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ABSTRACT

This work presents a two-stage neural architecture for learning and refining struc-
tural correspondences between graphs. First, we use localized node embeddings
computed by a graph neural network to obtain an initial ranking of soft corre-
spondences between nodes. Secondly, we employ synchronous message passing
networks to iteratively re-rank the soft correspondences to reach a matching con-
sensus in local neighborhoods between graphs. We show, theoretically and em-
pirically, that our message passing scheme computes a well-founded measure of
consensus for corresponding neighborhoods, which is then used to guide the iter-
ative re-ranking process. Our purely local and sparsity-aware architecture scales
well to large, real-world inputs while still being able to recover global correspon-
dences consistently. We demonstrate the practical effectiveness of our method
on real-world tasks from the fields of computer vision and entity alignment be-
tween knowledge graphs, on which we improve upon the current state-of-the-
art. Our source code is available under https://github.com/rusty1s/
deep-graph-matching-consensus.

1 INTRODUCTION

Graph matching refers to the problem of establishing meaningful structural correspondences of
nodes between two or more graphs by taking both node similarities and pairwise edge similarities
into account (Wang et al., 2019b). Since graphs are natural representations for encoding relational
data, the problem of graph matching lies at the heart of many real-world applications. For exam-
ple, comparing molecules in cheminformatics (Kriege et al., 2019b), matching protein networks
in bioinformatics (Sharan & Ideker, 2006; Singh et al., 2008), linking user accounts in social net-
work analysis (Zhang & Philip, 2015), and tracking objects, matching 2D/3D shapes or recognizing
actions in computer vision (Vento & Foggia, 2012) can be formulated as a graph matching problem.

The problem of graph matching has been heavily investigated in theory (Grohe et al., 2018) and
practice (Conte et al., 2004), usually by relating it to domain-agnostic distances such as the graph
edit distance (Stauffer et al., 2017) and the maximum common subgraph problem (Bunke & Shearer,
1998), or by formulating it as a quadratic assignment problem (Yan et al., 2016). Since all three ap-
proaches are NP-hard, solving them to optimality may not be tractable for large-scale, real-world
instances. Moreover, these purely combinatorial approaches do not adapt to the given data distribu-
tion and often do not consider continuous node embeddings which can provide crucial information
about node semantics.

Recently, various neural architectures have been proposed to tackle the task of graph matching
(Zanfir & Sminchisescu, 2018; Wang et al., 2019b; Zhang & Lee, 2019; Xu et al., 2019d;b; Derr
et al., 2019; Zhang et al., 2019a; Heimann et al., 2018) or graph similarity (Bai et al., 2018; 2019;
Li et al., 2019) in a data-dependent fashion. However, these approaches are either only capable
of computing similarity scores between whole graphs (Bai et al., 2018; 2019; Li et al., 2019), rely
on an inefficient global matching procedure (Zanfir & Sminchisescu, 2018; Wang et al., 2019b; Xu
et al., 2019d; Li et al., 2019), or do not generalize to unseen graphs (Xu et al., 2019b; Derr et al.,
2019; Zhang et al., 2019a). Moreover, they might be prone to match neighborhoods between graphs
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inconsistently by only taking localized embeddings into account (Zanfir & Sminchisescu, 2018;
Wang et al., 2019b; Zhang & Lee, 2019; Xu et al., 2019d; Derr et al., 2019; Heimann et al., 2018).

Here, we propose a fully-differentiable graph matching procedure which aims to reach a data-driven
neighborhood consensus between matched node pairs without the need to solve any optimization
problem during inference. In addition, our approach is purely local, i.e., it operates on fixed-size
neighborhoods around nodes, and is sparsity-aware, i.e., it takes the sparsity of the underlying struc-
tures into account. Hence, our approach scales well to large input domains, and can be trained in
an end-to-end fashion to adapt to a given data distribution. Finally, our approach improves upon
the state-of-the-art on several real-world applications from the fields of computer vision and entity
alignment on knowledge graphs.

2 PROBLEM DEFINITION

A graph G = (V,A,X,E) consists of a finite set of nodes V = {1, 2, . . .}, an adjacency matrix
A ∈ {0, 1}|V|×|V|, a node feature matrix X ∈ R|V|×·, and an optional (sparse) edge feature matrix
E ∈ R|V|×|V|×·. For a subset of nodes S ⊆ V , G[S] = (S,AS,S ,XS,:,ES,S,:) denotes the
subgraph of G induced by S. We refer toNT (i) = {j ∈ V : d(i, j) ≤ T} as the T -hop neighborhood
around node i ∈ V , where d : V × V → N denotes the shortest-path distance in G. A node coloring
is a function V → Σ with arbitrary codomain Σ.

The problem of graph matching refers to establishing node correspondences between two graphs.
Formally, we are given two graphs, a source graph Gs = (Vs,As,Xs,Es) and a target graph
Gt = (Vt,At,Xt,Et), w.l.o.g. |Vs| ≤ |Vt|, and are interested in finding a correspondence matrix
S ∈ {0, 1}|Vs|×|Vt| which minimizes an objective subject to the one-to-one mapping constraints∑
j∈Vt Si,j = 1 ∀i ∈ Vs and

∑
i∈Vs Si,j ≤ 1 ∀j ∈ Vt. As a result, S infers an injective mapping

π : Vs → Vt which maps each node in Gs to a node in Gt.
Typically, graph matching is formulated as an edge-preserving, quadratic assignment problem
(Anstreicher, 2003; Gold & Rangarajan, 1996; Caetano et al., 2009; Cho et al., 2013), i.e.,

argmax
S

∑
i,i′∈Vs
j,j′∈Vt

A
(s)
i,i′A

(t)
j,j′Si,jSi′,j′ (1)

subject to the one-to-one mapping constraints mentioned above. This formulation is based on the
intuition of finding correspondences based on neighborhood consensus (Rocco et al., 2018), which
shall prevent adjacent nodes in the source graph from being mapped to different regions in the target
graph. Formally, a neighborhood consensus is reached if for all node pairs (i, j) ∈ Vs × Vt with
Si,j = 1, it holds that for every node i′ ∈ N1(i) there exists a node j′ ∈ N1(j) such that Si′,j′ = 1.

In this work, we consider the problem of supervised and semi-supervised matching of graphs while
employing the intuition of neighborhood consensus as an inductive bias into our model. In the
supervised setting, we are given pair-wise ground-truth correspondences for a set of graphs and
want our model to generalize to unseen graph pairs. In the semi-supervised setting, source and
target graphs are fixed, and ground-truth correspondences are only given for a small subset of nodes.
However, we are allowed to make use of the complete graph structures.

3 METHODOLOGY

In the following, we describe our proposed end-to-end, deep graph matching architecture in de-
tail. See Figure 1 for a high-level illustration. The method consists of two stages: a local feature
matching procedure followed by an iterative refinement strategy using synchronous message passing
networks. The aim of the feature matching step, see Section 3.1, is to compute initial correspondence
scores based on the similarity of local node embeddings. The second step is an iterative refinement
strategy, see Sections 3.2 and 3.3, which aims to reach neighborhood consensus for correspondences
using a differentiable validator for graph isomorphism. Finally, in Section 3.4, we show how to scale
our method to large, real-world inputs.
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Figure 1: High-level illustration of our two-stage neighborhood consensus architecture. Node fea-
tures are first locally matched based on a graph neural network Ψθ1 , before their correspondence
scores get iteratively refined based on neighborhood consensus. Here, an injective node coloring of
Gs is transferred to Gt via S, and distributed by Ψθ2 on both graphs. Updates on S are performed
by a neural network Φθ3 based on pair-wise color differences.

3.1 LOCAL FEATURE MATCHING

We model our local feature matching procedure in close analogy to related approaches (Bai
et al., 2018; 2019; Wang et al., 2019b; Zhang & Lee, 2019; Wang & Solomon, 2019) by com-
puting similarities between nodes in the source graph Gs and the target graph Gt based on node
embeddings. That is, given latent node embeddings Hs = Ψθ1(Xs,As,Es) ∈ R|Vs|×· and
Ht = Ψθ1(Xt,At,Et) ∈ R|Vt|×· computed by a shared neural network Ψθ1 for source graph
Gs and target graph Gt, respectively, we obtain initial soft correspondences as

S(0) = sinkhorn(Ŝ(0)) ∈ [0, 1]
|Vs|×|Vt| with Ŝ(0) = HsH

>
t ∈ R|Vs|×|Vt|.

