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Abstract
Contextual bandits capture the partial-feedback
nature in an interactive system.

Algorithms for contextual bandits have wide ap-
plications in automated decision making such as
recommender system and automated stock trad-
ing. Evaluating the cumulative reward of a target
policy given the historical trajectories of a log-
ging policy (i.e. off-policy evaluation) in con-
textual bandit setting is a task of importance, as
it provides an estimate of the performance of a
new policy without experimenting with it.

One (common and well-studied) solution is the
Inverse Propensity Score (IPS) estimator. The
idea of such methods is to estimate the expec-
tation through importance sampling (i.e. re-
weighting the data with a ratio associated with
the logging and evaluation policy). Existing
work assumes the stationarity of the distribution
over context space, which is not always true in
a real-world scenario. More practical model-
ing considers the shift of context/reward distri-
butions between the logged data and the contexts
observed in order to evaluate a target policy in
the future.

Such a problem is difficult in general due to the
high-Dimensionality of the context space, as ob-
served in our experiments. In this paper, we pro-
pose an intent shift model which proposes to in-
troduce an intent variable to capture the distribu-
tional shift on context and reward. Under the in-
tent shift model, we propose a consistent spectral
estimator for the reweighting factor and its finite-
sample analysis and provide an MSE bound on
the performance of our final estimator. Exper-
iments show that our estimator outperforms the
existing ones. W

1Anonymous Institution, Anonymous City, Anonymous Re-
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1. Introduction
Automated decision making is an important task in ma-
chine learning, encompassing practical applications such as
recommendation system, web search and stock trading ((Li
et al., 2010; Bottou et al., 2013; Tang et al., 2013; Wang
et al., 2014)). These problems are often studied under the
contextual bandits model ((Abe et al., 2003; Auer, 2002))
where the agent (the algorithm) chooses an action a from
the action set A on observation of a context x ∈ X ⊂ Rd,
which is drawn from a fixed unknown distribution, i.e. the
a stationary environment. A reward r is then revealed,
according to a distribution specified by the context-action
pairs. The goal is to find a good policy that maximizes
the expected reward, (e.g., click through rate (CTR) in the
recommendation setting). In some scenario, the safety (or
its opposite, risk) of a decision making system is of core
concern. That is, the performance of a new policy need
to be assessed before put into use. Off-policy evaluation
provides a way to estimate of the performance of policies
based on historical data. Such estimation allows a con-
trolled risk for deploying a new policy.

Different estimators for off-policy evaluation, under the as-
sumption that the contexts and rewards are drawn from
an unknown stationary distribution/environment, have been
proposed for contextual bandits and reinforcement learn-
ing settings ((Jiang & Li, 2015; Wang et al., 2017; Thomas
et al., 2015; Thomas & Brunskill, 2016)). However for
real-world settings, stationary distribution might be too
strong an assumption. In recommendation systems for e-
commerce, the potential item for purchase for users varies
at different time of a year. Apparently one would expect a
decrease in the sales of coats during summertime. Works
on domain adaption ((Lipton et al., 2018; Azizzadenesheli
et al., 2018; Reddi et al., 2015; Gretton et al., 2009)) aim to
address such distribution mismatch in supervised learning.

In this paper, we address the problem of off-policy evalu-
ation when there is not only a mismatch between behavior
and target policy, but also a distribution shift for the context
and reward model. Such distribution shift is hard to address
with conventional algorithms such as Kernel Mean Match-
ing(Gretton et al., 2009) due to the high-dimensionality of
contexts, as we show in Figure 2a. We address the prob-
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lem of context distribution shift by proposing an intent shift
model where a hidden intent variable governs the distribu-
tion shift. Under the intent shift model, we introduce an off-
policy estimator that balances between bias and variance
of the estimator and achieves a low mean squared error.
We use a spectral method to consistently estimate the dis-
tribution shift and provide the sample complexity needed
to confidently approximate the true underlying distribution
shift as shown in Theorem 3.7. Empirical study on semi-
synthetic data illustrates that the our estimator outperform
the existing estimators.

1.1. Related Work

Off-policy Evaluation (Jiang & Li, 2015)(Wang et al.,
2017) Off-policy evaluation is a line of work in contextual
bandit and reinforcement learning that considers evaluation
of a new policy with data collected by an old policy. This
is important in the tasks where deploying the new policy is
either expensive or risky. A popular baseline is the inverse
propensity score (IPS) method, that reweight the logging
data with a reweight factor. (Jiang & Li, 2015) provides an
estimator to have both low variance and low bias by com-
bining IPS and model-based estimator. (Wang et al., 2017)
provides an adaptive estimator and an minmax lowerbound.

Bandits under with distribution mismatch Another re-
lated topic is (contextual) bandit with distribution mis-
match. (Zhang et al., 2019) considers the scenario, where
the fully-observed (as in supervised learning) historical
data are available, yet there is a distribution mismatch in
the historical data and the environment that the algorithm
can interact with.

Domain Adaptation A closely related topic is the la-
bel shift setting in the domain adaptation literature (Lipton
et al., 2018), (Azizzadenesheli et al., 2018). This is a distri-
bution shift setting in supervised learning, where the distri-
bution shift in samples is only due the distribution shift on
the labels: pS(x|y) = pT (x|y), and pS(y) 6= pT (y). The
difference of our setting lies in the fact that, in our case, the
ground truth labels are not available. The major difference
in setting compared with (Lipton et al., 2018) is that, in su-
pervised learning, the ground truth labels are available for
source domain data, while in our setting such information
is mising for both source and target domain.

