
Under review as a conference paper at ICLR 2020

MONTE CARLO DEEP NEURAL NETWORK ARITH-
METIC

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization is a crucial technique for achieving low-power, low latency and high
throughput hardware implementations of Deep Neural Networks. Quantized float-
ing point representations have received recent interest due to their hardware effi-
ciency benefits and ability to represent a higher dynamic range than fixed point
representations, leading to improvements in accuracy. We present a novel tech-
nique, Monte Carlo Deep Neural Network Arithmetic (MCDA), for determining
the sensitivity of Deep Neural Networks to quantization in floating point arith-
metic. We do this by applying Monte Carlo Arithmetic to the inference compu-
tation and analyzing the relative standard deviation of the neural network loss.
The method makes no assumptions regarding the underlying parameter distribu-
tions. We evaluate our method on pre-trained image classification models on the
CIFAR-10 and ImageNet datasets. For the same network topology and dataset,
we demonstrate the ability to gain the equivalent of bits of precision by simply
choosing weight parameter sets which demonstrate a lower loss of significance
from the Monte Carlo trials. Additionally, we can apply MCDA to compare the
sensitivity of different network topologies to quantization effects.1

1 INTRODUCTION

Deep Neural Networks have achieved state-of-the-art performances in many machine learning tasks
such as such as speech recognition (Collobert et al., 2011), machine translation (Bahdanau et al.,
2014), object detection (Ren et al., 2015) and image classification (Krizhevsky et al., 2012). How-
ever, excellent performance comes at the cost of significantly high computational and memory com-
plexity, typically requiring teraops of computation during inference and Gigabytes of storage. To
overcome these complexities, compression methods have been utilized, aiming to exploit the inher-
ent resilience of DNNs to noise. These engender representations which maintain algorithm perfor-
mance but significantly improve latency, throughput and power consumption of hardware imple-
mentations. In particular, exploiting reduced numerical precision for data representations through
quantization has been emphatically promising, whereby on customizable hardware, efficiency scales
quadratically with each bit of precision.

Quantization of fixed-point arithmetic (Q-FX) for DNN inference has been extensively studied, and
more recently there has been increasing interest in quantized floating point (Q-FP) arithmetic for
both DNN inference and training (Wang et al., 2018). Q-FP has the advantage of higher dynamic
range compared to equivalent Q-FX representations and reduced hardware cost over single-precision
floating point (FP). This has influenced application specific integrated circuits (ASICs) such as
Google’s tensor processing unit (TPU), which supports 16-bit floating point (16-FP) and soft pro-
cessors such as Microsoft’s Project Brainwave which utilizes 8-FP.

To illustrate these hardware benefits, we synthesized arithmetic logic units (ALUs) in different for-
mats and different precision on an FPGA and present performance estimates in operations per sec-
ond (OPs) and area estimates in Look-up Tables (LUTs) per operation (LUTs/Op) in Figure 1. As
shown, 8-bit fixed point (8-FX) achieves improved performance and area over 8-FP. However, 7-FP
is a significant improvement over 8 or 12-FX and 8 or 9-FP. These examples demonstrate substan-
tial performance and area benefits from reducing FP precision by only 1 to 2-bits. Thus, if we

1Source code will be available if the paper is accepted

1

Under review as a conference paper at ICLR 2020

Figure 1: The estimated multiply-accumulate performance on a Xilinx VU9P FPGA, operating at
500MHz, in teraops (left) and area (right) for fixed (FX) and floating-point (FP) in various precisions
(both weights and activations).

can design networks which not only achieve high accuracy but are robust to quantization, higher
performing hardware solutions are possible.

Since in Q-FP, we are trying to represent the infinite set of real numbers using a finite number of
bits, quantization and rounding artefacts will be introduced, with inaccuracies being cascaded along
the computation graph (IEEE, 1985; Goldberg, 1991; Higham, 2002). This paper proposes Monte
Carlo Deep Neural Network Arithmetic (MCDA), a novel way to apply Monte Carlo Arithmetic
(MCA) (Parker et al., 2000) for determining the sensitivity of Deep Neural Networks to Q-FP rep-
resentations. It allows hardware-software designers to quantify the impact of quantization, enabling
more efficient systems to be discovered. We do this by exploiting Monte Carlo simulations under
which rounding effects are randomized. This, in turn, allows one to infer the sensitivity of executing
a computation graph to quantization effects.

