long-range, non-linear deformation fields. The deformation network (right), which makes use of
several de-convolutional layers, instead learns to generate dense deformation fields to refine the
final surface.

advection step after applying the deformations weighted by the parameter network:

ψ̃(x) = ψ0 (x− vfin(x,β(α))) , (19)

ψ(x) = ψ̃ (x−w(x,α)) . (20)

Thus, the deformation network only has to learn to refine the surface ψ̃ after applying the weighted
deformations, in order to accommodate the nonlinear behavior of φα.

As input, we supply the deformation network with the simulation parameters α = (αi, . . . , αN) as a
vector. The output of the network are four-component vectors, with the resolutionRx×Ry×Rz×Rt.
Note that in general the SDF resolution and the deformation resolution do not need to be identical.
Given a fixed SDF resolution, we can use a smaller resolution for the deformation, which reduces the
number of weights and computations required for training. Thus in practice, each four-dimensional
vector of the deformation acts on a region of the SDF, for which we assume the deformation to be
constant. Therefore, we write the deformation field as

w(x,α) =
∑
j

ξj(x) wj(α), (21)

where ξj(x) is the indicator function of the j-th region on which the four-dimensional deformation
vector wj(α) acts. This vector is the j-th output of the deformation network.

For training, we need to calculate the gradient of the loss-function Eq. (12) with respect to the
network weights. Just like in the previous section, it is sufficient to specify the gradient with respect
to the network outputs wi(α). Deriving Eq. (12) yields

d
dwi

L

=
∑
j

d
dwi

ψ(x) (ψ(x)− φα(x))

=
∑
j

d
dwi

ψ̃ (x−w(x,α)) (ψ(x)− φα(x))

=−
∑
j

Xi(xj)∇ψ̃(xj −w(xj ,α)) (ψ(xj ,α)− φα(xj)) . (22)

Thus, we can calculate the derivative by summation over the region that is affected by the network
output wi. The gradient term is first calculated by evaluating a finite difference stencil on ψ̃(xj) and
then advecting it with the corresponding deformation vector w(xj ,α). The other terms in Eq. (22)
are readily available. Alg. 1 summarizes our algorithm for training the deformation network. In
particular, it is important to deform the input SDF gradients with the inferred deformation field, in
order to calculate the loss gradients in the correct spatial location for backpropagation.

16

Published as a conference paper at ICLR 2019

ALGORITHM 1: Training the deformation network
Data: training samples from φα

Result: trained deformation network weights Θ

for each training sample {α̃, φ̃} do
evaluate neural network to compute β(α̃)

load reference SDF φ̃, initial SDF ψ0

calculate vfin(xi, β(α̃))

ψ̃ = advect ψ0 with vfin

calculate ∇ψ̃
evaluate neural network to compute wi(α̃)
assemble w(xi) from wi(α̃,Θ) according to Eq. (21)
advect ψ̃ with w
advect ∇ψ̃ with w
for each wi do

calculate the gradient d
dwi

L according to Eq. (22)
end
backpropagate d

dwi
Lt from Eq. (5) to adjust Θ

end

Initial Conditions

Pa
ra

m
et

er
 D

im
en

si
on

 1
: D

ro
p

Po
si

tio
n

X

Parameter Dimension 2: Drop Size

Input Data at t=30

Figure 13: The left image illustrates the initial conditions of our two dimensional parameter space
setup. It consists of a set of two-dimensional liquid simulations, which vary the position of the liquid
drop along x as α1, and its size as α2. The right half shows the data used for training at t = 30.
Note the significant amount of variance in positions of small scale features such as the thin sheets.
Both images show only a subset of the whole data.

C ADDITIONAL EVALUATION

C.1 2D DATA SET

In the following, we explain additional details of the evaluation examples. For the two dimensional
data set, we use the SDFs extracted from 2D simulations of a drop falling into a basin. As simulation
parameters we choose α1 to be the size of the drop, and α2 to be its initial x-position, as shown in
Fig. 13. From this simulation we extract a single frame at t = 30, which gives us a two-dimensional
parameter-space α = (α1, α2), where each instance of α has a corresponding two-dimensional
SDF. In order to train the networks described in section 3, we sample the parameter domain with a
regular 44 × 49 grid, which gives us 2156 training samples, of which we used 100 as a validation
set.