Here, sinkhorn normalization is applied to obtain rectangular doubly-stochastic correspondence
matrices that fulfill the constraints

∑
j∈Vt Si,j = 1 ∀i ∈ Vs and

∑
i∈Vs Si,j ≤ 1 ∀j ∈ Vt (Sinkhorn

& Knopp, 1967; Adams & Zemel, 2011; Cour et al., 2006).

We interpret the i-th row vector S(0)
i,: ∈ [0, 1]

|Vt| as a discrete distribution over potential correspon-
dences in Gt for each node i ∈ Vs. We train Ψθ1 in a dicriminative, supervised fashion against
ground truth correspondences πgt(·) by minimizing the negative log-likelihood of correct correspon-
dence scores L (initial) = −∑i∈Vs log(S

(0)
i,πgt(i)

).

We implement Ψθ1 as a Graph Neural Network (GNN) to obtain localized, permutation equivariant
vectorial node representations (Bronstein et al., 2017; Hamilton et al., 2017; Battaglia et al., 2018;
Goyal & Ferrara, 2018). Formally, a GNN follows a neural message passing scheme (Gilmer et al.,
2017) and updates its node features ~h(t−1)i in layer t by aggregating localized information via

~a
(t)
i = AGGREGATE(t)

({{(
~h
(t−1)
j , ~ej,i

)
: j ∈ N1(i)

}})
, ~h

(t)
i = UPDATE(t)

(
~h
(t−1)
i ,~a

(t)
i

)
(2)

where ~h(0)i = ~xi ∈ X and {{. . .}} denotes a multiset. The recent work in the fields of geometric
deep learning and relational representation learning provides a large number of operators to choose
from (Kipf & Welling, 2017; Gilmer et al., 2017; Veličković et al., 2018; Schlichtkrull et al., 2018;
Xu et al., 2019c), which allows for precise control of the properties of extracted features.

3.2 SYNCHRONOUS MESSAGE PASSING FOR NEIGHBORHOOD CONSENSUS

Due to the purely local nature of the used node embeddings, our feature matching procedure is prone
to finding false correspondences which are locally similar to the correct one. Formally, those cases
pose a violation of the neighborhood consensus criteria employed in Equation (1). Since finding a

3



Published as a conference paper at ICLR 2020

global optimum is NP-hard, we aim to detect violations of the criteria in local neighborhoods and
resolve them in an iterative fashion.

We utilize graph neural networks to detect these violations in a neighborhood consensus step and
iteratively refine correspondences S(l), l ∈ {0, . . . , L}, starting from S(0). Key to the proposed
algorithm is the following observation: The soft correspondence matrix S ∈ [0, 1]

|Vs|×|Vt| is a map
from the node function space L(Gs) = L(R|Vs|) to the node function space L(Gt) = L(R|Vt|).
Therefore, we can use S to pass node functions ~xs ∈ L(Gs), ~xt ∈ L(Gt) along the soft correspon-
dences by

~x ′t = S>~xs and ~x ′s = S~xt (3)
to obtain functions ~x ′t ∈ L(Gt), ~x ′s ∈ L(Gs) in the other domain, respectively.

Then, our consensus method works as follows: Using S(l), we first map node indicator functions,
given as an injective node coloring Vs → {0, 1}|Vs| in the form of an identity matrix I|Vs|, from Gs
to Gt. Then, we distribute this coloring in corresponding neighborhoods by performing synchronous
message passing on both graphs via a shared graph neural network Ψθ2 , i.e.,

Os = Ψθ2(I|Vs|,As,Es) and Ot = Ψθ2(S>(l)I|Vs|,At,Et). (4)

We can compare the results of both GNNs to recover a vector ~di,j = ~o
(s)
i −~o

(t)
j which measures the

neighborhood consensus between node pairs (i, j) ∈ Vs ×Vt. This measure can be used to perform
trainable updates of the correspondence scores

S
(l+1)
i,j = sinkhorn(Ŝ(l+1))i,j with Ŝ

(l+1)
i,j = Ŝ

(l)
i,j + Φθ3(~dj,i) (5)

based on an MLP Φθ3 . The process can be applied L times to iteratively improve the consensus in
neighborhoods. The final objective L = L (initial) + L (refined) with L (refined) = −∑i∈Vs log(S

(L)
i,πgt(i)

)

combines both the feature matching error and neighborhood consensus error. This objective is fully-
differentiable and can hence be optimized in an end-to-end fashion using stochastic gradient de-
scent. Overall, the consensus stage distributes global node colorings to resolve ambiguities and
false matchings made in the first stage of our architecture by only using purely local operators.
Since an initial matching is needed to test for neighborhood consensus, this task cannot be fulfilled
by Ψθ1 alone, which stresses the importance of our two-stage approach.

The following two theorems show that ~di,j is a good measure of how well local neighborhoods
around i and j are matched by the soft correspondence between Gs and Gt. The proofs can be found
in Appendix B and C, respectively.
Theorem 1. Let Gs and Gt be two isomorphic graphs and let Ψθ2 be a permutation equivariant
GNN, i.e., P>Ψθ2(X,A) = Ψθ2(P>X,P>AP ) for any permutation matrix P ∈ {0, 1}|V|×|V|.
If S ∈ {0, 1}|Vs|×|Vt| encodes an isomorphism between Gs and Gt, then ~di,π(i) = ~0 for all i ∈ Vs.
Theorem 2. Let Gs and Gt be two graphs and let Ψθ2 be a permutation equivariant and T -layered
GNN for which both AGGREGATE(t) and UPDATE(t) are injective for all t ∈ {1, . . . , T}. If ~di,j = ~0,
then the resulting submatrix SNT (i),NT (j) ∈ [0, 1]

|NT (i)|×|NT (j)| is a permutation matrix describing
an isomorphism between the T -hop subgraph Gs[NT (i)] around i ∈ Vs and the T -hop subgraph
Gt[NT (j)] around j ∈ Vt. Moreover, if ~di,argmaxSi,:

= ~0 for all i ∈ Vs, then S denotes a full
isomorphism between Gs and Gt.
Hence, a GNN Ψθ2 that satisfies both criteria in Theorem 1 and 2 provides equal node embeddings
~o

(s)
i and ~o (t)

j if and only if nodes in a local neighborhood are correctly matched to each other. A
value ~di,j 6= ~0 indicates the existence of inconsistent matchings in the local neighborhoods around i
and j, and can hence be used to refine the correspondence score Ŝi,j .

Note that both requirements, permutation equivariance and injectivity, are easily fulfilled: (1) All
common graph neural network architectures following the message passing scheme of Equation (2)
are equivariant due to the use of permutation invariant neighborhood aggregators. (2) Injectivity of
graph neural networks is a heavily discussed topic in recent literature. It can be fulfilled by using a
GNN that is as powerful as the Weisfeiler & Lehman (1968) (WL) heuristic in distinguishing graph
structures, e.g., by using sum aggregation in combination with MLPs on the multiset of neighboring
node features, cf. (Xu et al., 2019c; Morris et al., 2019).
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3.3 RELATION TO THE GRADUATED ASSIGNMENT ALGORITHM

Theoretically, we can relate our proposed approach to classical graph matching techniques that con-
sider a doubly-stochastic relaxation of the problem defined in Equation (1), cf. (Lyzinski et al.,
2016) and Appendix F for more details. A seminal work following this method is the graduated as-
signment algorithm (Gold & Rangarajan, 1996). By starting from an initial feasible solution S(0), a
new solution S(l+1) is iteratively computed from S(l) by approximately solving a linear assignment
problem according to

S(l+1) ← softassign
S

∑
i∈Vs

∑
j∈Vt

Qi,jSi,j with Qi,j = 2
∑
i′∈Vs

∑
j′∈Vt

A
(s)
i,i′A

(t)
j,j′S

(l)
i′,j′ (6)

where Q denotes the gradient of Equation (1) at S(l).1 The softassign operator is implemented by
applying sinkhorn normalization on rescaled inputs, where the scaling factor grows in every itera-
tion to increasingly encourage integer solutions. Our approach also resembles the approximation of
the linear assignment problem via sinkhorn normalization.

Moreover, the gradient Q is closely related to our neighborhood consensus scheme for the particular
simple, non-trainable GNN instantiation Ψ(X,A,E) = AX . Given Os = AsI|Vs| = As and
Ot = AtS

>I|Vs| = AtS
>, we obtain Q = 2OsO

>
t by substitution. Instead of updating S(l)

based on the similarity between Os and Ot obtained from a fixed-function GNN Ψ, we choose to
update correspondence scores via trainable neural networks Ψθ2 and Φθ3 based on the difference
between Os and Ot. This allows us to interpret our model as a deep parameterized generalization
of the graduated assignment algorithm. In addition, specifying node and edge attribute similarities
in graph matching is often difficult and complicates its computation (Zhou & De la Torre, 2016;
Zhang et al., 2019c), whereas our approach naturally supports continuous node and edge features via
established GNN models. We experimentally verify the benefits of using trainable neural networks
Ψθ2 instead of Ψ(X,A,E) = AX in Appendix D.

