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Abstract
We derive reverse-mode (or adjoint) automatic differentiation for solutions of stochastic
differential equations (SDEs), allowing time-efficient and constant-memory computation of
pathwise gradients, a continuous-time analogue of the reparameterization trick. Specifically,
we construct a backward SDE whose solution is the gradient and provide conditions under
which numerical solutions converge. We also combine our stochastic adjoint approach with
a stochastic variational inference scheme for continuous-time SDE models, allowing us to
learn distributions over functions using stochastic gradient descent. Our latent SDE model
achieves competitive performance compared to existing approaches on time series modeling.

1. Introduction

Deterministic dynamical systems can often be modeled by ordinary differential equations
(ODEs). For training, a memory-efficient implementation of the adjoint sensitivity method
(Chen et al., 2018) effectively computes gradients through ODE solutions with constant
memory cost. Stochastic differential equations (SDEs) are a generalization of ODEs which
incorporate instantaneous noise into their dynamics (Arnold, 1974; Øksendal, 2003). They
are a natural fit for modeling phenomena governed by small and unobserved interactions.

In this paper, we generalize the adjoint method to dynamics defined by SDEs resulting in
an approach which we call the stochastic adjoint sensitivity method. Building on theoretical
advances by Kunita (2019), we derive a memory-efficient adjoint method whereby we
simultaneously reconstruct the original trajectory and evaluate the gradients by solving a
backward SDE (in the sense of Kunita (2019)) whose formulation we detail in Section 3.
Computationally, in order to retrace the original trajectory during the backward pass, we need
to reuse noise samples generated in the forward pass. In Section 4, we give an algorithm that
allows arbitrarily-precise querying of a Brownian motion realization at any time point, while
only storing a single random seed. Overall, this results in a constant-memory algorithm that
approximates the gradient arbitrarily well as step size reduces by computing vector-Jacobian
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products a constant number of times per-iteration. See Table 2 for a comparison of our
method against previous approaches in terms of asymptotic time and memory complexity.

We incorporate SDEs into a stochastic variational inference framework, whereby we
efficiently compute likelihood ratios and backpropagate through the evidence lower bound
using our adjoint approach. This effectively generalizes existing model families such as latent
ODEs (Rubanova et al., 2019) and deep Kalman filters (Krishnan et al., 2017).

2. Background

We review works on learning ODEs and SDEs. We refer the reader to Appendix B on
background for stochastic flows (Kunita, 2019) and (backward) Stratonovich integrals.

2.1. Adjoint Sensitivity Method

The adjoint sensitivity method is an efficient approach to solve optimization problems by
considering the dual form (Pontryagin, 2018). Chen et al. (2018) recently applied this idea
to obtain gradients with respect to parameters of a neural network defining an ODE. The
method is scalable due to its memory-efficiency, as intermediate computations need not be
cached as in regular backpropagation (Rumelhart et al., 1988).

2.2. Neural Stochastic Differential Equation

Recent works have considered SDEs whose drift and diffusion functions are defined by neural
networks (Tzen and Raginsky, 2019a,b; Liu et al., 2019; Jia and Benson, 2019). Consider
a filtered probability space (Ω,F, {Ft}t∈T, P ) on which an m-dimensional adapted Wiener
process {Wt}t∈T is defined. An Itô SDE defines a stochastic process {Zt}t∈T by

ZT =z0+
∫ T

0 b(Zt, t) dt+
∑m

i=1

∫ T
0 σi(Zt, t) dW

(i)
t , (1)

where z0 ∈ Rd is a deterministic starting value, and b : Rd × R→ Rd and σi : Rd × R→ Rd
are the drift and diffusion functions, respectively. Here, the second integral on the right hand
side of (1) is the Itô stochastic integral (Øksendal, 2003). When the coefficients are globally
Lipschitz in both the state and time components, there exists a unique strong solution to the
SDE (Øksendal, 2003). Therefore, one can consider coefficients defined by neural networks
that have smooth activation functions (e.g. tanh) of the form b(z, t, θ) and σ(z, t, θ). This
results in a model known as the neural SDE.

3. Sensitivities via Stochastic Adjoint

We derive a backward Stratonovich SDE for what we call the stochastic adjoint process. A
direct implication of this is a gradient computation algorithm that works by solving a set of
dynamics in reverse time and relies on vector-Jacobian products without storing intermediate
computation. Recall from Appendix B.3, Φs,t(z) := Zs,zt is the solution at time t when the
process is started at z at time s, and its inverse is defined as Ψ̌s,t(z) := Φ−1

s,t (z).
Consider As,t(z) = ∇(L(Φs,t(z))), where L is a scalar loss function. The chain rule

gives As,t(z) = ∇L(Φs,t(z))∇Φs,t(z). Let Ãs,t(z) := As,t(Ψ̌s,t(z)) = ∇L(z)∇Φs,t(Ψ̌s,t(z)) =
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∇L(z)Ks,t(z). Note that As,t(z) = Ãs,t(Φs,t(z)). Since ∇L(z) is constant, we see that
(Ãs,t(z), Ψ̌s,t(z)) satisfies the following backward SDE system by Lemma C.1 (cf. Appendix C)

Ãs,t(z) =∇L(z) +
∫ t
s∇b(Ψ̌r,t(z), r)

>Ãr,t(z) dr +
∑m

i=1

∫ t
s∇σi(Ψ̌r,T (r), u)>Ãr,t(z) ◦ ďW i

r ,

Ψ̌s,t(z) =z −
∫ t
s b(Ψ̌r,t(z), r) dr −

∑m
i=1

∫ t
sσi(Ψ̌r,t(z), r) ◦ ďW (i)

r .

(2)

Since (11) can be viewed as a single SDE (with smooth coefficients) for an augmented
state, Ãs,T (z) also has a unique strong solution. Therefore, for t = 0, we may write

Ã0(z) = F(z,W·), (3)

whereW· = {Wt}0≤t≤T denotes the path of the Brownian motion and F : Rd×C([0, 1],Rm)→
Rd is a deterministic measurable function (the Itô map) (Rogers and Williams, 2000, Definition
10.9). The next theorem follows immediately from (3) and the definition of F.

Theorem 3.1:
For P -almost all ω ∈ Ω, A0,T (z) = Ã0(z) = F(G(z,W·),W·), where G(z,W·) = Z0,z

T .

The theorem is a consequence of A0,T (z) = Ã0,T (Φ0,T (z)) = Ã0,T (Z0,z
T ) and (3). This implies

we may solve the dynamics (11) starting from the end state of the forward solve Z0,z
T to

obtain the gradient of the loss with respect to the starting value z. To obtain the gradient
with respect to the parameters, we augment the original state with parameters. Algorithm 1
summarizes this assuming access to a black-box solver SDESolve. See details in Appendix C.