Our MCDA technique is highly sensitive, allowing very small differences in quantization behaviour
to be detected. The technique makes no assumptions regarding data distributions and directly mea-
sures the effects of quantization on the problem under study. This allows us to provide insights into
the precision requirements of any inference network for any given dataset. Additionally we can use
the technique to select weight parameters which are more robust to floating point rounding. The
theoretical and practical contributions of this work can be summarized as follows:

• We introduce a novel and rigorous analysis technique, Monte Carlo Deep Neural Network
Arithmetic (MCDA), which measures the sensitivity of Deep Neural Network inference
computation to floating point rounding error.

• When applied to neural network inference, we show MCDA can determine the precision re-
quirements of different networks, rank them, and detect small differences between different
neural network topologies and weight sets.

• We demonstrate that while a network with the same topology but different weights may
have the same loss and validation accuracy, their sensitivity to quantization can be vastly
different. Using the CIFAR-10 and ImageNet datasets, we introduce a method to choose
weights which are more robust to rounding error, resulting in a greatly improved accuracy-
area tradeoff over state-of-the-art methods.

It is worth noting that although we consider convolutional neural networks for image classification,
this method could be applied for any neural network model architectures and applications. Moreover,
while the experiments in this paper are limited to inference, it may be possible to apply the same
idea to analyze training algorithms.

2 RELATED WORK

Low-precision representations of deep learning have been extensively studied. Many training meth-
ods have been developed to design representations for fixed point inference (Jacob et al., 2018;
Faraone et al., 2018; Zhou et al., 2016) and training (Wu et al., 2018b; Yang et al., 2019; Gupta et al.,
2015; Sakr & Shanbhag, 2019). Other methods have also utilized Q-FP arithmetic for inference and
training whilst maintaining single-precision accuracy. (Micikevicius et al., 2018) implemented 16-
FP arithmetic training whilst storing a 32-FP master copy for the weight updates. Additionally,

2

Under review as a conference paper at ICLR 2020

(Wang et al., 2018; Mellempudi et al., 2019) with 8-FP arithmetic whilst using a 16-FP copy of
the weights and 16/32-bits for the accumulator. Techniques for determining per-layer sensitivity to
quantization have also been studied (Choi et al., 2016; Sakr & Shanbhag, 2018). Further, other stud-
ies have successfully determined the minimum fixed point precision requirements for a given DNN
accuracy threshold (Sakr et al., 2017). The accuracy and stability of various numerical algorithms
in finite precision arithmetic has been studied in (Higham, 2002; Wilkinson, 1994). This has led
to techniques for tracking information lost from finite precision arithmetic using random perturba-
tion such as Monte Carlo Arithmetic (Parker et al., 2000; Frechtling & Leong, 2015). Monte Carlo
methods have also been used in Bayesian Neural Networks (Buchholz et al., 2018; Blier & Ollivier,
2018). In particular, (Achterhold et al., 2018) introduced a quantizing prior to learn weights which
are either close to a quantized representation or have high variance. (Louizos et al., 2017) used
hierarchical priors to prune nodes and posterior uncertainties to determine the optimal fixed point
precision. (Blundell et al., 2015) use a Monte Carlo approach to learn a probability distribution on
the weights of a neural network. To the best of our knowledge, our work is the first to present a
technique for directly determining the sensitivity of DNNs to floating point rounding and to explic-
itly compute precision bounds of a trained network. These ideas can be very usefully applied to
extending the limits of low-precision representations in deep learning applications.

3 BACKGROUND

In this section, we describe background theory upon which our technique for determining the sensi-
tivity of DNNs to floating point rounding is based.

3.1 FLOATING POINT ARITHMETIC

The IEEE-754 binary floating point format (IEEE, 1985) represents most real numbers x by a subset
in normal form as:

x̂ = (−1)sx(1 +mx)2ex (1)

where sx ∈ {0, 1} is the sign bit, ex is an integer representing the exponent of x̂ and mx is the
mantissa of x̂. Such number formats can be described as a (sx, ex,mx) tuple. In binary form
the representation is (bs, be1, b

e
2, ..., b

e
Bex

, bm1 , b
m
2 ..., b

m
Bmx

) ∈ {0, 1}B , with Bex and Bmx being the
number of exponent and mantissa bits, respectively. The infinite set of real numbers R is represented
in a computer withB = 1+Bex+Bmx bits, and we define the finite set of real numbers representable
in floating point format as exact values, F ⊂ R. Real numbers which aren’t representable are
rounded to their nearest exact value. We call this set of numbers inexact values, I, where I∪F = R.