3.4 SCALING TO LARGE INPUT

We apply a number of optimizations to our proposed algorithm to make it scale to large input do-
mains. See Algorithm 1 in Appendix A for the final optimized algorithm.

Sparse correspondences. We propose to sparsify initial correspondences S(0) by filtering out
low score correspondences before neighborhood consensus takes place. That is, we sparsify S(0) by
computing top k correspondences with the help of the KEOPS library (Charlier et al., 2019) without
ever storing its dense version, reducing its required memory footprint fromO(|Vs||Vt|) toO(k|Vs|).
In addition, the time complexity of the refinement phase is reduced from O(|Vs||Vt| + |Es| + |Et|)
toO(k|Vs|+ |Es|+ |Et|), where |Es| and |Et| denote the number of edges in Gs and Gt, respectively.
Note that sparsifying initial correspondences assumes that the feature matching procedure ranks the
correct correspondence within the top k elements for each node i ∈ Vs. Hence, also optimizing
the initial feature matching loss L (initial) is crucial, and can be further accelerated by training only
against sparsified correspondences with ground-truth entries topk(S

(0)
i,: ) ∪ {S(0)

i,πgt(i)
}.

Replacing node indicators functions. Although applying Ψθ2 on node indicator functions I|Vs|
is computationally efficient, it requires a parameter complexity of O(|Vs|). Hence, we propose
to replace node indicator functions I|Vs| with randomly drawn node functions R

(l)
s ∼ N (0, 1),

where R
(l)
s ∈ R|Vs|×r with r � |Vs|, in iteration l. By sampling from a continuous distribution,

node indicator functions are still guaranteed to be injective (DeGroot & Schervish, 2012). Note
that Theorem 1 still holds because it does not impose any restrictions on the function space L(Gs).
Theorem 2 does not necessarily hold anymore, but we expect our refinement strategy to resolve any
ambiguities by re-sampling R

(l)
s in every iteration l. We verify this empirically in Section 4.1.

1For clarity of presentation, we closely follow the original formulation of the method for simple graphs but
ignore the edge similarities and adapt the constant factor of the gradient according to our objective function.
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Softmax normalization. The sinkhorn normalization fulfills the requirements of rectangular
doubly-stochastic solutions. However, it may eventually push correspondences to inconsistent in-
teger solutions very early on from which the neighborhood consensus method cannot effectively
recover. Furthermore, it is inherently inefficient to compute and runs the risk of vanishing gradi-
ents ∂S(l)/∂Ŝ(l) (Zhang et al., 2019b). Here, we propose to relax this constraint by only applying
row-wise softmax normalization on Ŝ(l), and expect our supervised refinement procedure to nat-
urally resolve violations of

∑
i∈Vs Si,j ≤ 1 on its own by re-ranking false correspondences via

neighborhood consensus. Experimentally, we show that row-wise normalization is sufficient for our
algorithm to converge to the correct solution, cf. Section 4.1.

Number of refinement iterations. Instead of holding L fixed, we propose to differ the number of
refinement iterations L(train) and L(test), L(train) � L(test), for training and testing, respectively. This
does not only speed up training runtime, but it also encourages the refinement procedure to reach
convergence with as few steps as necessary while we can run the refinement procedure until conver-
gence during testing. We show empirically that decreasing L(train) does not affect the convergence
abilities of our neighborhood consensus procedure during testing, cf. Section 4.1.

4 EXPERIMENTS

We verify our method on three different tasks. We first show the benefits of our approach in an abla-
tion study on synthetic graphs (Section 4.1), and apply it to the real-world tasks of supervised key-
point matching in natural images (Sections 4.2 and 4.3) and semi-supervised cross-lingual knowl-
edge graph alignment (Section 4.4) afterwards. All dataset statistics can be found in Appendix H.

Our method is implemented in PYTORCH (Paszke et al., 2017) using the PYTORCH GEOMETRIC
(Fey & Lenssen, 2019) and the KEOPS (Charlier et al., 2019) libraries. Our implementation can
process sparse mini-batches with parallel GPU acceleration and minimal memory footprint in all
algorithm steps. For all experiments, optimization is done via ADAM (Kingma & Ba, 2015) with
a fixed learning rate of 10−3. We use similar architectures for Ψθ1 and Ψθ2 except that we omit
dropout (Srivastava et al., 2014) in Ψθ2 . For all experiments, we report Hits@k to evaluate and
compare our model to previous lines of work, where Hits@k measures the proportion of correctly
matched entities ranked in the top k.

4.1 ABLATION STUDY ON SYNTHETIC GRAPHS

In our first experiment, we evaluate our method on synthetic graphs where we aim to learn a match-
ing for pairs of graphs in a supervised fashion. Each pair of graphs consists of an undirected Erdős
& Rényi (1959) graph Gs with |Vs| ∈ {50, 100} nodes and edge probability p ∈ {0.1, 0.2}, and a
target graph Gt which is constructed from Gs by removing edges with probability ps without dis-
connecting any nodes (Heimann et al., 2018). Training and evaluation is done on 1 000 graphs each
for different configurations ps ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. In Appendix E, we perform additional
experiments to also verify the robustness of our approach towards node addition or removal.

Architecture and parameters. We implement the graph neural network operators Ψθ1 and Ψθ2
by stacking three layers (T = 3) of the GIN operator (Xu et al., 2019c)

~h
(t+1)
i = MLP(t+1)

((
1 + ε(t+1)

)
· ~h(t)i +

∑
j→i

~h
(t)
j

)
(7)

due to its expressiveness in distinguishing raw graph structures. The number of layers and hidden
dimensionality of all MLPs is set to 2 and 32, respectively, and we apply ReLU activation (Glorot
et al., 2011) and Batch normalization (Ioffe & Szegedy, 2015) after each of its layers. Input features
are initialized with one-hot encodings of node degrees. We employ a Jumping Knowledge style
concatenation ~hi = W [~h

(1)
i , . . . ,~h

(T )
i ] (Xu et al., 2018) to compute final node representations ~hi.

We train and test our procedure with L(train) = 10 and L(test) = 20 refinement iterations, respectively.

Results. Figures 2(a) and 2(b) show the matching accuracy Hits@1 for different choices of |Vs|
and p. We observe that the purely local matching approach via softmax(Ŝ(0)) starts decreasing in
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Figure 2: The performance of our method on synthetic data with structural noise.

performance with the structural noise ps increasing. This also holds when applying global sinkhorn

normalization on Ŝ(0). However, our proposed two-stage architecture can recover all correspon-
dences, independent of the applied structural noise ps. This applies to both variants discussed in the
previous sections, i.e., our initial formulation sinkhorn(Ŝ(L)), and our optimized architecture using
random node indicator sampling and row-wise normalization softmax(Ŝ(L)). This highlights the
overall benefits of applying matching consensus and justifies the usage of the enhancements made
towards scalability in Section 3.4.

In addition, Figure 2(c) visualizes the test error L (refined) for varying number of iterations L(test).
We observe that even when training to non-convergence, our procedure is still able to converge by
increasing the number of iterations L(test) during testing.

Moreover, Figure 2(d) shows the performance of our refinement strategy when operating on spar-
sified top k correspondences. In contrast to its dense version, it cannot match all nodes correctly
due to the poor initial feature matching quality. However, it consistently converges to the perfect
solution of Hits@1 ≈ Hits@k in case the correct match is included in the initial top k ranking of
correspondences. Hence, with increasing k, we can recover most of the correct correspondences,
making it an excellent option to scale our algorithm to large graphs, cf. Section 4.4.