Spectral Method and crowd sourcing The similar tech-
nique of spectral method has been used in inference in
probabilistic models (Hsu & Kakade, 2013)(Anandkumar
et al., 2012). (Zhang et al., 2014)(Chaganty & Liang, 2013)
provides an application of spectral method on crowdsourc-
ing.

2. Setting and notation
In a contextual bandit problem, an agent interact with the
environment as follows:

1. At each iteration, an context xt ∈ X is drawn according
to an unknown but fixed distribution DX and revealed to
the agent.

2. the agent picks an action at ∈ A given the revealed
context xt according to some internal policy. Throughout
this paper we will focus on stationary and stochastic poli-
cies (i.e. at ∼ π(·|xt), where π(·|x) is a time-independent
distribution over the action space.)

3. an reward is drawn from the a distribution over
[0, Rmax] specified by the action-context pair: rt ∼
DR(·|xt, at). Let r∗(x, a) denote the expected reward
given the action-context pair: r∗(x, a) = Er∼DR(·|x,a)[r].

We use the shorthand of (xt, at, rt) ∼ (D, π) to denote a
triplet sampled with respect to the joint distribution induced
by (DX , π,DR).

2.1. Off-policy evaluation under distribution shift

Off-policy evaluation is commonly required in online deci-
sion making problems due to the exploration and exploita-
tion tradeoff: The behavior policy µ is usually subopti-
mal for the purposes of exploration and different from the
target policy π the goal of which is to improve cumula-
tive rewards. The goal of off-policy evaluation (OPE) is
to evaluate the expected reward of an evaluation policy π
with the data collected by an behavior policy µ. By defin-
ing µi to be µ(ai|xi), the histroy data can be represented
as: {(xi, ai, ri, µi)}NSi=1. The expected reward by executing
policy π takes the following form:

V (π;D) :=Ex∼DX (·)Ea∼π(·|x)Er∼DR(·|x,a)[r] (1)
=Ex∼DX (·)Ea∼π(·|x)[r∗(x, a)] (2)

Contextual Bandits under Distribution Shift We con-
sider the problem of off-policy evaluation under do-
main/distribution shift. In particular, in addition to the dif-
ference in policies, the distribution intrinsic to the environ-
ment differs for the data collection phase and the evaluation
phase. The problem is stated formally as follows:

In most off-policy evaluation settings, an oversimplified as-
sumption is made – the underlying distribution remain un-
changed, i.e., the distribution of context on which the be-
havior policy is executed (denoted as PrS [x]) is the same as
the distribution of contexts on which the evaluation policy
(denoted as PrT [x]) will be executed. We consider a more
realistic assumption that the context distribution is shifted.
We formally introduce the problem concretely as follows.
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Problem [Off-policy evaluation under distribution shift]
Given data sampled from the source distribution
{(xi, ai, ri, µi)}nSi=1

i.i.d.∼ (DS , µ) and contexts ob-

served from the target domain {x′i}
nT
i=1

i.i.d.∼ DT , we aim to
estimate

V (π;DT ) = E(x,a,r)∼(DT ,π)[r] (3)

An intuitive idea is to obtain an unbiased estimate of the
reward by reweighting the samples from the source distri-
bution using the inverse propensity score βπ(xi, ai, ri) :=
PrT ,π [xi,ai,ri]
PrS,µ[xi,ai,ri]

nS∑
i=1

βπ(xi, ai, ri)ri (4)

However, the naive estimator in (4) usually exhibits high
variance due to the high dimensionality of contexts x. We
introduce a novel model called Intent-shift model (ISM) to
address this issue.

2.2. Intent-shift Model

Our Intent-shift model considers a compact representation
of the high dimensional context. With the hidden represen-
tation (called intent), we provide more robust estimators for
off-policy evaluation under distribution shift.

X R

H

a

Figure 1. Graphical representation of the contextual bandit model
with intents. The intent h generates the observable features (con-
texts) x used by the policy.

Extended Contextual Bandits We extend the traditional
contextual bandit model with an auxillary variable h which
we call intent, since it governs the distribution over context
and reward as user intent does in the application of rec-
ommendation or searching. This intent variable h interacts
with the context x, action a and the reward r via a directed
(causal) graphical model in Figure 1. In this model, intent h
generates the observable features x used by the policy, and
it provides feedbacks r to the learners which measures how
appropriate the action a taken by the policy is in addressing
the user’s intent.

It is not required that the intents are provided together with
each triplets. But we assume there exists some off-the-shelf
mappers that can provide high quality and conditionally in-
dependent predictions of the hidden intents, stated formally
as follows:

Definition 2.1 (Confusion Matrix). Let fa, fb, fc be three
mappers fa, fb, fc : X → H, each associated with
a confusion matrix Ca, Cb, Cc defined as [Cg]ij :=

Pr(x,h)∼DS [fg(x) = ei|h = ej ]
(a)
= Pr(x,h)∼DT [fg(x) =

ei|h = ej ], ∀g ∈ {a, b, c}.

Equality (a) above holds due to the intent shift assumption.

Assumption 2.2 (Independence of mappers conditioned
on the true label). The decisions made by all classifiers
are independent conditioned on the ground truth labels:
Pr[fa(x) = ei, fb(x) = ej , fc(x) = ek|h = el] =
(Ca)il(Cb)jl(Cc)kl.