Algorithm 1 Stratonovich SDE Adjoint Computation
Input: parameters θ, start time t0, stop time t1, final state zt1 , loss gradient ∂L/zt1 .
Input: drift b(z, t, θ), diffusion σ(z, t, θ), Wiener process sample w(t).
st1 = [zt1 , ∂L/∂zt1 ,0p]
def augb([zt, at, ·], t, θ):

return [−b(zt,−t, θ), a>t ∂b/∂z, a>t ∂b/∂θ]
def augσi([zt, at, ·], t, θ):

return [−σi(zt,−t, θ), a>t ∂σi/∂z, a>t ∂σi/∂θ]
def augw(t):

return [−w(−t),−w(−t),−w(−t)]
[zt0 , ∂L/∂zt0 , ∂L/∂θ] = SDESolve(st1 ,augb,augσ1,...,augσm,augw,−t1,−t0)

return [∂L/∂zt0 , ∂L/∂θ]

4. Seeded Brownian Tree
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Figure 1: Brownian tree.

We present a data structure that allows arbitrarily-
precise query of the sample path of the Wiener process
given a global random seed based on the Brownian
tree construction. The data structure facilitates the
adjoint method such that we can ensure the noise
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sample in the backward solve is the same as in the
forward solve using a split pseudorandom random
number generator (PRNG). We present the procedure in Algorithm D.2 and details in
Appendix D.

5. Latent SDE

Consider the SDEs

dZ̃t = h0(Z̃t, t) + σ(Z̃t, t) dW̃t, Z̃0 = z ∈ Rd, (4)

dZt = h1(Zt, t) + σ(Zt, t) dWt, Z0 = z ∈ Rd, (5)

where h0, h1 ∈ Rd × R → Rd and σ ∈ Rd × R → Rd×m are Lipschitz in both arguments.
Suppose (4) and (5) define the prior and posterior processes, respectively. Additionally,
assume there is a function u : Rd × R→ Rm such that σ(x, t)u(x, t) = h1(x, t)− h0(x, t) for
all x ∈ Rd and t ∈ R. Then, the variational free energy (Opper, 2019) can be written as

LVI = E
[

1
2

∫ T
0 |u(Zt, t)|2 dt+

∫ T
0 u(Zt, t)

> dWt −
∑N

i=1 log p(yti |zti)
]
, (6)

where the expectation is taken over the distribution of the posterior process defined by (5),
and y1, . . . , yN are observations at times t1, . . . , tN , respectively. To compute the gradient
with respect to parameters, we need only augment the forward equation with an extra
variable whose drift function returns 1

2 |u(Zt, t)|2 and diffusion function is 0. In this case, the
backward adjoint dynamics can be derived analogously using (11). Appendix E includes
details.

6. Experiments

We verify our theory by comparing the gradients obtained by our stochastic adjoint framework
against analytically derived gradients for chosen test problems with closed-form solutions.
We then fit latent SDE models with our framework on two synthetic datasets and a real
dataset, verifying that the variational inference framework promotes learning a generative
model of time series. Due to space constraint, we refer the reader to Appendix F for results
on numerical studies and Appendix N for results on synthetic data. We present only the
results on the motion capture dataset here.
6.1. Motion Capture Dataset

We experiment on a dataset extracted from the CMU motion capture library. We use the
dataset adopted by Gan et al. (2015) which consists of 23 walking sequences of subject
number 35 that is partitioned into 16 training, 3 validation, and 4 test sequences. We include
the settings in Appendix O and report the test MSE here following Yıldız et al. (2019).
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Appendix A. Asymptotic Complexity Comparison

Table 2: Asymptotic time complexity of differentiation. L is the number of steps used in the
solve, and D is the size of the state. Both memory and time are expressed in units
of the cost of evaluating the drift and diffusion functions once each.

Method Memory Time

Forward pathwise (Yang and Kushner, 1991) O(1) O(LD)
Backprop through solver’s ops. (Giles and Glasserman, 2006) O(L) O(L)
Stochastic adjoint (ours) O(1) O(L)

Appendix B. Additional Background

Notation. For a fixed terminal time T > 0, we denote by T = [0, T ] ⊆ R the time horizon.
Let C∞ be the class of infinitely differentiable functions from Rd to itself. Let Cp,q be the
class of functions from Rd × T to Rd that are p and q times continuously differentiable
in the first and second component, respectively. Let Cp,qb ⊆ Cp,q be the subclass with
bounded derivatives of all possible orders. For a positive integer m, we adopt the short
hand [m] = {1, 2, . . . ,m}. We denote the Euclidean norm of a vector v by |v|. For an
m-dimensional Wiener process Wt, we denote the ith component of Wt by W

(i)
t . For the

diffusion functions σ1, . . . , σm, we will also write σ : Rd → Rd×m as the matrix-valued
function obtained by stacking the component functions σi in a columnwise fashion, and index
its jth row and ith column by σj,i.

B.1. Recent works on Neural SDEs

Among recent work on neural SDEs, none has enabled an efficient training framework. In
particular, Tzen and Raginsky (2019a); Liu et al. (2019) considered computing the gradient
by simulating the forward dynamics of an explicit Jacobian matrix the size either the squared
number of parameters or the number of parameters times the number of states, building on
the pathwise approach (Gobet and Munos, 2005; Yang and Kushner, 1991). By contrast, the
approach we present only requires evaluating vector-Jacobian products a constant number of
times with respect to the number of parameters and states, which has the same asymptotic
time cost as evaluating the drift and diffusion functions, and can be done automatically by
modern machine learning libraries (Maclaurin et al., 2015; Paszke et al., 2017; Abadi et al.,
2016; Frostig et al., 2018).

B.2. Backward Stratonovich Integral

Our stochastic adjoint sensitivity method involves stochastic processes running forward and
backward in time. The Stratonovich stochastic integral, due to its symmetry, gives nice
expressions for the backward dynamics and so is more convenient for our purpose. Our
results can be applied straightforwardly to Itô SDEs as well using a conversion result (see
e.g. (Platen, 1999, Sec. 2)).

9



Scalable Gradients and Variational Inference for SDEs

Following the treatment of Kunita (Kunita, 2019), we introduce the forward and backward
Stratonovich integrals. Let {Fs,t}s≤t;s,t∈T be a two-sided filtration, where Fs,t is the σ-
algebra generated by {Wv − Wu : s ≤ u ≤ v ≤ t} for all s, t ∈ T such that s ≤ t.
For a continuous semimartingale {Yt}t∈T adapted to the forward filtration {F0,t}t∈T, the
Stratonovich stochastic integral is defined as

∫ T
0 Yt ◦ dWt= lim

|Π|→0

N∑
k=1

1

2

(
Ytk + Ytk−1

) (
Wtk −Wtk−1

)
,

where Π = {0 = t0 < · · · < tN = T} is a partition of the interval T = [0, T ], |Π| =
maxk tk − tk−1 denotes the size of largest segment of the partition, and the limit is to be
interpreted in the L2 sense. The Itô integral uses instead the left endpoint Ytk rather than
the average. In general, the Itô and Stratonovich integrals differ by a term of finite variation.

To define the backward Stratonovich integral, we consider the backward Wiener process
{W̌t}t∈T defined as W̌t = Wt −WT for all t ∈ T that is adapted to the backward filtration
{Ft,T }t∈T. For a continuous semimartingale Y̌t adapted to the backward filtration, we define

∫ T
s Y̌t ◦ ďWt= lim

|Π|→0

N∑
k=1

1

2

(
Y̌tk + Y̌tk−1

) (
W̌tk−1

− W̌tk

)
,

where Π = {0 = tN < · · · < t0 = T} is a partition, and the limit is again in the L2 sense.