The approximation x̂ = F(x) = x(1 + δ), given x ∈ I, introduces rounding error into the compu-
tation. The value of δ =

∥∥x−x̂
x

∥∥, represents the relative error which is a function of the machine
hardware precision, p, as δ ≤ ε, where ε = 2−p (IEEE, 1985; Goldberg, 1991; Higham, 2002).

In general, inexactness can be caused by finite representations or errors propagating
from earlier parts of the computation. Often the primary cause of error in floating
point arithmetic is catastrophic cancellation which causes numerical inaccuracy. Catas-
trophic cancellation occurs when for example, two near equal FP numbers, sharing k
significant digits, are subtracted from one another as shown in (2) (Higham, 2002).

0. f1 f2 ... fk f(k+1) ... ft

− 0. f1 f2 ... fk g(k+1) ... gt
= 0. 0 0 0 h(k+1) ... ht

(2)
0. f1 f2 ... fk f(k+1) ... ft r(t+1) ... rp

− 0. f1 f2 ... fk g(k+1) ... gt r̂(t+1) ... r̂p
= 0. 0 0 0 h(k+1) ... ht i(t+1) ... ip

(3)

In normalized form, the leading zeros are removed by shifting the result to the left and adjusting the
exponent accordingly. The result is 0.hk+1...hti1...ik which has only (t − k) accurate digits and
digits i which are unknown. Additionally, the remaining accurate digits h are most likely affected
by rounding error in previous computations. This can significantly magnify errors, especially in
computing large computational graphs such as that of state-of-the-art DNNs.

If either operand in (2) is inexact, then the digits h are no more significant than any other sequence
of digits. Yet, FP arithmetic has no mechanism of recording this loss of significance. By padding
both our operands with random digits r and r̂ in (3), the resulting digits i are randomized. If k

3

Under review as a conference paper at ICLR 2020

digits are lost in the result, then k random digits will be in the normalized result and when computed
over many random trials, the results will disagree on the trailing k digits. In this case, we are able
to detect catastrophic cancellation because the randomization over many trials provides a statistical
simulation of round-off errors. We can use techniques from numerical analysis such as Monte Carlo
methods to appropriately insert precision-dependant randomization in this way.

3.2 MONTE CARLO ARITHMETIC

Monte Carlo methods can be used to analyze rounding by representing inexact values as random
variables (Parker et al., 2000; Frechtling & Leong, 2015). The real value x, as represented in (1),
can be modelled to t digits, using:

inexact(x̂, t, δ) = x̂+ 2ex−tδ = (−1)sx(1 +mx + 2−tδ)2ex (4)

where δ ∈ U(− 1
2 ,

1
2) is a uniformly distributed random variable and t is a positive integer repre-

senting the virtual precision of concern. For the same input x̂ in (4), we can run many Monte Carlo
trials which will yield different values on each trial, where 0 < t < p so that the MCA can be run
accurately on a computer with machine precision p. The ability to vary t is useful because it allows
us to then evaluate the hardware precision requirements of a given system or computational graph
for a given DNN.

MCA is a method to model the effect of rounding on a computational graph by randomizing all
arithmetic operations. The randomization is applied for both generating inexact operands and also
in rounding. In each operation using MCA, ideally both catastrophic cancellation and rounding error
can be detected. An operation using MCA is defined as:

x ◦ y = round(inexact(inexact(x) ◦ inexact(y))) (5)

where ◦ ∈
(
+,−,×,÷). By applying the inexact function to both operators we make it possible to

detect catastrophic cancellation. Furthermore, applying the inexact function to the operation output
and then rounding this value implements random rounding and hence is used to detect rounding error
(Parker & Langley, 1997). Hence, for the same input into the system, each trial will yield different
operands and output.

After modifying the inexact and rounding operations as described, we use random sampling to
simulate Monte Carlo trials. For each trial, we collect data on the resulting output of the system
and compute summary statistics to quantify its behaviour (Parker et al., 2000). With sufficiently
large number of Monte Carlo trials and virtual precision t, the expected value of the output from
these trials will equal the value from using real arithmetic. As explained in the next section, we can
determine the total number of digits lost to rounding error and the minimum precision required to
avoid a total loss of significance.