Intent-shift Model Here we propose the intent-shift
model by analogy with the label-shift setting in domain
adaptation for supervised learning. The hidden intents h
can be viewed as a compact low- dimensional represen-
tation of the high-dimensional observed contexts/features
x. In particular, we consider categorical intent variable
h ∈ H = {1, 2, · · · ,K}. The assumption is stated for-
mally as:

Assumption 2.3 (Intent-shift). The shift of the joint distri-
bution can be ascribed to the shift of marginal distribution
of the intent variable. That is, the conditional distribution
Pr[x|h] and Pr[r|h] remains unchanged as the marginal
distribution of h shifts from source to target domain, which
can be implied by the following decompostion of distribu-
tion:

Pr
D,π

[x, h, a, r] = Pr
D

[h] Pr[x|h] Pr[r|h] Pr
π

[a|x] (5)

for a domain specific distribution D ∈ {DS ,DT }.

The assumption indicates that the shift in the distribution
of x is due to the shift in the marginal distribution of in-
tents ( PrS(h) 6= PrT (h)) but how the intent generates
user’s search queries and other features remain unchanged
(PrS(x|h) = PrT (x|h)). The assumption is similar to
the label shift assumption in (Lipton et al., 2018)(Aziz-
zadenesheli et al., 2018), where the conditional distribu-
tion of features given ground truth labels remains the same
for the source and target distribution. These assumptions
are reasonable, and in some sense without loss of gen-
erality due to Reinbach’s Common Cause Principle ((Re-
ichenbach, 1991)(Sober, 1988)), which says that “when-
ever there is a correlation between two variables (x and r),
there must be a common cause h.”
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3. Our Approach
Given a reasonable assumption on the distribution shift,
now the question is how to come up with an estimator with-
out density estimation over x. In other words, our goal is
to use inverse propensity score that depends on the density
estimation of h to reweight the training examples. In this
section, we present the IPS-based estimator for off-policy
evaluation. Our estimator is based on a spectral method-
based procedure for estimating the reweighting factors as-
sociate with the categorical intents. In this section, we will
first provide the procedure for our estimator, then specified
the estimator for reweighting factor and provide finite sam-
ple analysis.

3.1. IPS Estimator for Intent-shift Model

In this subsection, we describe the IPS estimator, assum-
ing the availability of the estimation of reweighting factor.
We further make the assumption that the supports of the
distribution over X conditioned on different intents do not
overlap:

Assumption 3.1. For any h, h′ ∈ H, h 6= h′:

supp(Pr
DX

[·|H = h]) ∩ supp(Pr
DX

[·|H = h′]) = ∅ (6)

The assumption indicates that, given the knowledge of the
joint distribution, the corresponding h can be uniquely as-
signed to an observed context with probability one.

Without loss of generality, let h ∈ [K] be categorical vari-
ables.

To solve the problem of off-policy evaluation under dis-
tribution shift in Equation (3), we analyze the reweighting
factor under the intent model with assumption 3.1:

Lemma 3.2. For any (xi, ai, ri) sampled from the source
distribution by behavior policy µ:

βπ(xi, ai, ri) =
π(ai|xi)
µ(ai|xi)

PrT [hi]

PrS [hi]
(7)

The proof for lemma 3.2 is included in Appendix A.

An intuitive plug-in estimator for off-policy evaluation
(also see Algorithm 1) is:

nS∑
i=1

β̂π(xi, ai, ri)ri with β̂π(xi, ai, ri) =
π(ai|xi)
µ(ai|xi)

P̂rT [ĥi]

P̂rS [ĥi]

(8)

given triplets generated from the source domain
{(xi, ai, ri)}nSi=1 under behavior policy µ. The asso-
ciated intent is provided by querying any one of the
off-the-shelf estimator. Notice that the estimator does not
involve direct density estimation of context x.

Now the remaining problem is to estimate P̂rT [ĥi]

P̂rS [ĥi]
for any

given xi from the source domain.

Procedure 1 Proposed Spectral IPS Estimator

Input: {(xi, ai, ri)}nSi=1 ∼ PrµS [x, a, r], {x′i}
nT
i=1 ∼

PrT [x] and mappers fa, fb and fc
Output: β̂π(xi, ai, ri), ∀{(xi, ai, ri)}nSi=1

1: ψ̂ ← Procedure 3({xi}nSi=1, {x′i}
nT
i=1, fa, fb,fc)

2: for i = 1 to nS do
3: ĥi ← fc(xi)

4: β̂π(xi, ai, ri)← π(ai|xi)
µ(ai|xi) ψ̂(ĥi)

5: end for

3.2. Spectral-based Estimator for the reweighting
factor

We now describe a spectral-based procedure of the
reweighting factor (see also Algorithm3). Let ψ(h) denote
the reweighting factor for intent h: PrT [h]

PrT [h]
, for all h.