4.2 SUPERVISED KEYPOINT MATCHING IN NATURAL IMAGES

We perform experiments on the PASCALVOC (Everingham et al., 2010) with Berkeley annotations
(Bourdev & Malik, 2009) and WILLOW-OBJECTCLASS (Cho et al., 2013) datasets which contain
sets of image categories with labeled keypoint locations. For PASCALVOC, we follow the exper-
imental setups of Zanfir & Sminchisescu (2018) and Wang et al. (2019b) and use the training and
test splits provided by Choy et al. (2016). We pre-filter the dataset to exclude difficult, occluded
and truncated objects, and require examples to have at least one keypoint, resulting in 6 953 and
1 671 annotated images for training and testing, respectively. The PASCALVOC dataset contains
instances of varying scale, pose and illumination, and the number of keypoints ranges from 1 to
19. In contrast, the WILLOW-OBJECTCLASS dataset contains at least 40 images with consistent
orientations for each of its five categories, and each image consists of exactly 10 keypoints. Fol-
lowing the experimental setup of peer methods (Cho et al., 2013; Wang et al., 2019b), we pre-train
our model on PASCALVOC and fine-tune it over 20 random splits with 20 per-class images used for
training. We construct graphs via the Delaunay triangulation of keypoints. For fair comparison with
Zanfir & Sminchisescu (2018) and Wang et al. (2019b), input features of keypoints are given by the
concatenated output of relu4 2 and relu5 1 of a pre-trained VGG16 (Simonyan & Zisserman,
2014) on IMAGENET (Deng et al., 2009).

Architecture and parameters. We adopt SPLINECNN (Fey et al., 2018) as our graph neural
network operator

~h
(t+1)
i = σ

(
W (t+1)~h

(t)
i +

∑
j→i

Φ
(t+1)
θ (~ej,i) · ~h(t)j

)
(8)

whose trainable B-spline based kernel function Φθ(·) is conditioned on edge features ~ej,i between
node-pairs. To align our results with the related work, we evaluate both isotropic and anisotropic
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Table 1: Hits@1 (%) on the PASCALVOC dataset with Berkeley keypoint annotations.
Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse M-Bike Person Plant Sheep Sofa Train TV Mean

GMN 31.1 46.2 58.2 45.9 70.6 76.5 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9
PCA-GM 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 66.5 63.6 61.3 58.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8

Ψθ1 = MLP
isotropic

L = 0 34.7 42.6 41.5 50.4 50.3 72.2 60.1 59.4 24.6 38.1 86.2 47.7 56.3 37.6 35.4 58.0 45.8 74.8 64.1 75.3 52.8
L = 10 45.8 58.2 45.5 57.6 68.2 82.1 75.3 60.2 31.7 52.9 88.2 56.2 68.2 50.7 46.5 66.3 58.8 89.0 85.1 79.9 63.3
L = 20 45.3 57.1 54.9 54.7 71.7 82.6 75.3 65.9 31.6 50.8 86.1 56.9 67.1 53.1 49.2 77.3 59.2 91.7 82.0 84.2 64.8

Ψθ1 = GNN
isotropic

L = 0 44.3 62.0 48.4 53.9 73.3 80.4 72.2 64.2 30.3 52.7 79.4 56.6 62.3 56.2 47.5 74.0 59.8 79.9 81.9 83.0 63.1
L = 10 46.5 63.7 54.9 60.9 79.4 84.1 76.4 68.3 38.5 61.5 80.6 59.7 69.8 58.4 54.3 76.4 64.5 95.7 87.9 81.3 68.1
L = 20 50.1 65.4 55.7 65.3 80.0 83.5 78.3 69.7 34.7 60.7 70.4 59.9 70.0 62.2 56.1 80.2 70.3 88.8 81.1 84.3 68.3

Ψθ1 = MLP
anisotropic

L = 0 34.3 45.9 37.3 47.7 53.3 75.2 64.5 61.7 27.7 40.5 85.9 46.6 50.2 39.0 37.3 58.0 49.2 82.9 65.0 74.2 53.8
L = 10 44.6 51.2 50.7 58.5 72.3 83.3 76.6 65.6 31.0 57.5 91.7 55.4 69.5 56.2 47.5 85.1 57.9 92.3 86.7 85.9 66.0
L = 20 48.7 57.2 47.0 65.3 73.9 87.6 76.7 70.0 30.0 55.5 92.8 59.5 67.9 56.9 48.7 87.2 58.3 94.9 87.9 86.0 67.6

Ψθ1 = GNN
anisotropic

L = 0 42.1 57.5 49.6 59.4 83.8 84.0 78.4 67.5 37.3 60.4 85.0 58.0 66.0 54.1 52.6 93.9 60.2 85.6 87.8 82.5 67.3
L = 10 45.5 67.6 56.5 66.8 86.9 85.2 84.2 73.0 43.6 66.0 92.3 64.0 79.8 56.6 56.1 95.4 64.4 95.0 91.3 86.3 72.8
L = 20 47.0 65.7 56.8 67.6 86.9 87.7 85.3 72.6 42.9 69.1 84.5 63.8 78.1 55.6 58.4 98.0 68.4 92.2 94.5 85.5 73.0

Table 2: Hits@1 (%) with standard deviations on the WILLOW-OBJECTCLASS dataset.
Method Face Motorbike Car Duck Winebottle

GMN (Zanfir & Sminchisescu, 2018) 99.3 71.4 74.3 82.8 76.7
PCA-GM (Wang et al., 2019b) 100.0 76.7 84.0 93.5 96.9

Ψθ1 = MLP isotropic
L = 0 98.07 ± 0.79 48.97 ± 4.62 65.30 ± 3.16 66.02 ± 2.51 77.72 ± 3.32
L = 10 100.00 ± 0.00 67.28 ± 4.93 85.07 ± 3.93 83.10 ± 3.61 92.30 ± 2.11
L = 20 100.00 ± 0.00 68.57 ± 3.94 82.75 ± 5.77 84.18 ± 4.15 90.36 ± 2.42

Ψθ1 = GNN isotropic
L = 0 99.62 ± 0.28 73.47 ± 3.32 77.47 ± 4.92 77.10 ± 3.25 88.04 ± 1.38
L = 10 100.00 ± 0.00 92.05 ± 3.49 90.05 ± 5.10 88.98 ± 2.75 97.14 ± 1.41
L = 20 100.00 ± 0.00 92.05 ± 3.24 90.28 ± 4.67 88.97 ± 3.49 97.14 ± 1.83

Ψθ1 = MLP anisotropic
L = 0 98.47 ± 0.61 49.28 ± 4.31 64.95 ± 3.52 66.17 ± 4.08 78.08 ± 2.61
L = 10 100.00 ± 0.00 76.28 ± 4.77 86.70 ± 3.25 83.22 ± 3.52 93.65 ± 1.64
L = 20 100.00 ± 0.00 76.57 ± 5.28 89.00 ± 3.88 84.78 ± 2.73 95.29 ± 2.22

Ψθ1 = GNN anisotropic
L = 0 99.96 ± 0.06 91.90 ± 2.30 91.28 ± 4.89 86.58 ± 2.99 98.25 ± 0.71
L = 10 100.00 ± 0.00 98.80 ± 1.58 96.53 ± 1.55 93.22 ± 3.77 99.87 ± 0.31
L = 20 100.00 ± 0.00 99.40 ± 0.80 95.53 ± 2.93 93.00 ± 2.71 99.39 ± 0.70

edge features which are given as normalized relative distances and 2D Cartesian coordinates, re-
spectively. For SPLINECNN, we use a kernel size of 5 in each dimension, a hidden dimensionality
of 256, and apply ReLU as our non-linearity function σ. Our network architecture consists of two
convolutional layers (T = 2), followed by dropout with probability 0.5, and a final linear layer. Dur-
ing training, we form pairs between any two training examples of the same category, and evaluate
our model by sampling a fixed number of test graph pairs belonging to the same category.

Results. We follow the experimental setup of Wang et al. (2019b) and train our models using nega-
tive log-likelihood due to its superior performance in contrast to the displacement loss used in Zanfir
& Sminchisescu (2018). We evaluate our complete architecture using isotropic and anisotropic
GNNs for L ∈ {0, 10, 20}, and include ablation results obtained from using Ψθ1 = MLP for the
local node matching procedure. Results of Hits@1 are shown in Table 1 and 2 for PASCALVOC
and WILLOW-OBJECTCLASS, respectively. We visualize qualitative results of our method in Ap-
pendix I.