3.3 ANALYSIS

The relative error is bounded by δ ≤ 2−p from the design of IEEE FP arithmetic (Wilkinson,
1994; Goldberg, 1991). With this inequality, we can determine the expected number of significant
binary digits available from a p-digit FP system as p ≤ −log2(δ). These definitions can be adapted
for MCA by replacing the precision of the FP system, p, by the virtual precision, t, of an MCA
operation. Thus, the relative error of an MCA operation, for virtual precision t, is δ ≤ 2−t and
the expected number of significant binary digits in a t-digit MCA operation is at most t. Using this
definition and the proof provided in (Parker & Langley, 1997), the total significant binary digits in
a set of M trials is s′ = log2

µ
σ where µ is the mean and σ the standard deviation. The output of the

system should be some scalar value so that we can perform such analysis. For experimentation, M
trials are run for all of t ∈ {1, 2, 3, ..., tmax}. The total number of base-2 significant digits lost in a
set of M trials is Kt, in (6):

Kt = t− s′ = t− log2(
µ

σ
) = log2 Θ + t (6)

where Θ = σ
µ , for (µ 6= 0), is the relative standard deviation (RSD) of the MCA results. The virtual

precision t controls the perturbation strength applied by the inexact function. For a given Kt, as we
reduce t, the RSD should increase according to equation 6. At some point, an unexpected loss of

4

Under review as a conference paper at ICLR 2020

significance (Frechtling & Leong, 2015) is encountered due to the nonlinear effects of quantization.
The value at which this occurs is defined as tmin. The number of significant digits lost for the system
being analyzed is then computed by averaging all Kt whereby t > tmin as shown in (7):

K =

{
1

tmax−tmin

∑tmax

t=tmin
Kt where tmax > 1

Kt where tmax = 1
(7)

For DNN inference, we propose to use K as a sensitivity measure for the network to FP rounding.
The method for implementing this is discussed in the next section.

4 MONTE CARLO DEEP NEURAL NETWORK ARITHMETIC

We now describe MCDA, a methodology for applying MCA techniques to DNN computation, allow-
ing us to understand the sensitivity of a given network and its weight representation to FP rounding.

4.1 NETWORK MODEL

We consider a generalized non-linear L-layer neural network with an output vector yL, input data
vector x and learnable weight parameter tensor w =

⋃
wl (l = 1, . . . , L), whereby yL = f(x;w).

To compute y, several layers consisting of general matrix multiplication (GEMM) operations (such
as convolutional and fully-connected layers) between the layer input xl and weight parameters wl,
followed by a non-linear activation function, h, producing intermediate layer outputs xl, i.e. yl =
h(xl ⊗wl). The output of a given layer becomes the input to the subsequent layer, i.e. xl+1 = yl,
with x1 = x. A loss function is the objective function to minimize updating w via an optimizer
such as stochastic gradient descent. For a given set of input data X , the total network loss during
inference is calculated by applying a loss function loss(f(x;w), ŷ(x)) where ŷ(x) is the target
ground truth output for x. The total loss for X is then a scalar output, such that:

L(X;w) =
1

|X|
∑
x∈X

loss(f(x;w), ŷ(x)) (8)

Updates of w are usually done in small batches over subsets of X .

Naively applying MCA to each operation (fine-grained MCA) as described in equation (5) poses sig-
nificant computational difficulties for DNN models. We observe two primary issues with employing
fine-grained MCA to a DNN computational graph:

• Firstly, the number of required trials for Monte Carlo experiments to generate robust re-
sults can typically be in the hundreds or thousands. As DNN inference of state-of-the-art
networks typically consist of billions of operations, the computational requirements of ap-
plying MCA after each operation will be very large, making the technique impractical.
• Using the accuracy as the system output for MCA experiments is problematic because it is

a discrete value. For high values of t, Monte Carlo results across different t then become
indistinguishable and the standard deviation for a given t is potentially zero.

4.2 MONTE CARLO NETWORK INFERENCE

To reduce the computational cost of Monte Carlo experiments, we employ MCDA, which is a coarse-
grained approach to MCA for GEMM operations. Conveniently, these can be naturally implemented
in modern machine learning frameworks such as PyTorch. Furthermore, to ensure the system output
is a continuous value, the loss function output is used, rather than the accuracy. In this case, small
perturbations in layer operands are more likely to produce observable changes in the output.