B.3. Stochastic Flow of Diffeomorphisms

It is well known that an ODE defines a flow of diffeomorphisms (Arnold, 1978). Here we
consider the stochastic analogue for the Stratonovich SDE

ZT =z0+
∫ T

0 b(Zt, t) dt+

m∑
i=1

∫ T
0 σi(Zt, t)◦ dW

(i)
t . (7)

Throughout the paper, we assume b, σ are of class C∞,1b , so that the SDE has a unique strong
solution. Let Φs,t(z) := Zs,zt be the solution at time t when the process is started at z at
time s. Given a realization of the Wiener process, this defines a collection S = {Φs,t}s≤t;s,t∈T
of continuous maps from Rd to itself.

The following theorem shows that these maps are diffeomorphisms and that they satisfy
backward SDEs.

Theorem B.1 (Thm. 3.7.1 (Kunita, 2019)):

(i) With probability 1, the collection S = {Φs,t}s≤t;s,t∈T satisfies the flow property

Φs,t(z) = Φs,u(Φu,t(z)), s ≤ u ≤ t, z ∈ Rd.

Moreover, each Φs,t is a smooth diffeomorphism from Rd to itself. We thus call S the
stochastic flow of diffeomorphisms generated by the SDE (7).
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(ii) The backward flow Ψ̌s,t := Φ−1
s,t satisfies the backward SDE:

Ψ̌s,t(z) = z −
∫ t
s b(Ψ̌u,t(z), u) du−

∑m
i=1

∫ t
sσi(Ψ̌u,t(z), u) ◦ ďW (i)

u , (8)

for all z ∈ Rd and s, t ∈ T such that s ≤ t a.s.

Note that the coefficients in (7) and (8) differ by only a negative sign. This symmetry is
due to our use of the Stratonovich integral (see Figure 2).

0 1
t

Z
t

True solution

Itô Reverse

Strat Reverse

Figure 2: Negating the drift and diffusion functions for an Itô SDE and simulating backwards
from the end state gives the wrong solution. Negating the drift and diffusion
functions for the converted Stratonovich SDE, however, gives the correct path
when simulated in reverse time.

Appendix C. Details on Stochastic Adjoint Derivation and
Implementation

We present our main contribution, i.e. the stochastic analog of the adjoint sensitivity method
for SDEs. We use (8) to derive another backward Stratonovich SDE for what we call the
stochastic adjoint process. The direct implication of this is a gradient computation algorithm
that works by solving a set of dynamics in reverse time and relies on vector-Jacobian products
without storing intermediate computation produced in the forward pass.
C.1. Stochastic Adjoint Process
The goal is to derive the stochastic adjoint process {∂L/∂Zt}t∈T that can be simulated by
evaluating only vector-Jacobian products, where L = L(ZT ) is a scalar loss of the terminal
state ZT . The main theoretical result is Theorem 3.1. We first derive a backward SDE
for the process {∂ZT /∂Zt}t∈T, assuming that Zt = Ψ̌t,T (ZT ) for a deterministic ZT ∈ Rd
that does not depend on the realized Wiener process. We then extend to the case where
ZT = Φ0,T (z0) for a deterministic z0 ∈ Rd. In the latter case, the resulting value cannot be
interpreted as the solution to a backward SDE anymore due to loss of adaptiveness; instead
we will formulate the result using the Itô map (Rogers and Williams, 2000). Finally, we
extend the state of Z to include parameters and obtain the gradient with respect to them.

We first derive the SDE for the Jacobian matrix of the backward flow.

11
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Lemma C.1 (Dynamics of ∂ZT /∂Zt):
Consider the stochastic flow generated by the backward SDE (8) as in Theorem B.1(ii). Let
Js(z) := ∇Ψ̌s,T (z), then it satisfies the backward SDE

Js,t(z) =Id −
∫ t
s∇b(Ψ̌r,t(z), r)Jr,t(z) dr −

∑m
i=1

∫ t
s∇σi(Ψ̌r,t(z), r)Jr,t(z) ◦ ďW (i)

r , (9)

for all s ≤ t and x ∈ Rd a.s. Furthermore, let Ks,t(z) = Js,t(z)
−1, we have

Ks,t(z) =Id +
∫ t
sKr,t(z)∇b(Ψ̌r,t(z), r) dr +

∑m
i=1

∫ t
sKr,t(z)∇σi(Ψ̌r,t(z), r) ◦ ďW (i)

r , (10)

for all s ≤ t and x ∈ Rd a.s.

The proof included in Appendix I relies on Itô’s lemma in the Stratonovich form (Kunita,
2019, Theorem 2.4.1). This lemma considers only the case where the endpoint z is fixed and
deterministic.

Now we compose the state process (represented by the flow) and the loss function L.
Consider As,t(z) = ∇(L(Φs,t(z))). The chain rule gives As,t(z) = ∇L(Φs,t(z))∇Φs,t(z). Let

Ãs,t(z) :=As,t(Ψ̌s,t(z)) = ∇L(z)∇Φs,t(Ψ̌s,t(z)) = ∇L(z)Ks,t(z).

Note that As,t(z) = Ãs,t(Φs,t(z)). Since ∇L(z) is constant, we see that (Ãs,t(z), Ψ̌s,t(z))
satisfies the backward SDE system

Ãs,t(z) =∇L(z) +
∫ t
s∇b(Ψ̌r,t(z), r)

>Ãr,t(z) dr +
∑m

i=1

∫ t
s∇σi(Ψ̌r,T (r), u)>Ãr,t(z) ◦ ďW i

r ,

Ψ̌s,t(z) =z −
∫ t
s b(Ψ̌r,t(z), r) dr −

∑m
i=1

∫ t
sσi(Ψ̌r,t(z), r) ◦ ďW (i)

r .

(11)

Writing X̌s = (Ãs,T (z)>, Ψ̌s,T (z)>)> as the augmented process, the system (11) is a
backward Stratonovich SDE of the form

X̌s(z) =A(z) +
∫ T
s B(X̌r(z), r) dr +

∑m
i=1

∫ T
s Si(X̌r(z), r) ◦ ďW (i)

r ,

where B,Si ∈ C∞,1b . As a result (11) has a unique strong solution.
Without loss of generality, assume t = 0. Since (11) admits a strong solution, we may

write

Ã0(z) = F(z,W·),

where W· = {Wt}0≤t≤T denotes the path of the Brownian motion and

F : Rd × C([0, 1],Rm)→ Rd

is a deterministic measurable function (the Itô map) (Rogers and Williams, 2000, Definition
10.9). Intuitively, F can be thought as an algorithm that computes the solution to the
backward SDE (11) given the position z at time T and the realized Brownian path. Similarly,
we let G be the solution map for the forward flow (7). Immediately, we arrive at Theorem 3.1.
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C.2. Numerical Approximation

In practice, we compute solutions to SDEs with numerical solvers Fh and Gh, where h =
T/N denotes the mesh size of a fixed grid1. The approximate algorithm thus outputs
Fh(Gh(z,W·),W·). The following theorem provides sufficient conditions for convergence.

Theorem C.2:
Suppose the schemes Fh and Gh satisfy the following conditions: (i) Fh(z,W·) → F(z,W·)
and Gh(z,W·)→ G(z,W·) converge to 0 in probability as h→ 0, and (ii) for any M > 0, we
have sup|z|≤M |Fh(z,W·) − F(z,W·)| → 0 in probability as h → 0. Then, for any starting
point z of the forward flow, we have

Fh(Gh(z,W·),W·)→ F(G(z,W·),W·) = A0,T (z)

in probability as h→ 0.