We observe that our refinement strategy is able to significantly outperform competing methods as
well as our non-refined baselines. On the WILLOW-OBJECTCLASS dataset, our refinement stage
at least reduces the error of the initial model (L = 0) by half across all categories. The benefits
of the second stage are even more crucial when starting from a weaker initial feature matching
baseline (Ψθ1 = MLP), with overall improvements of up to 14 percentage points on PASCALVOC.
However, good initial matchings do help our consensus stage to improve its performance further, as
indicated by the usage of task-specific isotropic or anisotropic GNNs for Ψθ1 .
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Table 3: Hits@1 (%) on the PASCALPF dataset using a synthetic training setup.
Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse M-Bike Person Plant Sheep Sofa Train TV Mean

(Zhang & Lee, 2019) 76.1 89.8 93.4 96.4 96.2 97.1 94.6 82.8 89.3 96.7 89.7 79.5 82.6 83.5 72.8 76.7 77.1 97.3 98.2 99.5 88.5

Ours
L = 0 69.2 87.7 77.3 90.4 98.7 98.3 92.5 91.6 94.7 79.4 95.8 90.1 80.0 79.5 72.5 98.0 76.5 89.6 93.4 97.8 87.6
L = 10 81.3 92.2 94.2 98.8 99.3 99.1 98.6 98.2 99.6 94.1 100.0 99.4 86.6 86.6 88.7 100.0 100.0 100.0 100.0 99.3 95.8
L = 20 81.1 92.0 94.7 100.0 99.3 99.3 98.9 97.3 99.4 93.4 100.0 99.1 86.3 86.2 87.7 100.0 100.0 100.0 100.0 99.3 95.7

4.3 SUPERVISED GEOMETRIC KEYPOINT MATCHING

We also verify our approach by tackling the geometric feature matching problem, where we only
make use of point coordinates and no additional visual features are available. Here, we follow
the experimental training setup of Zhang & Lee (2019), and test the generalization capabilities of
our model on the PASCALPF dataset (Ham et al., 2016). For training, we generate a synthetic set
of graph pairs: We first randomly sample 30–60 source points uniformly from [−1, 1]

2, and add
Gaussian noise from N (0, 0.052) to these points to obtain the target points. Furthermore, we add
0–20 outliers from [−1.5, 1.5]

2 to each point cloud. Finally, we construct graphs by connecting each
node with its k-nearest neighbors (k = 8). We train our unmodified anisotropic keypoint architecture
from Section 4.2 with input ~xi = ~1 ∈ R1 ∀i ∈ Vs ∪ Vt until it has seen 32 000 synthetic examples.

Results. We evaluate our trained model on the PASCALPF dataset (Ham et al., 2016) which con-
sists of 1 351 image pairs within 20 classes, with the number of keypoints ranging from 4 to 17.
Results of Hits@1 are shown in Table 3. Overall, our consensus architecture improves upon the
state-of-the-art results of Zhang & Lee (2019) on almost all categories while our L = 0 baseline
is weaker than the results reported in Zhang & Lee (2019), showing the benefits of applying our
consensus stage. In addition, it shows that our method works also well even when not taking any
visual information into account.

4.4 SEMI-SUPERVISED CROSS-LINGUAL KNOWLEDGE GRAPH ALIGNMENT

We evaluate our model on the DBP15K datasets (Sun et al., 2017) which link entities of the Chi-
nese, Japanese and French knowledge graphs of DBPEDIA into the English version and vice versa.
Each dataset contains exactly 15 000 links between equivalent entities, and we split those links into
training and testing following upon previous works. For obtaining entity input features, we fol-
low the experimental setup of Xu et al. (2019d): We retrieve monolingual FASTTEXT embeddings
(Bojanowski et al., 2017) for each language separately, and align those into the same vector space
afterwards (Lample et al., 2018). We use the sum of word embeddings as the final entity input
representation (although more sophisticated approaches are just as conceivable).

Architecture and parameters. Our graph neural network operator mostly matches the one pro-
posed in Xu et al. (2019d) where the direction of edges is retained, but not their specific relation
type:

~h
(t+1)
i = σ

(
W

(t+1)
1

~h
(t)
i +

∑
j→i

W
(t+1)
2

~h
(t)
j +

∑
i→j

W
(t+1)
3

~h
(t)
j

)
(9)

We use ReLU followed by dropout with probability 0.5 as our non-linearity σ, and obtain final node
representations via ~hi = W4[~h

(1)
i , . . . ,~h

(T )
i ]. We use a three-layer GNN (T = 3) both for obtaining

initial similarities and for refining alignments with dimensionality 256 and 32, respectively. Training
is performed using negative log likelihood in a semi-supervised fashion: For each training node i in
Vs, we train L (initial) sparsely by using the corresponding ground-truth node in Vt, the top k = 10
entries in Si,: and k randomly sampled entities in Vt. For the refinement phase, we update the sparse
top k correspondence matrix L = 10 times. For efficiency reasons, we train L (initial) and L (refined)

sequentially for 100 epochs each.

Results. We report Hits@1 and Hits@10 to evaluate and compare our model to previous lines of
work, see Table 4. In addition, we report results of a simple three-layer MLP which matches nodes
purely based on initial word embeddings, and a variant of our model without the refinement of initial
correspondences (L = 0). Our approach improves upon the state-of-the-art on all categories with

9



Published as a conference paper at ICLR 2020

Table 4: Hits@1 (%) and Hits@10 (%) on the DBP15K dataset.

Method ZH→EN EN→ZH JA→EN EN→JA FR→EN EN→FR
@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

GCN (Wang et al., 2018) 41.25 74.38 36.49 69.94 39.91 74.46 38.42 71.81 37.29 74.49 36.77 73.06
BOOTEA (Sun et al., 2018) 62.94 84.75 62.23 85.39 65.30 87.44
MUGNN (Cao et al., 2019) 49.40 84.40 50.10 85.70 49.60 87.00
NAEA (Zhu et al., 2019) 65.01 86.73 64.14 87.27 67.32 89.43
RDGCN (Wu et al., 2019) 70.75 84.55 76.74 89.54 88.64 95.72
GMNN (Xu et al., 2019d) 67.93 78.48 65.28 79.64 73.97 87.15 71.29 84.63 89.38 95.25 88.18 94.75

Ψθ1 = MLP L = 0 58.53 78.04 54.99 74.25 59.18 79.16 55.40 75.53 76.07 91.54 74.89 90.57

Ours (sparse) L = 0 67.59 87.47 64.38 83.56 71.95 89.74 68.88 86.84 83.36 96.03 82.16 95.28
L = 10 80.12 87.47 76.77 83.56 84.80 89.74 81.09 86.84 93.34 96.03 91.95 95.28

gains of up to 9.38 percentage points. In addition, our refinement strategy consistently improves
upon the Hits@1 of initial correspondences by a significant margin, while results of Hits@10 are
shared due to the refinement operating only on sparsified top 10 initial correspondences. Due to
the scalability of our approach, we can easily apply a multitude of refinement iterations while still
retaining large hidden feature dimensionalities.

5 LIMITATIONS

Our experimental results demonstrate that the proposed approach effectively solves challenging real-
world problems. However, the expressive power of GNNs is closely related to the WL heuristic for
graph isomorphism testing (Xu et al., 2019c; Morris et al., 2019), whose power and limitations are
well understood (Arvind et al., 2015). Our method generally inherits these limitations. Hence, one
possible limitation is that whenever two nodes are assigned the same color by WL, our approach
may fail to converge to one of the possible solutions. For example, there may exist two nodes
i, j ∈ Vt with equal neighborhood setsN1(i) = N1(j). One can easily see that the feature matching
procedure generates equal initial correspondence distributions S

(0)
:,i = S

(0)
:,j , resulting in the same

mapped node indicator functions I>|Vs|S
(0)
:,i = I>|Vs|S

(0)
:,j from Gs to nodes i and j, respectively.

Since both nodes share the same neighborhood, Ψθ2 also produces the same distributed functions
~o

(t)
i = ~o

(t)
j . As a result, both column vectors Ŝ

(l)
:,i and Ŝ

(l)
:,j receive the same update, leading to

non-convergence. In theory, one might resolve these ambiguities by adding a small amount of noise
to Ŝ(0). However, the general amount of feature noise present in real-world datasets already ensures
that this scenario is unlikely to occur.

6 RELATED WORK

Identifying correspondences between the nodes of two graphs has been studied in various domains
and an extensive body of literature exists. Closely related problems are summarized under the terms
maximum common subgraph (Kriege et al., 2019b), network alignment (Zhang, 2016), graph edit
distance (Chen et al., 2019) and graph matching (Yan et al., 2016). We refer the reader to the Ap-
pendix F for a detailed discussion of the related work on these problems. Recently, graph neural
networks have become a focus of research leading to various proposed deep graph matching tech-
niques (Wang et al., 2019b; Zhang & Lee, 2019; Xu et al., 2019d; Derr et al., 2019). In Appendix G,
we present a detailed overview of the related work in this field while highlighting individual differ-
ences and similarities to our proposed graph matching consensus procedure.