Fig. 14 shows the validation loss and the training loss over the iterations both for parameter learning
and for deformation learning. We observe that in both cases the learning process reduces the loss,
and finally converges to a stable solution. This value is lower in the case of deformation training,
which can be easily explained with the increased expressive capabilities of the deformation network.

17

Published as a conference paper at ICLR 2019

0 10000 20000 30000 40000
Training Iterations

0

1

2

3

4

5

Lo
ss

validation loss
training loss

(a) Parameter Learning

0 10000 20000 30000 40000
Training Iterations

0

1

2

3

4

5

Lo
ss

validation loss
training loss

(b) Deformation learning

Figure 14: Loss during training both for parameter learning and deformation learning. In yellow we
show the loss for the current sample, while the dark line displays the loss evaluated on the validation
set.

0 10000 20000 30000
Training Iterations

0

1

2

3

4

5

Lo
ss naive gradient

corrected gradient

Figure 15: Training with different gradient approximations: validation loss with a simplified advec-
tion (red), and the correct gradient from forward advection (green). The simplified version does not
converge.

We verified that the solution converged by continuing training for another 36000 steps, during which
the change of the solution was negligible.

As mentioned above, it might seem attractive to use a simpler approximation for the forward advec-
tion in Eq. (13), i.e., using a simpler, regular advection step. However, due to the strong non-linearity
of our setting, this prevents the network from converging, as shown in Fig. 15.

The effect of our deformation network approach is illustrated in Fig. 5. This figure compares our full
method (on the right) with several other algorithms. A different, but popular approach for non-linear
dimensionality reduction, which can be considered as an alternative to our method, is to construct a
reduced basis with PCA. Using the mean surface with four eigenvectors yields a similar reduction
to our method in terms of memory footprint. We additionally re-project the different reference
surfaces into the reduced basis to improve the reconstruction quality of the PCA version. However,
despite this the result is a very smooth surface that fails to capture any details of the behavior of the
parameter space, as can be seen in the left column of Fig. 5.

The next column of this figure (in pink) shows the surfaces obtained with the learned deformation
weights with our parameter network (Fig. 12 top), but without an additional deformation network.
As this case is based on end-point deformations, it cannot adapt to larger changes of surface structure
in the middle of the domain. In contrast, using our full pipeline with the deformation network yields
surfaces that adapt to the varying behavior in the interior of the parameter space, as shown on the
right side of Fig. 5. However, it is also apparent that the deformations generated by our approach
do not capture every detail of the references. The solution we retrieve is regularized by the varying
reference surfaces in small neighborhoods of α, and the networks learns an averaged behavior from
the inputs.

18

Published as a conference paper at ICLR 2019

NN, End-point defo. only With NN deformationReference only

debug note: frames 7, 19, 31

PCA reconstructionPrevious work [Thuerey’16]

Figure 16: Different example surfaces from the 2D parameter space of Fig. 13. From left to right:
surfaces reconstructed with PCA (purple), weighted deformations using a trained parameter network
(pink), the reference surfaces (brown), and on the far right the output of our full method with a
deformation network (teal). Note that none of the other methods is able to reconstruct both arms of
liquid in the first row, as well as the left sheet in the bottom row. The reference surfaces are shown
in light brown in the background for each version.

C.2 4D DATA SETS

Below we give additional details for our results for the 4D data sets and experiments presented in
the main document.

Liquid Drop As our first 4D test case, we chose a drop of liquid falling into a basin. As our
simulation parameters we chose the x- and y-coordinates of the initial drop position, as well as
the size of the drop. We typically assume that the z-axis points upwards. To generate the training
data, we sample the parameter space on a regular grid, and run simulations, each with a spatial
resolution of 1003 to generate a total of 1764 reference SDFs. Here, ψ0 contains a 4D SDF of a
large drop falling into the upper right corner of the basin. In Fig. 17 we show additional examples
how the introduction of the deformation network helps to represent the target surface across the full
parameter range.

The advantages of our approach also become apparent when comparing our method with a direct
interpolation of SDF data-sets, i.e., without any deformation. Our algorithms requires a single full-
resolution SDF, three half resolution deformations, and the neural network weights (ca. 53.5k).
While a single 404 SDF requires ca. 2.5m scalar values, all deformations and network weights
require ca. 2m scalars in total. Thus our representation encodes the full behavior with less storage
than two full SDFs. To illustrate this point, we show the result of a direct SDF interpolation in
Fig. 18. Here we sample the parameter space with 8 SDFs in total (at all corners of the 3D parameter
space). Hence, this version requires more than 4x the storage our approach requires. Despite the
additional memory, the direct interpolations of SDFs lead to very obvious, and undesirable artifacts.
The results shown on the right side of Fig. 18 neither represent the initial drop in (a), nor the resulting
splash in (b). Rather, the SDF interpolation leads to strong ghosting artifacts, and an overall loss of
detail. Instead of the single drop and splash that our method produces, it leads to four smoothed,
and repeated copies. Both the PCA example above, and this direct SDF interpolation illustrate the
usefulness of representing the target surface in terms of a learned deformation.