For details and the proof see Appendix J. Usual schemes such as the Euler-Maruyama
and Milstein method satisfy condition (i). Indeed, they converge pathwise (i.e. almost
surely) with explicit rates for any fixed starting point (Kloeden and Neuenkirch, 2007). While
condition (ii) is rather strong, we note that the SDEs considered here have smooth coefficients
and thus the solutions enjoy nice regularity properties in the starting position. Therefore, it
is reasonable to expect that the corresponding numerical schemes to also behave nicely as a
function of both the mesh size and the starting position. To the best of our knowledge this
property is not considered at all in the literature on numerical methods for SDEs (where the
initial position is fixed), but is crucial in the proof of Theorem C.2. Detailed analysis for
specific schemes is beyond the scope of this paper and is left for future research.

C.3. The Algorithm

So far we have derived the gradient of the loss with respect to the initial state. We can
extend these results to give gradients with respect to parameters of the drift and diffusion
functions by treating them as an additional part of the state whose dynamics has zero drift
and diffusion. We summarize this in Algorithm 12, assuming access to a numerical solver
SDESolve. Note for the Euler-Maruyama scheme, the most costly terms to compute a>t ∂b/∂θ
and a>t ∂σi/∂θ can be evaluated by calling vjp(at, b, θ) and vjp(at, σi, θ), respectively.

In principle, we can simulate the forward and backward adjoint dynamics with any
high-order solver of choice. However, in practice, to obtain a strong numerical solution3

with order beyond 1/2, we need to simulate multiple integrals of the Wiener process such
as
∫ t

0

∫ s
0 dW

(i)
u dW

(j)
s for i, j ∈ [m], i 6= j. These random variables are difficult to simulate

exactly and costly to approximate using truncated infinite series (Wiktorsson et al., 2001).
Note that even though the backward SDE for the stochastic adjoint does not have diagonal

noise, it satisfies a commutativity property (Rößler, 2004) when the SDE of the original

1. We may also use adaptive solvers (Ilie et al., 2015).
2. We use row vector notation here.
3. A numerical scheme is of strong order p if E [|XT −XNη|] ≤ Cηp for all T > 0, where Xt and XNη are

respectively the coupled true solution and numerical solution, N and η are respectively the iteration
index and step size such that Nη = T , and C is independent of η.
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dynamics has diagonal noise. In this case, we can safely adopt certain numerical schemes of
strong order 1.0 (e.g. Milstein (Milstein, 1994) and stochastic Runge-Kutta (Rößler, 2010))
without approximating multiple integrals or the Lévy area during simulation. We verify this
formally in Appendix K.

C.4. Software and Implementation

We have implemented several SDE solvers in PyTorch (Paszke et al., 2017) which include
Euler-Maruyama, Milstein, and stochastic Runge-Kutta schemes with adaptive time-stepping
using a PI controller (Ilie et al., 2015). In addition, following torchdiffeq (Chen et al.,
2018), we have created a user-friendly subclass of torch.autograd.Function that facilitates
gradient computation using our stochastic adjoint framework when the neural SDE is
implemented as a subclass of torch.nn.Module. We include a short code snippet covering
the main idea of the stochastic adjoint in Appendix L and plan to release all code after the
double-blind reviewing process.

Appendix D. Details on Seeded Brownian Tree

The formulation of the adjoint ensures it can be numerically integrated by merely evaluating
dynamics cheaply defined by vector-Jacobian products, as opposed to whole Jacobians.
However, the backward-in-time nature also introduces the additional difficulty that the
same Wiener process sample path in the forward pass has to be queried again during the
backward pass. Naïvely storing Brownian motion increments and related quantities (e.g.
Lévy area approximations) not only implies a large memory consumption but also disables
using adaptive time-stepping numerical integrators, where the evaluation timestamps in the
backward pass may be different from those in the forward pass.

To overcome this issue, we combine Brownian trees with splittable Pseudorandom number
generators (PRNGs) and obtain a data structure that allows querying values of the Wiener
process path at arbitrary times with logarithmic time cost with respect to some error
tolerance.

D.1. Brownian Bridge and Brownian Tree

Lévy’s Brownian bridge (Revuz and Yor, 2013) states that given a start time ts and end
time te along with their respective Wiener process values ws and we, the marginal of the
process at time t ∈ (ts, te) is a normal distribution:

N
(

(te − t)ws + (t− ts)we
te − ts

,
(te − t)(t− ts)

te − ts
Id

)
. (12)

We can recursively apply this formula to evaluate the process at the midpoint of any two
distinct timestamps where the values are already known. Constructing the whole sample path
of a Wiener process in this manner results in what is known as the Brownian tree (Gaines
and Lyons, 1997).
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D.2. Combining Brownian Tree with Splittable PRNG

We assume access to a splittable PRNG (Claessen and Pałka, 2013), which has an operation
split that deterministically generates two (or more) keys4 using an existing key. In addition,
we assume access to an operation BrownianBridge which samples from (12) given a key.
To obtain the Wiener process value at a specific time, the seeded Brownian tree works by
recursively sampling according to the Brownian tree with keys split from those of parent
nodes, assuming the values at some initial and terminal times are known. The algorithm
terminates when the current time under consideration is within a certain error tolerance of
the desired time. We outline the full procedure in Algorithm D.2.

Algorithm 2 Seeded Brownian Tree
Input: seed s, query t, tolerance ε, start time ts, start state ws, end time te, end state we.
tmid = (ts + te)/2; wmid = BrownianBridge(ts, ws, te, we, tmid, s)
while |t− tmid| > ε do

sl, sr = split(s) . Generates two keys corresponding to left and right subtrees.
if t < tmid then

te, xe, s = tmid, wmid, sl
else

ts, xs, s = tmid, wmid, sr
end
tmid = (ts + te)/2; wmid = BrownianBridge(ts, ws, te, we, tmid, s)

end
return tmid

This algorithm has constant memory cost. For fixed-step-size solvers, the tolerance that
the tree will be queried at will scale as 1/L, where L is the number of steps in the solver.
Thus the complexity per-step will scale as logL.

Appendix E. Stochastic Adjoint for Latent SDE

Note that the variational free energy (6) can be derived from Girsanov’s change of measure
theorem (Opper, 2019). To efficiently Monte Carlo estimate this quantity and its gradient,
we simplify the equation by noting that for a one-dimensional process {Vt}t∈T adapted
to the filtration generated by a one-dimensional Wiener process {Wt}t∈T, if Novikov’s
condition (Øksendal, 2003) is satisfied, then the process defined by the Itô integral

∫ t
0 Vs dWs

is a Martingale (Øksendal, 2003). Hence, E
[∫ T

0 u(Zt, t)
> dWt

]
= 0, and

LVI = E
[

1
2

∫ T
0 |u(Zt, t)|2 dt−

N∑
i=1

log p(yti |zti)
]
.

To Monte Carlo simulate the quantity in the forward pass along with the original dynamics,
we need only extend the original augmented state with an extra variable Lt such that the

4. We consider PRNGs that are based on hashing keys to values which are the desired random numbers.
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new drift and diffusion functions for the new augmented state Yt = (Z>t , θ
>, Lt)

> are

f(x, t) =

 b(z, t)
0p

1
2 |u(z, t)|22

 ∈ Rd+p+1, gi(x, t) =

σi(z, t)0p
0

 ∈ Rd+p+1, i ∈ [m].