7 CONCLUSION

We presented a two-stage neural architecture for learning node correspondences between graphs in
a supervised or semi-supervised fashion. Our approach is aimed towards reaching a neighborhood
consensus between matchings, and can resolve violations of this criteria in an iterative fashion. In
addition, we proposed enhancements to let our algorithm scale to large input domains. We evaluated
our architecture on real-world datasets on which it consistently improved upon the state-of-the-art.
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A OPTIMIZED GRAPH MATCHING CONSENSUS ALGORITHM

Our final optimized algorithm is given in Algorithm 1:

Algorithm 1 Optimized graph matching consensus algorithm
Input: Gs = (Vs,As,Xs,Es), Gt = (Vt,At,Xt,Et), hidden node dimensionality d, sparsity
parameter k, number of consensus iterations L, number of random functions r
Output: Sparse soft correspondence matrix S(L) ∈ [0, 1]

|Vs|×|Vt| with k · |Vs| non-zero entries
——————————————————————————————————————–
Hs ← Ψθ1(Xs,As,Es) . Compute node embeddings Hs ∈ R|Vs|×·
Ht ← Ψθ1(Xs,At,Et) . Compute node embeddings Ht ∈ R|Vt|×·
Ŝ(0) ←HsH

>
t . Local feature matching

Ŝ
(0)
i,: ← topk(Ŝ

(0)
i,: ) . Sparsify to top k candidates ∀i ∈ {1, . . . , |Vs|}

for l in {1, . . . , L} do . L ∈ {L(train), L(test)}
S

(l−1)
i,: ← softmax(Ŝ

(l−1)
i,: ) . Normalize scores ∀i ∈ {1, . . . , |Vs|}

R
(l)
s ∼ N (0, 1) . Sample random node function R

(l)
s ∈ R|Vs|×r

R
(l)
t ← S>(l−1)R

(l)
s . Map random node functions R(l)

s from Gs to Gt
Os ← Ψθ2(R

(l)
s ,As,Es) . Distribute function R

(l)
s on Gs

Ot ← Ψθ2(R
(l)
t ,At,Et) . Distribute function R

(l)
t on Gt

~di,j ← ~o
(s)
i − ~o (t)

j . Compute neighborhood consensus measure

Ŝ
(l)
i,j ← Ŝ

(l−1)
i,j + Φθ3(~di,j) . Perform trainable correspondence update

end for
S

(L)
i,: ← softmax(Ŝ

(L)
i,: ) . Normalize scores ∀i ∈ {1, . . . , |Vs|}

return S(L)

B PROOF FOR THEOREM 1

Proof. Since Ψθ2 is permutation equivariant, it holds for any node feature matrix Xs ∈ R|Vs|×· that
Ψθ2(S>Xs,S

>AsS) = S>Ψθ2(Xs,As). With Xt = S>Xs and At = S>AsS, it follows that

Ot = Ψθ2(Xt,At) = Ψθ2(S>Xs,S
>AsS) = S>Ψθ2(Xs,As) = S>Os.

Hence, it shows that ~o (s)
i = (S>Os)π(i) = ~o

(t)
π(i) for any node i ∈ Vs, resulting in ~di,π(i) = ~0.

C PROOF FOR THEOREM 2

Proof. Let be ~di,j = ~o
(s)
i − ~o (t)

j = ~0. Then, the T -layered GNN Ψθ2 maps both T -hop neighbor-
hoods around nodes i ∈ Vs and j ∈ Vt to the same vectorial representation:

~o
(s)
i = Ψθ2(I

|Vs|
NT (i),:,A

(s)
NT (i),NT (i))i

= Ψθ2((S>I|Vs|)NT (j),:
,A

(t)
NT (j),NT (j))j

= ~o
(t)
j (10)

Because Ψθ2 is as powerful as the WL heuristic in distinguishing graph structures (Xu et al., 2019c;
Morris et al., 2019) and is operating on injective node colorings I|V|s , it has the power to distinguish
any graph structure from Gs[NT (i)] = (NT (i), I

|Vs|
NT (i),:,A

(s)
NT (i),NT (i)), cf. (Murphy et al., 2019).

Since ~o (s)
i holds information about every node in Gs[NT (i)], it necessarily holds that Gs[NT (i)] '

Gt[NT (j)] in case ~o (s)
i = ~o

(t)
j , where ' denotes the labeled graph isomorphism relation. Hence,

there exists an isomorphism P ∈ {0, 1}|NT (i)|×|NT (j)| between Gs[NT (j)] and Gt[NT (j)] such that

I
|Vs|
NT (i),: = P (S>I|Vs|)NT (j),:

and A
(s)
NT (i),NT (i) = PA

(t)
NT (j),NT (j)P

> (11)

With I|Vs| being the identity matrix, it follows that I |Vs|NT (i),: = PS>NT (j),:. Furthermore, it holds

that I |Vs|NT (i),NT (i) = PS>NT (j),NT (i) when reducing I
|Vs|
NT (i),: to its column-wise non-zero entries. It

follows that SNT (i),NT (j) = P is a permutation matrix describing an isomorphism.
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Table 5: Hits@1 (%) on the PASCALVOC dataset with Berkeley keypoint annotations.
Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse M-Bike Person Plant Sheep Sofa Train TV Mean

isotropic L = 0 44.3 62.0 48.4 53.9 73.3 80.4 72.2 64.2 30.3 52.7 79.4 56.6 62.3 56.2 47.5 74.0 59.8 79.9 81.9 83.0 63.1

Ψθ2 = AX
L = 10 45.9 60.5 49.0 59.7 72.8 80.9 77.4 67.2 34.1 56.3 80.4 59.5 68.6 53.9 48.6 75.5 60.8 91.5 84.8 80.3 65.4
L = 20 44.7 61.5 53.0 63.1 73.6 81.2 75.2 68.1 33.9 57.1 80.5 59.7 66.5 54.4 51.6 74.9 63.6 85.4 79.6 82.3 65.5

Ψθ2 = GNN
L = 10 46.5 63.7 54.9 60.9 79.4 84.1 76.4 68.3 38.5 61.5 80.6 59.7 69.8 58.4 54.3 76.4 64.5 95.7 87.9 81.3 68.1
L = 20 50.1 65.4 55.7 65.3 80.0 83.5 78.3 69.7 34.7 60.7 70.4 59.9 70.0 62.2 56.1 80.2 70.3 88.8 81.1 84.3 68.3

Table 6: Hits@1 (%) on the DBP15K dataset.
Method ZH→EN EN→ZH JA→EN EN→JA FR→EN EN→FR

L = 0 67.59 64.38 71.95 68.88 83.36 82.16
Ψθ2 = AX L = 10 71.61 68.52 77.18 76.53 85.69 85.96
Ψθ2 = GNN L = 10 80.12 76.77 84.80 81.09 93.34 91.95

Moreover, if ~di,argmaxSi,: = ~0 for all i ∈ Vs, it directly follows that S is holding submatrices de-
scribing isomorphisms between any T -hop subgraphs around i ∈ Vs and argmaxSi,: ∈ Vt. Assume
there exists nodes i, i′ ∈ Vs that map to the same node j = argmaxSi,: = argmaxSi′,: ∈ Vt. It
follows that ~o (s)

i = ~o
(t)
j = ~o

(s)
i′ which contradicts the injectivity requirements of AGGREGATE(t)

and UPDATE(t) for all t ∈ {1, . . . , T}. Hence, S must be itself a permutation matrix describing an
isomorphism between Gs and Gt.

D COMPARISON TO THE GRADUATED ASSIGNMENT ALGORITHM

As stated in Section 3.3, our algorithm can be viewed as a generalization of the graduated assign-
ment algorithm (Gold & Rangarajan, 1996) extending it by trainable parameters. To evaluate the
impact of a trainable refinement procedure, we replicated the experiments of Sections 4.2 and 4.4
by implementing Ψθ2 via a non-trainable, one-layer GNN instantiation Ψθ2(X,A,E) = AX .

The results in Tables 5 and 6 show that using trainable neural networks Ψθ2 consistently improves
upon the results of using the fixed-function message passing scheme. While it is difficult to encode
meaningful similarities between node and edge features in a fixed-function pipeline, our approach
is able to learn how to make use of those features to guide the refinement procedure further. In
addition, it allows us to choose from a variety of task-dependent GNN operators, e.g., for learn-
ing geometric/edge conditioned patterns or for fulfilling injectivity requirements. The theoretical
expressivity discussed in Section 5 could even be enhanced by making use of higher-order GNNs,
which we leave for future work.

E ROBUSTNESS TOWARDS NODE ADDITION OR REMOVAL

To experimentally validate the robustness of our approach towards node addition (or removal), we
conducted additional synthetic experiments in a similar fashion to Xu et al. (2019b). We form
graph-pairs by treating an Erdős & Rényi graph with |Vs| ∈ {50, 100} nodes and edge probability
p ∈ {0.1, 0.2} as our source graph Gs. The target graph Gt is then constructed by first adding q%
noisy nodes to the source graph, i.e., |Vt| = (1 + q%)|Vs|, and generating edges between these
nodes and all other nodes based on the edge probability p afterwards. We use the same network
architecture and training procedure as described in Section 4.1.