For the falling drop setup, our video also contains an additional example with a larger number of
14 pre-computed deformations. This illustrates the gains in quality that can be achieved via a larger
number of deformation fields. However, in this case the parameter and deformation network only
lead to negligible changes in the solution due to the closely matching surface from the pre-computed
deformations.

Stairs Our second test setup illustrates a different parameter space that captures a variety of obsta-
cle boundary conditions parametrized with α. Our first two simulation parameters are the heights of

19

Published as a conference paper at ICLR 2019

Figure 17: Additional examples of the influence of the deformation network for three different time
steps (t = 1, 4, 8 from top to bottom). Each pair shows the reference surface in transparent brown,
and in purple on the left the deformed surface after applying the precomputed deformations. These
surfaces often significantly deviate from the brown target, i.e. the visible purple regions indicates
misalignments. In cyan on the right, our final surfaces based on the inferred deformation field. These
deformed surface often match the target surface much more closely.

Our approach Direct SDF Interpolation

a) b) a) b)

Figure 18: Two frames generated with our approach (left) and with a direct SDF interpolation using
a similar amount of overall memory (right). The latter looses the inital drop shape (a), and removes
all splash detail (b). In addition, the direct SDF interpolation leads to strong ghosting artifacts with
four repeated patterns.

two stair-like steps, while the third parameter is controlling the position of a middle divider obstacle,
as illustrated in Fig. 19. The liquid flows in a U-shaped manner around the divider, down the steps.
For this setup, we use a higher overall resolution for both space-time SDFs, as well as for the output
of the deformation network. Performance details can be found in Table 1.

Fig. 20 depicts still frames captured from our mobile application for this setup. With this setup
the user can adjust stair heights and wall width dynamically, while deformations are computed in
the background. While this setup has more temporal coherence in its motion than the drop setup,
the changing obstacle boundary conditions lead to strongly differing streams over the steps of the
obstacle geometry. E.g., changing the position of the divider changes the flow from a narrow, fast
stream to a slow, broad front.

Table 1: Performance and setup details of our 4D data sets in the Android app measured on a
Samsung S8 device. The ”defo. align” step contains alignment and rescaling of the deformations.

SDF res. Defo. res. NN eval. Defo. align Rendering

Drop 404 204 69ms 21.5ms 21ms
Staris 504 254 410ms 70ms 35ms

20

Published as a conference paper at ICLR 2019

Table 2: Overview of our 2D and 4D simulation and machine learning setups. Timings were mea-
sured on a Xeon E5-1630 with 3.7GHz. Res, SDF and Defo denote resolutions for simulation, train-
ing, and the NN deformation, respectively; Sim and Train denote simulation and training runtimes.
sp, sd, γ1, γ2 denote training steps for parameters, training steps for deformation, and regularization
parameters, respectively.

Setup Res. SDF Defo. Sim. Train sp sd

2D setup, Fig. 13 1002 1002 252 - 186s 40k 10k
Drop, Fig. 8 1003 · 100 404 104 8.8m 22m 12k 2k
Stairs, Fig. 20 1103 · 110 504 154 9.7m 186m 9k 1k

Parameter 1 - raise corner Parameter 2 - lower platform Parameter 3 - wall width

Figure 19: The geometric setup of the three deformations of our stairs setup from 20 are illustrated
in this figure.

Figure 20: These screens illustrate our stairs setup running in our mobile application. From left to
right, the middle divider is pulled back, leading to an increased flow over the step in the back. In the
right-most image, the left corner starts to move up, leading to a new stream of liquid pouring down
into the outflow region in the right corner of the simulation domain.

21

	Introduction
	Related Work
	Learning Deformations
	Evaluation
	Additional Results with Implicit Surfaces in 4D
	Conclusions
	Deformation Alignment
	Learning Deformations
	Learning Deformation Weighting
	Learning to Generate Deformations

	Additional Evaluation
	2D Data Set
	4D Data Sets