By (11), the backward SDEs of the adjoint processes become

Azt =AzT +
∫ T
t

(
∂b(z, s)

∂z

∣∣∣∣>
z=Zs

Azs +
1

2

∂ ‖u(z, s)‖22
∂z

∣∣∣∣
z=Zs

Als

)
dt+

m∑
i=1

∫ T
t

∂σi(z, s)

∂z

∣∣∣∣>
z=Zs

Azs ◦ ďW (i)
s ,

Aθt =AθT +
∫ T
t

(
∂b(z, s)

∂θ

∣∣∣∣>
z=Zs

Azs +
1

2

∂ ‖u(z, s)‖22
∂θ

∣∣∣∣
z=Zs

Als

)
dt+

m∑
i=1

∫ T
t

∂σi(z, s)

∂θ

∣∣∣∣>
z=Zs

Azs ◦ ďW (i)
s ,

Alt =AlT .
(13)

In this case, neither do we need to actually simulate the backward SDE of the extra variable
nor do we need to simulate its adjoint. Moreover, when considered as a single system for
the augmented adjoint state, the diffusion function of the backward SDE (13) satisfies the
commutativity property (17).

Appendix F. Numerical Studies

We consider three carefully designed test problems (examples 1-3 (Rackauckas and Nie, 2017);
details in Appendix M) all of which have closed-form solutions. We compare the gradient
computed from simulating our stochastic adjoint process using the Milstein scheme against
the gradient evaluated by analytically solving the equations. Figure F (a) shows that for test
example 1, the error between the adjoint gradient and analytical gradient decreases as the
fixed step size decreases.

One phenomenon not covered by our theory is that the error can be indeed be controlled
by the adaptive solver. This is shown by the fact that for all three test problems, the
mean-square error across dimensions tends to be smaller as the absolute tolerance is reduced
(see Figure F (c, f, j)). However, we note that the Number of Function Evaluations (NFEs)
tends to be much larger than that in the ODE case (Chen et al., 2018), which is expected
given the inherent roughness of Brownian motion paths.

Appendix G. Related Work

Sensitivity Analysis for SDEs. Gradient computation is closely related to sensitivity
analysis. Computing gradients with respect to parameters of vector fields of an SDE
has been extensively studied in the stochastic control literature (Kushner and Dupuis,
2013). In particular, for low dimensional problems, this is done effectively using dynamic
programming (Baxter and Bartlett, 2001) and finite differences (Glasserman and Yao, 1992;
L’Ecuyer and Perron, 1994). However, both approaches scale poorly with the dimensionality
of the parameter vector.

Analogous to REINFORCE (or score-function estimator) (Williams, 1992; Kleijnen and
Rubinstein, 1996; Glynn, 1990), Yang and Kushner (1991) considered deriving the gradient
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Figure 3: Left of each row: Same fixed step size used in both forward and reverse simulation.
Boxplot generated by repeating the experiment with different Brownian motion
sample paths for 64 times. Mid and right of each row: Colors of dots represent
tolerance levels and correspond to the colorbar on the right. Only atol was varied
and rtol was set to 0. (a-c) Example 1. (d-f) Example 2. (h-j) Example 3.

as ∇E [L(ZT )] = E [L(ZT )H] for some random variable H5. However, H usually depends on
the density of ZT with respect to the Lebesgue measure which can be difficulty to compute.
Gobet and Munos (2005) extended this approach by weakening a non-degeneracy condition
using Mallianvin calculus.

Closely related to the current submission is the pathwise method (Yang and Kushner,
1991), which is the continuous-time analog of the reparameterization trick (Kingma and
Welling, 2013; Rezende et al., 2014). Existing methods in this regime (Tzen and Raginsky,
2019a; Gobet and Munos, 2005; Liu et al., 2019) all require simulating a forward SDE where
each step requires computing entire Jacobian matrices. This computational cost is prohibitive
for high-dimensional systems with a large number of parameters.

Based on the Euler discretization, Giles and Glasserman (2006) considered storing the
intermediate values and performing reverse-mode automatic differentiation. They named this
method the adjoint approach, which, by modern standards, is a form of “backpropagation

5. The random variable H is not unique.
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through the operations of a numerical solver”. We comment that this approach, despite
widely adopted in the field of finance for calibrating market models (Giles and Glasserman,
2006), has high memory cost, and relies on a fixed step size Euler-Maruyama discretization.
This approach was used by (Hegde et al., 2019) to parameterize the drift and diffusion of an
SDE using Gaussian processes.

Backward SDEs. Our backward SDE for the stochastic adjoint process relies on the
notion of backward SDEs by Kunita (2019) which is based on two-sided filtrations. This is
different from the more traditional notion of backward SDEs where only a single filtration is
defined (Peng, 1990; Pardoux and Peng, 1992). Based on the latter notion, forward-backward
SDEs (FBSDEs) have been proposed to solve the stochastic optimal control problem (Peng
and Wu, 1999). However, simulating FBSDEs is costly due to the need to estimate conditional
expectations in the backward pass. Estimating conditional expectations, however, is a direct
consequence of the appearance of an auxiliary process from the Martingale representation
theorem (Pardoux and Peng, 1992).

Appendix H. Discussion

We presented a stochastic analog of the adjoint sensitivity method to compute gradients
through solutions of SDEs. In contrast to existing approaches, this method has nearly the
same time and memory complexity as simply solving the SDE. We showed how our stochastic
adjoint framework can incorporate a gradient-based stochastic variational inference scheme
for training latent SDEs.

Our method opens up a broad set of opportunities for fitting any differentiable SDE
model, such as the mutation and selection parameters in Wright-Fisher models (Ewens, 2012),
derivative models in finance, or infinitely-deep Bayesian neural networks (Peluchetti and
Favaro, 2019). In addition, the latent SDE model enabled by our framework can be extended
to include structure, domain knowledge, and stationarity constraints (Ma et al., 2015) in the
prior process.

Appendix I. Proof of Theorem C.1

Proof [Proof of Theorem C.1] We have Js,t(z) = ∇Ψ̌s,t(z), where Ψ̌s,t(z) is defined in (8).
Now we take the gradient with respect to z on both sides. The solution is differentiable with
respect to z and we may differentiate under the stochastic integral (Kunita, 2019, Proposition
2.4.3). Theorem 3.4.3 Kunita (2019) is sufficient for the regularity conditions required. Since
Ks,t(z) = Js,t(z)

−1, applying the Stratonovich version of Itô’s formula to (9), we have (10).

Appendix J. Proof of Theorem C.2

Proof [Proof of Theorem C.2] We want to bound the difference

|F(G(z,W·),W·)− Fh(Gh(z,W·),W·)|
≤ |F(G(z,W·),W·)− F(Gh(z,W·),W·)|+ |F(Gh(z,W·),W·)− Fh(Gh(z,W·),W·)|
=: I1 + I2.
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For notational convenience we suppress z and W·.
Bounding I1. Let ε > 0 be given. Since Gh → G in probability, there exist M1 > 0 and

h0 > 0 such that

P(|G| > M1) < ε, P(|Gh| > 2M1) < ε, for all h ≤ h0.