Figure 3 visualizes the Hits@1 for different choices of |Vs|, p and q ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.
As one can see, our consensus stage is extremely robust to the addition or removal of nodes while
the first stage alone has major difficulties in finding the right matching. This can be explained by
the fact that unmatched nodes do not have any influence on the neighborhood consensus error since
those nodes do not obtain a color from the functional map given by S. Our neural architecture is
able to detect and gradually decrease any false positive influence of these nodes in the refinement
stage.
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Figure 3: The performance of our method on synthetic data with node additions.

F RELATED WORK I

Identifying correspondences between the nodes of two graphs is a problem arising in various do-
mains and has been studied under different terms. In graph theory, the combinatorial maximum
common subgraph isomorphism problem is studied, which asks for the largest graph that is con-
tained as subgraph in two given graphs. The problem is NP-hard in general and remains so even in
trees (Garey & Johnson, 1979) unless the common subgraph is required to be connected (Matula,
1978). Moreover, most variants of the problem are difficult to approximate with theoretical guaran-
tees (Kann, 1992). We refer the reader to the survey by Kriege et al. (2019b) for a overview of the
complexity results noting that exact polynomial-time algorithms are available for specific problem
variants only that are most relevant in cheminformatics.

Fundamentally different techniques have been developed in bioinformatics and computer vision,
where the problem is commonly referred to as network alignment or graph matching. In these areas
large networks without any specific structural properties are common and the studied techniques
are non-exact. In graph matching, for two graphs of order n with adjacency matrix As and At,
respectively, typically the function

‖As − S>AtS‖
2

F = ‖As‖2F + ‖At‖2F − 2
∑
i,i′∈Vs
j,j′∈Vt

A
(s)
i,i′A

(t)
j,j′Si,jSi′,j′ (12)

is to be minimized, where S ∈ P with P the set of n × n permutation matrices and ‖A‖2F =∑
i,i′∈V A

2
i,i′ denotes the squared Frobenius norm. Since the first two terms of the right-hand side

do not depend on S, minimizing Equation (12) is equivalent in terms of optimal solutions to the
problem of Equation (1). We briefly summarize important related work in graph matching and refer
the reader to the recent survey by Yan et al. (2016) for a more detailed discussion. There is a long
line of research trying to minimize Equation (12) for S ∈ [0, 1]

n×n by a Frank-Wolfe type algo-
rithm (Jaggi, 2013) and finally projecting the fractional solution to P (Gold & Rangarajan, 1996;
Zaslavskiy et al., 2009; Leordeanu et al., 2009; Egozi et al., 2013; Zhou & De la Torre, 2016). How-
ever, the applicability of relaxation and projection is still poorly understood and only few theoretical
results exist (Aflalo et al., 2015; Lyzinski et al., 2016). A classical result by Tinhofer (1991) states
that the WL heuristic distinguishes two graphs Gs and Gt if and only if there is no fractional S
such that the objective function in Equation (12) takes 0. Kersting et al. (2014) showed how the
Frank-Wolfe algorithm can be modified to obtain the WL partition. Aflalo et al. (2015) proved that
the standard relaxation yields a correct solution for a particular class of asymmetric graphs, which
can be characterized by the spectral properties of their adjacency matrix. Finally, Bento & Ioanni-
dis (2018) studied various relaxations, their complexity and properties. Other approaches to graph
matching exist, e.g., based on spectral relaxations (Umeyama, 1988; Leordeanu & Hebert, 2005)
or random walks (Gori et al., 2005). The problem of graph matching is closely related to the no-
toriously hard quadratic assignment problem (QAP) (Zhou & De la Torre, 2016), which has been
studied in operations research for decades. Equation (1) can be directly interpreted as Koopmans-
Beckmann’s QAP. The more recent literature on graph matching typically considers a weighted
version, where node and edge similarities are taken into account. This leads to the formulation as
Lawler’s QAP, which involves an affinity matrix of size n2 × n2 and is computational demanding.
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Zhou & De la Torre (2016) proposed to factorize the affinity matrix into smaller matrices and in-
corporated global geometric constraints. Zhang et al. (2019c) studied kernelized graph matching,
where the node and edge similarities are kernels, which allows to express the graph matching prob-
lem again as Koopmans-Beckmann’s QAP in the associated Hilbert space. Inspired by established
methods for Maximum-A-Posteriori (MAP) inference in conditional random fields, Swoboda et al.
(2017) studied several Lagrangean decompositions of the graph matching problem, which are solved
by dual ascent algorithms also known as message passing. Specific message passing schedules and
update mechanisms leading to state-of-the-art performance in graph matching tasks have been iden-
tified experimentally. Recently, functional representation for graph matching has been proposed as
a generalizing concept with the additional goal to avoid the construction of the affinity matrix (Wang
et al., 2019a).

Graph edit distance. A related concept studied in computer vision is the graph edit distance,
which measures the minimum cost required to transform a graph into another graph by adding,
deleting and substituting vertices and edges. The idea has been proposed for pattern recognition
tasks more than 30 years ago (Sanfeliu & Fu, 1983). However, its computation is NP-hard, since it
generalizes the maximum common subgraph problem (Bunke, 1997). Moreover, it is also closely
related to the quadratic assignment problem (Bougleux et al., 2017). Recently several elaborated
exact algorithms for computing the graph edit distance have been proposed (Gouda & Hassaan,
2016; Lerouge et al., 2017; Chen et al., 2019), but are still limited to small graphs. Therefore,
heuristics based on the assignment problem have been proposed (Riesen & Bunke, 2009) and are
widely used in practice (Stauffer et al., 2017). The original approach requires cubic running time,
which can be reduced to quadratic time using greedy strategies (Riesen et al., 2015a;b), and even
linear time for restricted cost functions (Kriege et al., 2019a).

Network alignment. The problem of network alignment typically is defined analogously to Equa-
tion (1), where in addition a similarity function between pairs of nodes is given. Most algorithms
follow a two step approach: First, an n×n node-to-node similarity matrix M is computed from the
given similarity function and the topology of the two graphs. Then, in the second step, an alignment
is computed by solving the assignment problem for M . Singh et al. (2008) proposed ISORANK,
which is based on the adjacency matrix of the product graph K = As ⊗At of Gs and Gt, where
⊗ denotes the Kronecker product. The matrix M is obtained by applying PAGERANK (Page et al.,
1999) using a normalized version of K as the GOOGLE matrix and the node similarities as the
personalization vector. Kollias et al. (2012) proposed an efficient approximation of ISORANK by
decomposition techniques to avoid generating the product graph of quadratic size. Zhang (2016)
present an extension supporting vertex and edge similarities and propose its computation using non-
exact techniques. Klau (2009) proposed to solve network alignment by linearizing the quadratic
optimization problem to obtain an integer linear program, which is then approached via Lagrangian
relaxation. Bayati et al. (2013) developed a message passing algorithm for sparse network align-
ment, where only a small number of matches between the vertices of the two graphs are allowed.

The techniques briefly summarized above aim to find an optimal correspondence according to a
clearly defined objective function. In practical applications, it is often difficult to specify node and
edge similarity functions. Recently, it has been proposed to learn such functions for a specific task,
e.g., in form of a cost model for the graph edit distance (Cortés et al., 2019). A more principled
approach has been proposed by Caetano et al. (2009) where the goal is to learn correspondences.

G RELATED WORK II

The method presented in this work is related to different lines of research. Deep graph matching
procedures have been investigated from multiple perspectives, e.g., by utilizing local node feature
matchings and cross-graph embeddings (Li et al., 2019). The idea of refining local feature matchings
by enforcing neighborhood consistency has been relevant for several years for matching in images
(Sattler et al., 2009). Furthermore, the functional maps framework aims to solve a similar problem
for manifolds (Halimi et al., 2019).

Deep graph matching. Recently, the problem of graph matching has been heavily investigated in
a deep fashion. For example, Zanfir & Sminchisescu (2018); Wang et al. (2019b); Zhang & Lee
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(2019) develop supervised deep graph matching networks based on displacement and combinato-
rial objectives, respectively. Zanfir & Sminchisescu (2018) model the graph matching affinity via
a differentiable, but unlearnable spectral graph matching solver (Leordeanu & Hebert, 2005). In
contrast, our matching procedure is fully-learnable. Wang et al. (2019b) use node-wise features in
combination with dense node-to-node cross-graph affinities, distribute them in a local fashion, and
adopt sinkhorn normalization for the final task of linear assignment. Zhang & Lee (2019) propose
a compositional message passing algorithm that maps point coordinates into a high-dimensional
space. The final matching procedure is done by computing the pairwise inner product between point
embeddings. However, neither of these approaches can naturally resolve violations of inconsistent
neighborhood assignments as we do in our work.