Co-occurrence Matrices Our method is based on direct
estimation of the expected co-occurrence of predictions of
the mappers, defined as follows:
Definition 3.3. For all α, β ∈ {a, b, c}, α 6= β, the co-
occurrence matrices and their empirical estimations is de-
fined as:

(Mαβ
S )ij := Ex∼DS [1[fα(x) = ei, fβ(x) = ej ]] (9)

(Mαβ
T )ij := Ex∼DT [1[fα(x) = ei, fβ(x) = ej ]] (10)

(M̂αβ
S )ij :=

1

nS

nS∑
k=1

1[fα(xk) = ei ∧ fβ(xk) = ej ]

(11)

(M̂αβ
T )ij :=

1

nT

nT∑
k=1

1[fα(xk) = ei ∧ fβ(xk) = ej ]

(12)

An important observation is that the second order co-
occurrence matrix of predictions are simultaneously diag-
onalizable, under the following conditional independence
property of the mappers.
Lemma 3.4 (Simultaneous Diagonalization). Under the
assumption 2.2, the second order co-occurence matrix of
predictions could be factorized as the confusion matrices
and the marginal distribution of h:

Mab
S = CaΛSC

>
b M bc

S = CbΛSC
>
c Mac

S = CaΛSC
>
c

Mab
T = CaΛT C

>
b M bc

T = CbΛT C
>
c Mac

T = CaΛT C
>
c

where ΛS := [PrS [h = 1], . . . ,PrS [h = K]] and ΛT :=
[PrT [h = 1], . . . ,PrT [h = K]].
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Such observation allows us to learn the shift in the distribu-
tion over h through a joint-diagonalization procedure on a
symmetrized second moment.

Lemma 3.5 (Symmetrization). If we define MS :=
M cb
S (Mab

S )†Mac
S on the source domain, the obtained sec-

ond order co-occurrence matrix of predictions MS is sym-
metric and diagonalizable via Cc: MS = CcΛSC

>
c . Simi-

lar statement holds for MT on the target domain.

Direct estimation for ψ(h) through joint diagonaliza-
tion Given the estimation for the symmetric matricesMS
andMT , a whitening step yield a matrix with the reweight-
ing factors of intents as its eigenvalues:

Lemma 3.6 (Whitening). Let WS = USΣ
− 1

2

S be
the whitening matrix such that W>S MSWS = I ,
then W>S MTWS admits an eigen-decomposition with
{ψ(h)}Ki=1 as the eigenvalues.

This property allows identification of the ratio of the
marginal distribution of h through eigen-decomposition

of the whitened matrix ŴS
>
M̂T ŴS . The proof for

Lemma 3.4, 3.5, 3.6 is in Appendix A.

Alignment Issue The joint diagonalization procedure
provides an estimation of the shift in distribution of intent
{ψ(h) = pT (h)

pS(h)
|h ∈ H}, which is an unordered set of

reweighting factors. The recovery procedure suffers from
mis-alignment.

We align the eigenvalues with the intents through an esti-
mation of the confusion matrices, by permuting the order
of the elements of ψ̂ with a permutation matrix T∗ that per-
mutes the confusion matrix Cc to be diagonal-dominant:

T∗ ← arg min
T
‖I − CcT‖. (13)

The estimation of the confusion matrix follows from pro-
cedure 2, where ψ̂(h) corresponds to the hth column of Cc.
Notice that the estimation error of the reweighting factor
does not depend on the estimation error of the confusion
matrices, thus does not contribute to the sample complex-
ity.

Procedure 2 Confusion Matrix Estimation
Input: Whitened Symmetrized second order statistics

M̂ = Ŵ>S M̂T ŴS
Output: Estimation of confusion matrix Ĉc

1: c̃j ← jth Eigenvector(Ŵ>S M̂T ŴS )
2: Ĉc ← [c̃j/‖c̃j‖1]Kj=1

Procedure 3 Estimator for ψ via Joint Diagonalization

Input: {xi}nSi=1 ∼ PrS [x], {x′i}
nT
i=1 ∼ PrT [x] and map-

pers fa, fb and fc
Output: ψ̂ = [ψ̂(1), . . . , ψ̂(h), ψ̂(K)]>

1: Compute M̂ab
S , M̂ bc

S and M̂ac
S

2: Compute M̂ab
T , M̂ bc

T and M̂ac
T

3: Compute MS and MT

M̂S = M̂ cb
S (M̂ab

S )†M̂ac
S (14)

M̂T = M̂ cb
T (M̂ab

T )†M̂ac
T (15)

4: US ← Eigenvectors(M̂S ), ΣS ← Eigenvalues(M̂S )
5: ŴS ← USΣ

− 1
2

S
6: ψ̂ ← Eigenvalues(Ŵ>S M̂T ŴS ),
7: Ĉc ← Procedure 2(Ŵ>S M̂T ŴS )
8: T∗ ← arg minT‖I − CcT‖
9: ψ̂ ← T∗ψ̂

3.3. Finite Sample Analysis of ‖ψ̂ − ψ‖∞

Now we present our main result on the finite sample anal-
ysis of ‖ψ̂ − ψ‖∞m for ψ̂ given by Procedure 3:

Theorem 3.7 (Sample Complexity). There ex-
ists N0, C ∈ Z+ such that for all sample size
NS ,NT ≥ max{N0,

C
ε2 log 6

δ }, with probability ≥ 1 − δ,
our algorithm yields ψ̂ such that ‖ψ − ψ̂‖∞ ≤ ε.

Here, the constantC andN0 depends on the smallest singu-
lar value of the confusion matrices. The proof of the main
theorem is in appendix C.

Remark. Our spectral estimator ψ̂ for the reweighting fac-
tor ψ is unbiased and convergences to the true reweight-
ing factor ψ asymptotically. With high probability greater
than 1 − δ, the difference between the estimated and true
reweighting factor is bounded by a small prevision ε as long
as there are more than max{N0,

C
ε2 log 6

δ } number of ob-
servations.

4. Analyses and Gaurantees
In this section we provide bias and mean square error of the
Spectral-based IPS Estimatorin Procedure 1, followed by
our main result, the finite sample analysis for the estimation
of the reweighting factor. For the simplicity of notation, pS
will be used to denote PrS [h] and pT will be used to denote
PrT [h].