MCDA applies a vector version of (5) to the DNN inference computational problem in (8). Our
operands in this case are vectors and ◦ represents a neural network layer operation. For example,
the output from performing a GEMM operation can thus be represented by:

yl = round(inexact(inexact(xl)⊗ inexact(wl))) (9)

Since the inexact function is applied to the inputs and outputs of a GEMM operation, an optimized
implementation can be used. This is in contrast to full MCA which requires the application of (5)

5

Under review as a conference paper at ICLR 2020

Figure 2: Applying MCDA to residual blocks found in ResNet. The inexact function is applied to
each input operand and both the inexact function and base-2 rounding is applied to the output.

to every individual scalar operation. The vector form in (9) is applied to each edge of neural net-
work computational graph where multiply (division) and/or add (subtract) operations are performed.
Hence, it is not applied to operations such as MaxPool and ReLu. As an example, in Figure 2 we
show where the inexact function is applied for a residual block with folded batch normalization,
which is a repeating sequence of layers found in ResNet models (He et al., 2015). At the final output
of the network, the loss is computed with (8) and the inexact function is applied to the outputs y and
also the loss output scalar value L. From analyzing the behavior of the loss, we infer the sensitivity
of the accuracy of the system to FP rounding. By using MCDA for the GEMM operations, we will
not be able to detect all instances of catastrophic cancellation. However, we significantly reduce
execution time over fine-grained MCA and show in the next section that we can still retrieve valu-
able information about our system. In fact, for one trial with one batch of 32 images on ImageNet
running on a Nvidia Titan Xp GPU, the speed up of regular inference without MCDA is only 1.05×
(for a single Monte Carlo trial). We also note that fine-grained MCA could be applied with a sim-
ple modification and would be possible given appropriate customized hardware support for parallel
Monte Carlo computations (Yeung et al., 2011).

5 EXPERIMENTAL RESULTS

In this section, we present experimental results for applying MCDA to exemplary convolutional
neural networks. We use the CIFAR-10 and ImageNet image classification datasets to compare
MobileNet-v2 (Sandler et al., 2018), EfficientNet (Tan & Le, 2019), AlexNet, ResNet (He et al.,
2015), SqueezeNet (Iandola et al., 2016) and MnasNet (Tan et al., 2018). For CIFAR-10, we use a
batch size of 128, whilst we use a batch size of 32 for ImageNet experiments. Cross-entropy is used
as the loss function for both datasets. For a given network, dataset, weight representation and t, we
apply MCDA with M = 1000 trials. The resulting loss from each trial is computed with the same
single batch of images and hence additional data is not required. We compute Θt from our results
for all t ∈ {1, 2, 3, ..., 16}. Following this, we run linear regression analysis using the MCALIB2

(Frechtling & Leong, 2015) R library, on our Θt values, to determine tmin and K. tmin is defined
as the point of lowest t where the difference between the regression line and the equivalent Θt is
less than half a binary digit, i.e. log10(20.5). Further detail on the calculation of K and tmin from
MCALIB can be found in Appendix A.1. We report Q-FP validation accuracy using the quantization
function from (Wang et al., 2018) with stochastic rounding3 (See Appendix A.2).

5.1 DISTINGUISHING WEIGHT PARAMETER REPRESENTATIONS

As discussed in Section 3.1, the inexactness in FP arithmetic largely depends on the numerical value
of operands. Two instances of the same network and dataset, with the same validation accuracy, but
vastly different weight representations, will likely produce differing sensitivities to FP rounding. We
first train 8 instances of EfficientNet-b0 and MobileNet-V2 on CIFAR-10 from scratch with random
initialization from (Glorot & Bengio, 2010), all achieving within 1% validation accuracy of one
another. Using MCDA, we calculate the K values for each model (See Appendix A.3).

2https://github.com/mfrechtling/mcalib
3https://github.com/Tiiiger/QPyTorch

6

Under review as a conference paper at ICLR 2020

(a) EfficientNet-b0 (8-bit) (b) MobileNet-v2 (8-bit)

(c) EfficientNet-b0 (7-bit) (d) MobileNet-v2 (7-bit)

Figure 3: CIFAR-10 percentage validation accuracy decrease from single-precision for 8 different
trained models when using post-training Q-FP representations at different precisions.

Table 1: Post-training Q-FP validation accuracy on CIFAR-10 when using K for model selection
rather than single-precision validation accuracy

MobileNet-v2 EfficientNet-b0
Precision MCDA (Wang et al., 2018) MCDA (Wang et al., 2018)

(Weight, Act.) (K =1.42) (K =1.56) (K =1.46) (K =1.89)
(32,32) 89.6 90.3 93.7 94.6

(8,8) 88.5 86.7 90.0 89.0
(6,6) 79.0 76.6 64.6 56.0
(5,5) 48.4 40.8 22.0 18.6

We then test their percentage validation accuracy decrease from using post-training quantization
(i.e. no finetuning) with varying Q-FP precisions. In Figure 3, we see that the models with higher
K values typically experience a larger drop in Q-FP accuracy, indicating they are more sensitive to
floating point rounding error. Notably, the model with lowest K for 7-bit MobileNet-v2 experiences
a lower percentage validation accuracy drop than three of the 8-bit models. In this case, MCDA
model selection enables the saving of a bit of precision while achieving smaller accuracy decrease
than some of the trained 8-FP models.