Since the SDE defines a stochastic flow of diffeomorphisms, there exists a finite random
variable C2 such that sup|z|≤2M1

|∇zF| ≤ C2, and there exists M2 > 0 such that P(|C2| >
M2) < ε. Given M2, there exists h1 > 0 such that

P(|G−Gh| >
ε

M2
) < ε, for all h ≤ h1.

Now suppose h ≤ min{h0, h1}. Then, by the union bound, with probability at least 1− 4ε,
we have

|G| ≤M1, |Gh| ≤ 2M1, |C2| ≤M2, |G−Gh| ≤
ε

M2
.

On this event, we have

I1 = |F(G)− F(Gh)| ≤ C2|G−Gh| ≤M2
ε

M2
= ε.

Thus, we have shown that I1 converges to 0 in probability as h→ 0.

Bounding I2. The idea is similar. By condition (ii), we have

lim
h→0

sup
|zT |≤M

|Fh(zT )− F(zT )| = 0

in probability. Using this and condition (i), for given ε > 0, there exist M > 0 and h0 > 0
such that for h ≥ h0, we have

|Gh| ≤M and sup
|zT |≤M

|Fh(zT )− F(zT )| < ε

with probability at least 1− ε. On this event, we have

|F(Gh)− Fh(Gh)| ≤ sup
|zT |≤M

|Fh(zT )− F(zT )| < ε.

Thus I2 also converges to 0 in probability.

Appendix K. Stochastic Adjoint has Commutative Noise when Original
SDE has Diagonal Noise

Recall the Stratonovich SDE (7) with drift and diffusion functions b, σ1, . . . , σm ∈ Rd ×R→
Rd governed by a set of parameters θ ∈ Rp. Consider the augmented state composed
of the original state and parameters Yt = (Z>t , θ

>)>. The augmented state satisfies a
Stratonovich SDE with the drift function f(y, t) = (b(z, t)>,0>p )> and diffusion functions
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gi(y, t) = (σi(z, t)
>,0>p )> for i ∈ [m]. By (10) and (3), the dynamics for the adjoint process

of the augmented state is characterized by the backward SDE:

Ayt = AyT +

∫ T

t
∇f(Ys, s)

>Ays dt+
m∑
i=1

∫ T

t
∇gi(Ys, s)>Ays ◦ ďW (i)

s .

By definitions of f and gi, the Jacobian matrices ∇f(x, s) and ∇gi(x, s) can be written as:

∇f(y, s) =

(
∂b(z,s)
∂z 0d×p

0p×d 0p×p

)
∈ R(d+p)×(d+p), ∇gi(y, s) =

(
∂σi(z,s)
∂z 0d×p

0p×d 0p×p

)
∈ R(d+p)×(d+p).

Thus, we can write out the backward SDEs for the adjoint processes of the state and
parameters separately:

Azt =AzT +

∫ T

t

∂b(z, s)

∂z

∣∣∣∣>
z=Zs

Azs dt+

m∑
i=1

∫ T

t

∂σi(z, s)

∂z

∣∣∣∣>
z=Zs

Azs ◦ ďW (i)
s , (14)

Aθt =AθT +

∫ T

t

∂b(z, s)

∂θ

∣∣∣∣>
z=Zs

Azs dt+
m∑
i=1

∫ T

t

∂σi(z, s)

∂θ

∣∣∣∣>
z=Zs

Azs ◦ ďW (i)
s .

Now assume the original SDE has diagonal noise. Then, m = d and Jacobian matrix ∇σi(z)
can be written as:

∂σi(z)

∂z
=

0 ... 0 0 0 ... 0

0 ... 0
∂σi,i(z)
∂zi

0 ... 0

0 ... 0 0 0 ... 0

 . (15)

Consider the adjoint process for the augmented state along with the backward flow of the
backward SDE (8). We write the overall state as Xt = (Z>t , (A

z
t )
>, (Aθt )

>)>, where we abuse
notation slightly to let {Zt}t∈T denote the backward flow process. Then, by (14) and (15),
{Xt}t∈T satisfies a backward SDE with a diffusion function that can be written as:

G(x) =



−σ1,1(z1) 0 . . . 0 0
. . .

0 0 . . . 0 −σd,d(zd)
∂σ1,1(z1)
∂z1

az1 0 . . . 0 0

. . .

0 0 . . . 0
∂σd,d(zd)
∂zd

azd
∂σ1,1(z1)
∂θ1

az1 . . . . . . . . .
∂σd,d(zd)
∂θ1

azd
. . .

∂σ1,1(z1)
∂θp

az1 . . . . . . . . .
∂σd,d(zd)
∂θp

azd


∈ R(2d+p)×d. (16)

Recall, for an SDE with diffusion function Σ(x) ∈ Rd×m, it is said to satisfy the commutativity
property (Rößler, 2004) if

d∑
i=1

Σi,j2(x)
∂Σk,j1(x)

∂xi
=

d∑
i=1

Σi,j1(x)
∂Σk,j2(x)

∂xi
, (17)
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for all j1, j2 ∈ [m] and k ∈ [d]. When an SDE has commutative noise, the computationally
intensive double Itô integrals (and the Lévy areas) need not be simulated by having the
numerical scheme take advantage of the following property of iterated integrals (Ilie et al.,
2015): ∫ t

s

∫ u

s
dW (i)

r dW (j)
u +

∫ t

s

∫ u

s
dW (j)

r dW (i)
u = ∆W (i)∆W (j),

where the Brownian motion increment ∆W (i) = W
(i)
t − W

(i)
s for i ∈ [m] can be easily

sampled.
To see that the diffusion function (16) indeed satisfies the commutativity condition (17),

we consider several cases:

• k = 1, . . . , d: Both LHS and RHS are zero unless j1 = j2 = k, since for Σi,j2(x)
∂Σk,j1 (x)

∂xi
to be non-zero, i = j1 = j2 = k.

• k = d+ 1 . . . , 2d: Similar to the case above.

• k = 2d+ 1 . . . , 2d+ p: Write k = 2d+ l, where l ∈ [p]. Both LHS and RHS are zero
unless j1 = j2 = l, since for Σi,j2(x)

∂Σk,j1 (x)

∂xi
to be non-zero i = l or i = d + l and

j1 = j2 = l.

Since in all scenarios, LHS = RHS, we conclude that the commutativity condition holds.
Finally, we comment that the Milstein scheme for the stochastic adjoint of diagonal noise

SDEs can be implemented such that during each iteration of the backward solve, vjp is only
called a number of times constant with respect to the dimensionality of the original SDE.