4.1. Bias and MSE Analysis

Since perfect mapping from the context to the hidden factor
is not always available, the bias is unavoidable. We first
provide a bound on the absolute value of the bias of the
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estimator.
Theorem 4.1 (Bias of the Estimator). The absolute value
of the bias of the estimator is bounded by:∣∣∣Ex∼DS ,a∼µ(·|x)[(β(x, a, r)− β̂(x, a, r))r]

∣∣∣ ≤(2‖pS − pT ‖2
p2min

Ex∼DS
[
1[h(x) 6= ĥ(x)]

]
+ ‖ψ − ψ̂‖∞

)
Rmax

Remark. The second term converges to zero with high
probability as the number of samples increases, while the
first term is a systematic error depending on the quality of
the mappers fa, fb and fc.

Our proposed estimator balances between the bias and
variance. Now we provide an upper bound on the mean
squared error of the estimator which considers the bias
and variance jointly. Let VarIPS denote the variance
induced by importance sampling between target and
behavior policy under the same source domain (i.e., no
distributional shift). Therefore this variance term VarIPS =
|Ex∼DS ,a∼µ(·|x)[(Ex′∼DS ,a′∼µ(·|x′)[β(x′, a′)r(x′, a′)] −
β(x, a)r(x, a))2]| is unavoidable.
Theorem 4.2 (Mean Square Error of the Estimator). The
mean squared error of the estimator is upper bounded by

MSE ≤ 2
(

VarIPS +
[
bEx∼DS

[
1[h(x) 6= ĥ(x)]

]
+ ‖ψ − ψ̂‖2∞

]
Dχ2(π‖µ)R2

max

)
(16)

where b = ‖pT −pS‖2
p4min

+ 2‖pT −pS‖
p2min

‖ψ − ψ̂‖∞, pmin :=

infh∈H pS(h), and the χ2-divergence is defined as:

Dχ2(π‖µ) := Eµ
[
(
π

µ
)2
]

(17)

The proof is in Appendix B.
Remark. As shown in Theorem 4.2 (1) The MSE of our
estimator inevitably consists of the Importance Sampling
variance with no distributional shift, which is expected as
the considered problem is strictly more challenging. (2)
The MSE of our estimator is smaller if the quality of the
mappers fa, fb and fc is better, as Ex∼DS [1[h(x) 6= ĥ(x)]]
can be upper-bounded by 1−cmin, where cmin is the small-
est element on the diagonal of the confusion matrix. (3) The
MSE of our estimator depends on the quality of our estima-
tion of reweighting factor ψ, which can be arbitrarily small
with enough observations. (4) A smaller χ2-divergence be-
tween behavior and target policy results in a better MSE.

5. Experiments
We design experiments in this section to evaluate the per-
formance of our proposed estimator on MNIST dataset un-
der distributional shift.

5.1. Experimental Setup

The data is created by sampling from the MNIST dataset
according to certain distributions, with the following con-
version to bandit setting:

Context, Action, Reward and Policy. The context are the
images of digits in MNIST dataset, and the actions space
is the label prediction of the images. A policy provides a
probabilistic prediction of the label of the image, and the
reward is a function of the indicator whether the prediction
is correct.

Behavior Policy µ and Target Policy π. We considered
the random prediction policy µ(a|x) = 0.1, ∀a, x as the
behavior policy to simulate the exploration phase in online-
learning setting. For the target policy under which we need
to evaluate the reward, we consider an adapted policy from
classifiers for MNIST dataset. To be specific, we use the
outcome of the softmax layer as π(a|x) given the input of
features.

Cost-sensitive Reward Model. A cost-sensitive reward
model is considered for generality (allowing the gen-
eral cost-sensitive classification). The reward model is
r(x, a, h) = c(·)>a(·) = ch1[a = h], where c(·) =
[c1, c2, . . . , c10]. In our experiment, we consider a special
case by setting c(·) to be [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] without
loss of generality.

Baselines. We compare our results with two baselines,
the first one one is standard inverse propensity score es-
timator without taking the distribution shift into consid-
eration(Dudı́k et al., 2014), where we average the reward
only reweighted by the IPS for policies, the population ver-
sion of which is the expected reward under source distribu-
tion. By comparison with such baseline, we show how dis-
tribution shift makes the problem of off-policy evaluation
more difficult. The second baseline is kernel mean match-
ing that does not imposing intent shift assumption(Gretton
et al., 2009). For tractability, principal component analysis
is used for dimension reduction (from 784− d to 30− d).

5.2. Results on Varying Target Intent Distributions

To compare the performance of our estimator with base-
lines over a wide range of different target distributions, we
consider a general setting where the target distributions are
drawn from the a dirichlet distribution controlled by a pa-
rameter α. For small αs, the drawn target distribution are
close to a singleton and for large αs the target distribution
is close to a uniform distribution over H. We will run ex-
periments on different αs.

In Figure 2a we compare our method with baseline and ker-
nel mean matching (KMMD) method(Gretton et al., 2009)
and demonstrate that our estimator outperforms the base-
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line models for a range of different target distributions con-
trolled by different αs. As illustrated in the plot, due to
the high-dimensionality of the context space, it is hard for
KMMD to achieve a good estimation of the expected re-
ward without further assumption on the distribution shift.