Xu et al. (2019b) tackles the problem of graph matching by relating it to the Gromov-Wasserstein
discrepancy (Peyré et al., 2016). In addition, the optimal transport objective is enhanched by simul-
taneously learning node embeddings which shall account for the noise in both graphs. In a follow-up
work, Xu et al. (2019a) extend this concept to the tasks of multi-graph partioning and matching by
learning a Gromov-Wasserstein barycenter. Our approach also resembles the optimal transport be-
tween nodes, but works in a supervised fashion for sets of graphs and is therefore able to generalize
to unseen graph instances.

In addition, the task of network alignment has been recently investigated from multiple perspec-
tives. Derr et al. (2019) leverage CYCLEGANs (Zhu et al., 2017) to align NODE2VEC embeddings
(Grover & Leskovec, 2016) and find matchings based on the nearest neighbor in the embedding
space. Zhang et al. (2019a) design a deep graph model based on global and local network topology
preservation as auxiliary tasks. Heimann et al. (2018) utilize a fast, but purely local and greedy
matching procedure based on local node embedding similarity.

Furthermore, Bai et al. (2019) use shared graph neural networks to approximate the graph edit
distance between two graphs. Here, a (non-differentiable) histogram of correspondence scores is
used to fine-tune the output of the network. In a follow-up work, Bai et al. (2018) proposed to order
the correspondence matrix in a breadth-first-search fashion and to process it further with the help of
traditional CNNs. Both approaches only operate on local node embeddings, and are hence prone to
match correspondences inconsistently.

Intra- and inter-graph message passing. The concept of enhanching intra-graph node embed-
dings by inter-graph node embeddings has been already heavily investigated in practice (Li et al.,
2019; Wang et al., 2019b; Xu et al., 2019d). Li et al. (2019) and Wang et al. (2019b) enhance
the GNN operator by not only aggregating information from local neighbors, but also from similar
embeddings in the other graph by utilizing a cross-graph matching procedure. Xu et al. (2019d)
leverage alternating GNNs to propagate local features of one graph throughout the second graph.
Wang & Solomon (2019) tackle the problem of finding an unknown rigid motion between point
clouds by relating it to a point cloud matching problem followed by a differentiable SVD module.
Intra-graph node embeddings are passed via a Transformer module before feature matching based
on inner product similarity scores takes place. However, neither of these approaches is designed to
achieve a consistent matching, due to only operating on localized node embeddings which are alone
not sufficient to resolve ambiguities in the matchings. Nonetheless, we argue that these methods
can be used to strengthen the initial feature matching procedure, making our approach orthogonal to
improvements in this field.

Neighborhood consensus for image matching. Methods to obtain consistency of correspon-
dences in local neighborhoods have a rich history in computer vision, dating back several years
(Sattler et al., 2009; Sivic & Zisserman, 2003; Schmid & Mohr, 1997). They are known for heavily
improving results of local feature matching procedures while being computational efficient. Re-
cently, a deep neural network for neighborhood consensus using 4D convolution was proposed
(Rocco et al., 2018). While it is related to our method, the 4D convolution can not be efficiently
transferred to the graph domain directly, since it would lead to applying a GNN on the product
graph with O(n2) nodes and O(n4) edges. Our algorithm also infers errors for the (sparse) product
graph but performs the necessary computations on the original graphs.

Functional maps. The functional maps framework was proposed to provide a way to define con-
tinuous maps between function spaces on manifolds and is commonly applied to solve the task of
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Table 7: Statistics of the WILLOW-
OBJECTCLASS dataset.

Category Graphs Keypoints Edges

Face 108 10 21− 22
Motorbike 40 10 21− 22
Car 40 10 18− 21
Duck 50 10 19− 21
Winebottle 66 10 19− 22

Table 8: Statistics of the DBP15K dataset.
Datasets Entities Relation types Relations

ZH↔EN Chinese 19 388 1 701 70 414
English 19 572 3 024 95 142

JA↔EN Japanese 19 814 1 299 77 214
English 19 780 2 452 93 484

FR↔EN French 19 661 903 105 998
English 19 993 2 111 115 722

Table 9: Statistics of the PASCALVOC dataset with Berkeley annotations.
Category Train graphs Test graphs Keypoints Edges Category Train graphs Test graphs Keypoints Edges

Aeroplane 468 136 1− 16 0− 41 Diningtable 27 5 2− 8 2− 8
Bicycle 210 53 2− 11 1− 26 Dog 608 147 1− 16 0− 41
Bird 613 117 1− 12 0− 30 Horse 217 45 2− 16 1− 38
Boat 411 88 1− 11 0− 25 Motorbike 234 60 1− 10 0− 23
Bottle 466 120 1− 8 0− 17 Person 539 156 4− 19 5− 49
Bus 288 52 1− 8 0− 17 Pottedplant 429 99 1− 6 0− 11
Car 522 160 1− 13 0− 27 Sheep 338 73 1− 16 0− 39
Cat 415 101 3− 16 3− 40 Sofa 73 8 2− 12 1− 27
Chair 298 63 1− 10 0− 23 Train 166 43 1− 6 0− 10
Cow 257 55 1− 16 0− 40 TV Monitor 374 90 1− 8 0− 17

3D shape correspondence (Ovsjanikov et al., 2012; Litany et al., 2017; Rodolà et al., 2017; Hal-
imi et al., 2019). Recently, a similar approach was presented to find functional correspondences
between graph function spaces (Wang et al., 2019a). The functional map is established by using
a low-dimensional basis representation, e.g., the eigenbasis of the graph Laplacian as generalized
Fourier transform. Since the basis is usually truncated to the k vectors with the largest eigenvalues,
these approaches focus on establishing global correspondences. However, such global methods have
the inherent disadvantage that they often fail to find partial matchings due to the domain-dependent
eigenbasis. Furthermore, the basis computation has to be approximated in order to scale to large
inputs.

H DATASET STATISTICS

We give detailed descriptions of all datasets used in our experiments, cf. Tables 7, 8, 9 and 10.

I QUALITATIVE KEYPOINT MATCHING RESULTS

Figure 4 visualizes qualitative examples from the task of keypoint matching on the
WILLOW-OBJECTCLASS dataset. Examples were selected as follows: Figure 4(a), (b) and (c)
show examples where the initial feature matching procedure fails, but where our refinement proce-
dure is able to recover all correspondences succesfully. Figure 4(d) visualizes a rare failure case.
However, while the initial feature matching procedure maps most of the keypoints to the same tar-
get keypoint, our refinement strategy is still able to succesfully resolve this violation. In addition,
note that the target image contains wrong labels, e.g., the eye of the duck, so that some keypoint
mappings are mistakenly considered to be wrong.
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Table 10: Statistics of the PASCALPF dataset.
Category Graphs Pairs Keypoints Edges Category Graphs Pairs Keypoints Edges

Aeroplane 69 69 9− 16 72− 128 Diningtable 38 38 4− 8 12− 56
Bicycle 133 133 10− 11 80− 88 Dog 106 106 5− 15 20− 120
Bird 50 50 5− 9 20− 72 Horse 39 39 5− 16 20− 128
Boat 28 28 4− 9 12− 72 Motorbike 120 120 5− 10 20− 80
Bottle 42 42 4− 8 12− 56 Person 56 56 10− 17 80− 136
Bus 140 140 4− 8 12− 56 Pottedplant 35 35 4− 6 12− 30
Car 84 84 4− 11 12− 88 Sheep 6 6 5− 7 20− 42
Cat 119 119 5− 16 20− 128 Sofa 59 59 4− 10 12− 80
Chair 59 59 4− 10 12− 80 Train 88 88 4− 5 12− 20
Cow 15 15 5− 16 20− 128 TV Monitor 65 65 4− 6 12− 30

S(0)

S(L)

(a) Motorbike

S(0)

S(L)

(b) Car

S(0)

S(L)

(c) Duck

S(0)

S(L)

(d) A rare failure case

Figure 4: Qualitative examples from the WILLOW-OBJECTCLASS dataset. Images on the left
represent the source, whereas images on the right represent the target. For each example, we visual-
ize both the result of the initial feature matching procedure S(0) (top) and the result obtained after
refinement S(L) (bottom).
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