Appendix L. Stochastic Adjoint Implementation

We include the core code of our stochastic adjoint framework, assuming access to a callable
Brownian motion bm, an Euler-Maruyama integrator ito_int_diag for diagonal noise SDEs,
and several other helper functions whose purposes can be inferred from their names.

c l a s s _SdeintAdjointMethod ( torch . autograd . Function ) :

@staticmethod
de f forward ( ctx , ∗ args ) :

( y0 , f , g , ts , flat_params_f , flat_params_g , dt , bm) = (
args [ : −8 ] , a rgs [−7] , a rgs [−6] , a rgs [−5] , a rgs [−4] , a rgs [−3] , a rgs [−2] , a rgs [−1])

ctx . f , ctx . g , ctx . dt , ctx .bm = f , g , dt , bm

def g_prod ( t , y , no i s e ) :
g_eval = g ( t=t , y=y)
g_prod_eval = tup l e (

g_eval_i ∗ no i se_i f o r g_eval_i , no i se_i in _zip ( g_eval , no i s e ) )
re turn g_prod_eval

with torch . no_grad ( ) :
ans = ito_int_diag ( f , g_prod , y0 , ts , dt , bm)

ctx . save_for_backward ( ts , flat_params_f , flat_params_g , ∗ans )
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re turn ans

@staticmethod
de f backward ( ctx , ∗grad_outputs ) :

ts , flat_params_f , flat_params_g , ∗ans = ctx . saved_tensors
f , g , dt , bm = ctx . f , ctx . g , ctx . dt , ctx .bm
f_params , g_params = tup l e ( f . parameters ( ) ) , tup l e ( g . parameters ( ) )
n_tensors = len ( ans )

de f aug_f ( t , y_aug ) :
y , adj_y = y_aug [ : n_tensors ] , y_aug [ n_tensors : 2 ∗ n_tensors ]

with torch . enable_grad ( ) :
y = tup l e (y_. detach ( ) . requires_grad_ (True ) f o r y_ in y )
adj_y = tup l e (adj_y_ . detach ( ) f o r adj_y_ in adj_y )

g_eval = g ( t=−t , y=y)
gdg = torch . autograd . grad (

outputs=g_eval ,
inputs=y ,
grad_outputs=g_eval ,
retain_graph=True , create_graph=True )

f_eval = f ( t=−t , y=y)
f_eval = _sequence_subtract ( gdg , f_eval ) # −f + gdg .

vjp_y_and_params = torch . autograd . grad (
outputs=f_eval ,
inputs=y + f_params + g_params ,
grad_outputs=tup l e (−adj_y_ f o r adj_y_ in adj_y ) ,
retain_graph=True , allow_unused=True )

vjp_y = vjp_y_and_params [ : n_tensors ]
vjp_f = vjp_y_and_params[− l en ( f_params + g_params):− l en ( g_params ) ]
vjp_g = vjp_y_and_params[− l en ( g_params ) : ]

vjp_y = tup l e (
torch . z e r o s_ l i k e (y_) i f vjp_y_ i s None
e l s e vjp_y_ f o r vjp_y_ , y_ in z ip ( vjp_y , y ) )

adj_times_dgdx = torch . autograd . grad (
outputs=g_eval ,
inputs=y ,
grad_outputs=adj_y ,
create_graph=True )

extra_vjp_y_and_params = torch . autograd . grad (
outputs=g_eval ,
inputs=y + f_params + g_params ,
grad_outputs=adj_times_dgdx ,
allow_unused=True )

extra_vjp_y = extra_vjp_y_and_params [ : n_tensors ]
extra_vjp_f = extra_vjp_y_and_params[− l en ( f_params + g_params):− l en ( g_params ) ]
extra_vjp_g = extra_vjp_y_and_params[− l en ( g_params ) : ]

extra_vjp_y = tup l e (
torch . z e r o s_ l i k e (y_) i f extra_vjp_y_ i s None
e l s e extra_vjp_y_ f o r extra_vjp_y_ , y_ in z ip ( extra_vjp_y , y ) )
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vjp_y = _sequence_add (vjp_y , extra_vjp_y )
vjp_f = vjp_f + extra_vjp_f
vjp_g = vjp_g + extra_vjp_g

return (∗ f_eval , ∗vjp_y , vjp_f , vjp_g )

de f aug_g_prod ( t , y_aug , no i s e ) :
y , adj_y = y_aug [ : n_tensors ] , y_aug [ n_tensors : 2 ∗ n_tensors ]

with torch . enable_grad ( ) :
y = tup l e (y_. detach ( ) . requires_grad_ (True ) f o r y_ in y )
adj_y = tup l e (adj_y_ . detach ( ) f o r adj_y_ in adj_y )

g_eval = tup l e (−g_ f o r g_ in g ( t=−t , y=y ) )
vjp_y_and_params = torch . autograd . grad (

outputs=g_eval ,
inputs=y + f_params + g_params ,
grad_outputs=tup l e (−noise_ ∗ adj_y_ f o r noise_ , adj_y_ in z ip ( no i se , adj_y ) ) ,
allow_unused=True )

vjp_y = vjp_y_and_params [ : n_tensors ]
vjp_f = vjp_y_and_params[− l en ( f_params + g_params):− l en ( g_params ) ]
vjp_g = vjp_y_and_params[− l en ( g_params ) : ]

vjp_y = tup l e (
torch . z e r o s_ l i k e (y_) i f vjp_y_ i s None
e l s e vjp_y_ f o r vjp_y_ , y_ in z ip ( vjp_y , y )

)
g_prod_eval = _sequence_multiply ( g_eval , no i s e )

re turn (∗ g_prod_eval , ∗vjp_y , vjp_f , vjp_g )

de f aug_bm( t ) :
r e turn tup l e (−bmi f o r bmi in bm(−t ) )

T = ans [ 0 ] . s i z e (0 )
with torch . no_grad ( ) :

adj_y = tup l e ( grad_outputs_ [−1] f o r grad_outputs_ in grad_outputs )
adj_params_f = torch . z e r o s_ l i k e ( flat_params_f )
adj_params_g = torch . z e r o s_ l i k e ( flat_params_g )

f o r i in range (T − 1 , 0 , −1):
ans_i = tup l e ( ans_ [ i ] f o r ans_ in ans )
aug_y0 = (∗ ans_i , ∗adj_y , adj_params_f , adj_params_g )
aug_ans = ito_int_diag (

f=aug_f , g_prod=aug_g_prod , y0=aug_y0 ,
t s=torch . t en so r ([− t s [ i ] , −t s [ i − 1 ] ] ) . to ( t s ) ,
dt=dt , bm=aug_bm)

adj_y = aug_ans [ n_tensors : 2 ∗ n_tensors ]
adj_params_f , adj_params_g = aug_ans [−2] , aug_ans [−1]

# Take the r e s u l t at the end time .
adj_y = tup l e (adj_y_ [ 1 ] f o r adj_y_ in adj_y )
adj_params_f , adj_params_g = adj_params_f [ 1 ] , adj_params_g [ 1 ]
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# Accumulate g rad i en t s at in t e rmed ia t e po in t s .
adj_y = _sequence_add (

adj_y , tup l e ( grad_outputs_ [ i − 1 ] f o r grad_outputs_ in grad_outputs )
)

re turn (∗ adj_y , None , None , None , adj_params_f , adj_params_g , None , None )

Appendix M. Test Problems

In the following, α, β, and p are parameters of SDEs, and x0 is a fixed initial value.

Example 1.

dXt = αXt dt+ βXt dWt, X0 = x0.

Analytical solution:

Xt = X0e

(
β−α

2

2

)
t+αWt .

Example 2.

dXt =−
(
p2
)2

sin (Xt) cos3 (Xt) dt+ p cos2 (Xt) dWt, X0 = x0

Analytical solution:

Xt = arctan (pWt + tan (X0)) .

Example 3.

dXt =

(
β√

1 + t
− 1

2(1 + t)
Xt

)
dt+

αβ√
1 + t

dWt, X0 = x0

Analytical solution:

Xt =
1√

1 + t
X0 +

β√
1 + t

(t+ αWt) .