(a) Comparison with baselines

10 2 10 1 100 101

alpha

10 1

100
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so
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te
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rro

r

Baseline
Ours

(b) Zoomed-in comparison with unweighted average baseline

Figure 2. Randomly Drawn Distributions: In this figure we com-
pare the kernel mean matching method, the standard IPS baseline
without correcting the distribution shift, and our method.

In Figure 3a we plot the estimation error of our estimator
for the distribution shift. As shown in Figure 3a, our esti-
mator performs better for larger larger, i.e., our estimator
performs better when the target distribution is more spread
out.

5.3. A Hard Case Analysis: Categorical Target Intent
Distribution

Now we analyze the scenario of categorical target intent
distribution, under which our estimators performs worst
(small αs), and we do a detailed comparison against the
best baseline — unweighted average.

We first illustrate how the distribution shift on context
space affects the off-policy evaluation of cumulative re-

104 105 106
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Varying Alpha
alpha=0.1
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alpha=1
alpha=5

(a) Estimation of Distribution Shift

Figure 3. The performance of our estimator under different target
intent distributions.

ward. We fix the source intent distribution and consider
a fixed set of target intent distribution, the support of which
is a fixed {h} ⊂ H. Specifically, the source distribution
on intent h is uniform over H: PrS [h] = [0.1, . . . , 0.1]>

and the target distribution on intent h concentrates on one
category: PrT [h] = [0, . . . , 1, 0, . . . , 0]>.

As shown in Figure 4, our estimator provides a good eval-
uation of the reward model under distribution shift. The
x-axis is the support of target intent distribution. In Fig-
ure 4(a) we compare against the first baseline, denoted as
‘muS’, the ground truth ‘piT’, and the estimator we propose
‘Our Estimates’.

From Figure 4(b) we see that under this hard scenario, our
estimator outperforms the baseline when the ground truth
category are the ones that result in a large difference be-
tween the reward in source and the reward in target domain,
as expected.

6. Conclusion
We studied the hardness of correcting distribution shift in
the contextual bandit setting. We provided an estimation
procedure with finite sample analysis and MSE analysis.
Our estimator outperforms the kernel mean matching base-
line without assumptions on the distribution shift and with
a standard inverse propensity score without considering the
distribution shift.

Our estimator can be further improved as the current ver-
sion requires knowledge of the intent space (i.e. the intent
space is not truly latent). One future direction is extending
to a more general setting that does not involve this knowl-
edge and learns the latent space based on data.
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(a) Estimation of expected rewards
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Figure 4. Performance comparison for categorical target distri-
bution. (a) average absolute error of reward estimation and
(b)estimation of expected rewards over 30 experiments for each
target distribution.
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Appendix: A Spectral Method for Off-Policy Evaluation in Contextual Bandits under
Distribution Shift

A. Spectral Method for Estimating Reweighting Factors
A.1. Proof for Lemma 3.2

We define a q(xi) as a distribution vector of length K, where the hth element of vector q(xi) is [q(xi)]h = Pr[xi|h]∑
h Pr[xi|h] .

βπ(xi, ai, ri) =
PrT ,π[xi, ai, ri]

PrS,µ[xi, ai, ri]
(18)

Intent-shift
=

π(ai|xi)
µ(ai|xi)

∑
h PrT [h] Pr[xi|h]∑
h PrS [h] Pr[xi|h]

(19)

=
π(ai|xi)
µ(ai|xi)

Eq(x)[PrT [h]]

Eq[x][PrS [h]]
(20)

pre-imaging
=

π(ai|xi)
µ(ai|xi)

PrT [hi]

PrS [hi]
(21)

Equation (21) holds since the distribution vector q(xi) is a one-hot encoding vector, and ĥth
i element is 1.

A.2. Proof for Lemma 3.4

Proof. Due to the conditional independence property of the mappers, the probability of joint prediction conditioned on the
ground truth label can be decomposed as a product of distributions.

(M
(ab)
S )ij := E(x,y)∼S [1[fa(x) = ei ∧ fb(x) = ej ]] (22)

=

K∑
l=1

Pr
S

[h = l] Pr
S

[fa(x) = ei ∧ fb(x) = ej |h = l] (23)

=

K∑
l=1

Pr
S

[h = l](Ca)il(Cb)jl) (24)

= (CaΛSC
>
b )ij (25)

The proof for the target domain is identical.

A.3. Proof for Lemma 3.5

Proof. In order to symmetrize the second order statistics, we need to find matrix Wa and Wb such that:

WaCa = Cc; WbCb = Cc (26)

Equation 26 leads to:

WaM
ab
T = WaCaΛT C

>
b = CcΛT C

>
b = M cb

T (27)

WbM
ba
T = WbCbΛT C

>
a = CcΛT C

>
a = M ca

T (28)
(29)

By defining the symmetrization matrix as following

Wa = M cb
T (Mab

T )−1 (30)

Wb = M ca
T (M ba

T )−1 (31)

The result of the lemma follows directly.
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A.4. Proof for Lemma 3.6

Proof. In the whitening step, we first find a whitening matrix Ŵ for the second order moment on source domain such that:

W>MSW = I (32)

Assume matrix MS allows an eigen-decomposition:

MS := CcΛSC
>
c = USΣSU

>
S (33)

then the whitening matrix W takes the form:

W = USΣ
− 1

2

S (34)

Given the following two symmetrized statistcs from the source and target domain:

MS = CΛSC
> =

R∑
r=1

λ(S)r µ⊗2r (35)

MT = CΛT C
> =

R∑
r=1

λ(T )
r µ⊗2r (36)

where µr is the r-th column of the matrix C (and the conditional probability of ground truth class r), we have:

W>MTW =

R∑
r=1

λ
(T )
r

λ
(S)
r

µ̃⊗2r =

R∑
r=1

ψrµ̃
⊗2
r (37)

where µ̃>r µ̃ρ = δrρ and µr = (Ŵ−1)µ̃r
|(Ŵ−1)µ̃r|

, ∀r, ρ ∈ {1, · · · ,K}. And {ψr}Rr=1 is a permutation of the reweighting factors.