In each numerical experiment, we duplicate the equation 10 times to obtain a system of
SDEs where each dimension had their own parameter values sampled from the standard
Gaussian distribution and then passed through a sigmoid to ensure positivity. Moreover, we
also sample the initial value for each dimension from a Gaussian distribution.

Appendix N. Synthetic Datasets

We consider training latent SDE models with our adjoint framework to recover (1) a 1D
Geometric Brownian motion, and (2) a 3D stochastic Lorenz attractor process. The main
objective is to verify that the learned posterior is able to reconstruct the training data,
and the learned prior exhibit stochastic behavior. We jointly optimize the variational free
energy (6) with respect to parameters of the prior and posterior distributions at the initial
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latent state z0, the prior and posterior drift, the diffusion function, the encoder, and the
decoder. We include the details of dataset and architecture in Appendix N.1.

For the stochastic Lorenz attractor, not only is the model able to reconstruct the data
well, but also the learned prior process can produce bimodal samples in both data and latent
space. This is showcased in the last row of Figure 4, where once the initial position sampled
from the learned prior distribution is fixed, the latent and data space samples cluster around
two modes. Note that this cannot be achieved by a latent ODE, where trajectories are
determined once their initial latent state is determined.

Figure 4: Additional visualizations of learned posterior and prior dynamics on the synthetic
stochastic Lorenz attractor dataset. First row displays the true data and posterior
reconstructions. Second row displays samples with initial latent state for each
trajectory is sampled independently. Third row displays samples with initial latent
state sampled and fixed to be the same for different trajectories.

See Figure 4 for additional visualization on the synthetic Lorenz attractor dataset. See
Figure 5 for visualization on the synthetic geometric Brownian motion dataset. We comment
that for the second example, the posterior reconstructs the data well, and the prior process
exhibit behavior of the data. However, from the third row, we can observe that the prior
process is learned such that most of the uncertainty is account for in the initial latent state.
We leave the investigation of more interpretable prior process for future work.

N.1. Synthetic Datasets Configuration

N.1.1. Geometric Brownian Motion

Consider a geometric Brownian motion SDE:

dXt = µXt dt+ σXt dWt, X0 = x0.
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Figure 5: Visualizations of learned posterior and prior dynamics on the synthetic geometric
Brownian motion dataset. First row displays the true data and posterior reconstruc-
tions. Orange contour covers 95% of 512 samples. Second row displays samples
with initial latent state for each trajectory is sampled independently. Third row
displays samples with initial latent state sampled and fixed to be the same for
different trajectories.

We use µ = 1, σ = 0.5, and x0 = 0.1 + ε as the ground-truth model, where ε ∼ N(0, 0.032).
We sample 1024 time series, each of which is observed at intervals of 0.02 from time 0 to time
1. We corrupt this data using Gaussian noise with mean zero and standard deviation 0.01.

To recover the dynamics, we use a GRU-based Cho et al. (2014) latent SDE model where
the GRU has 1 layer and 100 hidden units, the prior and posterior drift functions are MLPs
with 1 hidden layer of 100 units, and the diffusion function is an MLP with 1 hidden layer
of 100 hidden units and the sigmoid activation applied at the end. The drift function in
the posterior is time-inhomogenous in the sense that it takes in a context vector of size 1 at
each observation that is output by the GRU from running backwards after processing all
future observations. The decoder is a linear mapping from a 4 dimensional latent space to
observation space. For all nonlinearities, we use the softplus function. We fix the observation
model to be Gaussian with noise standard deviation 0.01.

We optimize the model jointly with respect to the parameters of a Gaussian distribution
for initial latent state distribution, the prior and posterior drift functions, the diffusion
function, the GRU encoder, and the decoder. We use a fixed discretization with step size
of 0.01 in both the forward and backward pass. We use the Adam optimizer Kingma and
Ba (2014) with an initial learning rate of 0.01 that is decay by a factor of 0.999 after each
iteration. We use a linear KL annealing schedule over the first 50 iterations.
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N.1.2. Stochastic Lorenz Attractor

Consider a stochastic Lorenz attractor SDE with diagonal noise:

dXt =σ (Yt −Xt) dt+ αx dWt, X0 = x0,

dYt = (Xt (ρ− Zt)− Yt) dt+ αy dWt, Y0 = y0,

dZt = (XtYt − βZt) dt+ αz dWt, Z0 = z0.

We use σ = 10, ρ = 28, β = 8/3, (αx, αy, αz) = (.1, .28., .3), and (x0, y0, z0) sampled from
the standard Gaussian distribution as the ground-truth model. We sample 1024 time series,
each of which is observed at intervals of 0.025 from time 0 to time 1. We normalize these
samples by their mean and standard deviation across each dimension and corrupt this data
by Gaussian noise with mean zero and standard deviation 0.01.

We use the same architecture and training procedure for the latent SDE model as in the
geometric Brownian motion section, except that the diffusion function consists of four small
neural networks, each for a single dimension of the latent SDE.

Appendix O. Settings for Learning from Motion Capture Dataset

We follow the preprocessing used by Wang et al. (2007). Following Yıldız et al. (2019),
we use a fully connected network to encode the first three observations of each sequence
and thereafter predicted the remaining sequence. Note the current choice of encoder is for
comparing fairly to models in the existing literature, and it may be extended to be a recurrent
or attention model Vaswani et al. (2017) to enhance performance. The overall architecture
is described in Appendix O and is similar to that of ODE2VAE Yıldız et al. (2019) with a
similar number of parameters. We also use a fixed step size that is 1/5 of smallest interval
between any two observations Yıldız et al. (2019).

We train latent ODE and latent SDE models with the Adam optimizer Kingma and Ba
(2014) and its default hyperparameter settings, with an initial learning rate of 0.01 that is
exponentially decayed with rate 0.999 during each iteration. We perform validation over the
number of training iterations, KL penalty Higgins et al. (2017), and KL annealing schedule.
All models were trained for at most 400 iterations, where we start to observe severe overfitting
for most model instances.

We use a latent SDE model with an MLP encoder which takes in the first three frames
and outputs the mean and log-variance of the variational distribution of the initial latent
state and a context vector. The decoder has a similar architecture as that for the ODE2VAE
model Yıldız et al. (2019) and projects the 6-dimensional latent state into the 50-dimensional
observation space. The posterior drift function takes in a 3-dimensional context vector output
by the encoder and the current state and time, whereas the prior drift only takes in the
current state and time. The diffusion function is composed of multiple small neural nets,
each producing a scalar for the corresponding dimension such that the posterior SDE has
diagonal noise. We comment that the overall parameter count of our model (11605) is smaller
than that of ODE2VAE for the same task (12157).

The latent ODE baseline was implemented with a similar architecture, except is does not
have the diffusion and prior drift components, and its vector field defining the ODE does not
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Figure 6: Architecture specifics for the latent SDE model used to train on the mocap dataset.
First row from left to right are the encoder and decoder. Second row from left to
right are the prior drift, posterior drift, and diffusion functions.

take in a context vector. Therefore, the model has slightly fewer parameters (10573) than
the latent SDE model. See Figure 6 for overall details of the architecture.

The main hyperparameter we tuned was the coefficient for reweighting the KL. For both
the latent ODE and SDE, we considered training the model with a reweighting coefficient in
{1, 0.1, 0.01, 0.001}, either with or without a linear KL annealing schedule that increased
from 0 to the prescribed value over the first 200 iterations of training.
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