B. Bias and MSE analysis
B.1. Estimating the shift in context

In this subsection we provide the proof for the estimation error given the perfect distribution shift on the hidden factor
space.
Lemma B.1. ∣∣∣∣Eh∼q̂(·|x)[pT (h)]

Eh∼q̂(·|x)[pS(h)]
−

Eh∼q(·|x)[pT (h)]

Eh∼q(·|x)[pS(h)]

∣∣∣∣ ≤ ‖q − q̂‖2‖pS − pT ‖2Eq[pS ]Eq̂[pS ]
≤ ‖q − q̂‖2‖pS − pT ‖2

p2min

(38)

where pmin is defined as minh∈H pS(h).

Proof. We use the following short hands for briefness:∣∣∣∣Eh∼q̂(·|x)[pT (h)]

Eh∼q̂(·|x)[pS(h)]
−

Eh∼q(·|x)[pT (h)]

Eh∼q(·|x)[pS(h)]

∣∣∣∣ :=

∣∣∣∣Eq̂[pT ]

Eq̂[pS ]
− Eq[pT ]

Eq[pS ]

∣∣∣∣ (39)

∣∣∣∣Eq̂[pT ]

Eq̂[pS ]
− Eq[pT ]

Eq[pS ]

∣∣∣∣ ≤ 1

Eq[pS ]Eq̂[pS ]
|Eq[pT ]Eq̂[pS ]− Eq[pS ]Eq̂[pT ]| (40)

Using the notation δp := pT − pS and δq := q̂ − q, The second term can be rewritten as:

|Eq[pT ]Eq̂[pS ]− Eq[pS ]Eq̂[pT ]| (41)

=〈q, pS〉
∣∣∣∣〈δq ∣∣∣∣I − 1

〈q, pS〉
|q〉〈pS |

∣∣∣∣ δp〉∣∣∣∣ (42)

≤‖δq‖2‖δp‖2(By Lemma B.2) (43)

≤2
√
DKL(q̂‖q)DKL(pT ‖pS) (By Pinkster Inequality) (44)
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Lemma B.2. The singular values of R := I〈u,v〉 − uv> are 1 and —〈u,v〉—, where u and v are unit vectors.

Proof. First we notice that for any unit vector w orthogonal to both u and v, Rw = R>w = 〈u,v〉w. From then
on we can just focus vectors in the space spanned by u and v. Consider the symmetric matrix R>R and a unit vector
w = α1u + α2v.

R>Rw = α2(I〈u,v〉 − vu>)(−u + 〈u,v〉v) (45)
= α2(−〈u,v〉u + v) (46)

We have that α1 = −〈u,v〉α2 if w is an eigenvector of R>R, and the eigenvalue is 1.

B.2. Bias of the estimator

We first exam the bias of the estimator:

|bias| = |Ex∼DS ,a∼µ(·|x)[(β(x, a)− β̂(x, a))r(x, a)]| (47)

= |Ex∼DS ,a∼µ(·|x)[(β(x, a)− β̂(x, a))]|Rmax (48)

= |Ex∼DS ,a∼µ(·|x)[
π(a|x)

µ(a|x)
(γ(x)− γ̂(x))]|Rmax (49)

= (|Ex∼DS ,a∼π(·|x)[γ(x)− γ̂(x))]|)Rmax (50)
≤ (|Ex∼DS ,a∼π(·|x)[γ(x)− γ̂(x, ψ))]| (51)

+ |Ex∼DS ,a∼π(·|x)[γ̂(x, ψ̂)− γ̂(x, ψ))]|)Rmax (52)
≤ (|Ex∼DS ,a∼π(·|x)[γ(x)− γ̂(x, ψ))]| (53)

+ |Ex∼DS ,a∼π(·|x)[γ̂(x, ψ̂)− γ̂(x, ψ))]|)Rmax (54)

≤ (
2‖pS − pT ‖2

p2min

Ex∼DS [1[h(x) 6= ĥ(x)]] + ‖ψ − ψ̂‖∞)Rmax (55)

The second term converges to zero with high probability as the number of samples increases, while the first term is a
systematic error depending on the quality of the mapper/classifier.

B.3. MSE Analysis

|MSE| = |Ex∼DS ,a∼µ(·|x)[(Ex′∼DS ,a′∼µ(·|x′)[β(x′, a′)r(x′, a′)]− β̂(x, a)r(x, a))2]| (56)
= |Ex∼DS ,a∼µ(·|x)[(Ex′∼DS ,a′∼µ(·|x′)[β(x′, a′)r(x′, a′)]− β(x, a)r(x, a) (57)

+ β(x, a)r(x, a)− β̂(x, a)r(x, a))2]| (58)

≤ 2(VarIPS + Ex∼DS ,a∼µ(·|x)[(β(x, a)r(x, a)− β̂(x, a)r(x, a))2]) (59)

The first term is the variance due to Importance Sampling which cannot be avoided:

VarIPS := |Ex∼DS ,a∼µ(·|x)[(Ex′∼DS ,a′∼µ(·|x′)[β(x′, a′)r(x′, a′)]− β(x, a)r(x, a))2]| (60)

The second term can be bounded as:

Ex∼DS ,a∼µ(·|x)[(β(x, a)r(x, a)− β̂(x, a)r(x, a))2] (61)

=Ex∼DS [(γ(x)− γ̂(x, ψ̂))2Ea∼π(·|x)[
π(a|x)

µ(a|x)
r(x, a)2]] (62)

≤
[
(
‖pT − pS‖2

p4min

+
2‖pT − pS‖

p2min

‖ψ − ψ̂‖∞)Ex∼DS
[
1[h(x) 6= ĥ(x)]

]
(63)

+‖ψ − ψ̂‖2∞
]
Dχ2(π‖µ)R2

max (64)
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where the χ2-divergence is defined as:

Dχ2(π‖µ) := Eµ
[
(
π

µ
)2
]

(65)

Equation (64) is due to:

(γ(x)− γ̂(x, ψ̂))2 (66)

=(γ(x)− γ̂(x, ψ) + γ̂(x, ψ)− γ̂(x, ψ̂))2 (67)

≤(γ(x)− γ̂(x, ψ))2 + (γ̂(x, ψ)− γ̂(x, ψ̂))2 (68)

+ 2|γ(x)− γ̂(x, ψ)||γ̂(x, ψ)− γ̂(x, ψ̂)| (69)

≤(
‖pT − pS‖2

p4min

+
2‖pT − pS‖

p2min

‖ψ − ψ̂‖∞)1[h(x) 6= ĥ(x)] (70)

+ ‖ψ − ψ̂‖2∞ (71)

C. Finite Sample Analysis for Reweighting Factors
The proof for our main theorem (Thm 3.7) follows directly from the Lemma C.1 and Lemma C.2.

Throughout this section, let σmin(·) denote the smallest singular value of a matrix, ‖·‖op the operator norm of a multilinear
operator, and εX := ‖X̂ −X‖op for a matrix X .

C.1. Perturbation Bound: Proof for Lemma C.1

We first state the perturbation lemma for the estimation of ψ:

Lemma C.1. Define α as εMS
σmin(MS)

, then we have the following bound for ψ̂ from the joint diagnolization in Procedure 3:

‖ψ − ψ̂‖∞ ≤
1

1− α
1

σmin(MS)
(εMT + (α+

α√
1− α

)‖MT ‖op) (72)

The proof of the lemma is similar to that of Lemma 4 of (Chaganty & Liang, 2013).

Therefore if empirical estimates of MS and MT are consistent and thus εMS and εMT are close to 0, the estimation error
‖ψ − ψ̂‖∞ goes to 0.

C.2. Concentration bound for operator norm of the error for asymmetric moment

Lemma C.2. ∀α, β ∈ {a, b, c}, α 6= β, and ∀u ∈ {S, T }. Let M̂αβ
u be the empirical estimation of Mαβ

u from N samples
for some N ≥ 1

2ε2 log 1
δ . Then with probability greater than 1− δ,

‖Mαβ
u − M̂αβ

u ‖op ≤ ε, (73)

Proof. We use McDiarmid’s inequality for some F : XN → R defined as F (A1, · · · , An) := ‖ 1n
∑n
i=1An − E[A]‖op to

prove the lemma. We have:

F (A1, · · · , Ai, · · · , An)− F (A1, · · · , Ai′ , · · · , An) ≤ 1

n
‖M1(Ai)−M1(Ai′)‖op ≤

1

N
(74)

The last inequality followed from the fact that, for any domain and any superscripts (α, β), max{‖M̂αβ‖op, ‖Mαβ‖op} ≤
1.

By McDiarmid’s inequality, we have the above concentration bound for the operator norm of the estimation error.
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A Spectral Method for Off-Policy Evaluation in Contextual Bandits under Distribution Shift

C.3. Perturbation Bound for εM with errors on asymmetric statistics

Lemma C.3. For the symmetrized moment defined as

M̂u = M̂ (cb)
u (M̂ (ab)

u )−1M̂ (ac)
u (75)

∀u ∈ {S, T } We have

‖Mu − M̂u‖op ≤ ‖(M (ab)
u )−1‖‖M (ac)

u ‖ε
M

(cb)
u

+ ‖M̂u
(cb)
‖‖M (ac)

u ‖ε
(M

(ab)
u )−1 (76)

+ ‖M̂u
(cb)
‖‖(M̂u

(ab)
)−1‖ε

M
(ac)
u

(77)

=
σ1(M cb

u )

σmin(Mab
u )

εMcb
u

+
σ1(M cb

u )

σmin(Mab
u )

σ1(M cb
u ) + εMcb

u

σmin(Mab
u )− εMab

u

εMab
u

(78)

+
σ1(M cb

u ) + εMcb
u

σmin(Mab
u )− εMab

u

εMac
u

(79)

Proof. The proof is a simple combination of the Fact C.4 and C.5.

C.4. Some Facts

For any matrix A and its estimation Â, we have the following facts:

Fact C.4.

‖Â−1‖ =
1

σk(Â)
≤ 1

σk(A)− εA
(80)

Fact C.5.

εA−1 := ‖A−1 − Â−1‖op (81)

= ‖A−1(I −AÂ−1)‖ (82)

≤ ‖A−1‖‖Â−1‖εA (83)

=
εA

σk(A)(σk(A)− εA)
(84)