5.2 COMPARISON TO PREVIOUS WORK

One practical use case from the insights gained by MCDA is model selection for quantization. Typ-
ically when quantizing a given model trained on a given dataset, the model with highest validation
accuracy is chosen and the sensitivity to quantization is assumed to be the same across models. As
discussed, for Q-FP representations this is not necessarily the case. We can use K from MCDA
to predict which models will be more robust to quantization. To demonstrate this, in Table 1 we
compare post-training quantization results for model selection based on K from MCDA, against a
baseline model chosen based on the highest single-precision validation accuracy. Evidently, even
though the single-precision accuracy is initially as much as 0.9% higher, after quantizing the network
to 8-5 bits, the accuracy of the network chosen by smallest K is always significantly higher.

5.3 NETWORK COMPARISON

Modern DNNs consist of convolutional blocks with highly varying computational graphs (Wu et al.,
2018a; Howard et al., 2017). Using MCDA we can also compute and compare their sensitivites to
floating point rounding error to determine which networks will be robust to Q-FP representations.

7

Under review as a conference paper at ICLR 2020

Figure 4: Comparison of K and tmin for various networks (Right) and EfficientNet variants (Left)
at different virtual precisions on the ImageNet dataset.

Figure 5: Q-FP percentage validation accuracy decrease for different ImageNet models

In Figure 4 we show the Θt of pre-trained models, trained on the ImageNet dataset from PyTorch4

5, for differing values of t and run linear regression analysis over our data points. From here we can
then assign aK value to each network and compare their loss of significance. At each t, the distance
from the regression lines to the ideal line represents the values of Kt, as described in (6). From the
MCDA results, AlexNet is the least sensitive to rounding and ResNet-50 is the most, with various
models in between these two. Additionally we compare EfficientNet at two different model scales
and evidently the larger model has much larger sensitivity. We then also compare the validation
accuracy percentage decrease of all models at 10, 9 and 8-FP post-training in Figure 5. At 8-FP,
besides MnasNet which experiences a large accuracy drop, K is able to predict validation accuracy
degradation. Thus, MCDA provides very valuable information about Q-FP model design.

6 CONCLUSION

We present a novel, highly sensitive, technique to quantify rounding error in DNNs. This is the
first method to successfully compare the sensitivity of networks to floating point rounding error.
Ultimately, this technique provides a tool for enabling the design of networks which perform higher
when quantized. We do this by applying concepts from Monte Carlo Arithmetic theory to DNN
computation. Furthermore, we show that by calculating the loss of significance metric K from
MCDA, on the CIFAR-10 and ImageNet datasets, we can compare network sensitivities to floating
point rounding error and gain valuable insights to potentially design better neural networks. This
is an important contribution due to the increasing interest in low-precision floating point arithmetic
for efficient DNN hardware systems. The theoretical and practical contributions of this paper will
likely translate well to analyzing floating point rounding in backpropagation in future work.

4https://github.com/pytorch/vision/tree/master/torchvision
5https://github.com/rwightman/pytorch-image-models

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jan Achterhold, Jan M. Köhler, Anke Schmeink, and Tim Genewein. Variational network quantiza-
tion. In ICLR, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate, 2014. URL http://arxiv.org/abs/1409.0473. cite
arxiv:1409.0473Comment: Accepted at ICLR 2015 as oral presentation.

Léonard Blier and Yann Ollivier. The description length of deep learning models. In Advances in
Neural Information Processing Systems, pp. 2216–2226, 2018.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. In Proceedings of the 32Nd International Conference on International Con-
ference on Machine Learning - Volume 37, ICML’15, pp. 1613–1622. JMLR.org, 2015. URL
http://dl.acm.org/citation.cfm?id=3045118.3045290.

R.P. Brent. Algorithms for minimization without derivatives. Prentice-Hall, 1973. ISBN 0-13-
022335-2.

Alexander Buchholz, Florian Wenzel, and Stephan Mandt. Quasi-Monte Carlo variational in-
ference. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 668–677, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/buchholz18a.html.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization.
ArXiv, abs/1612.01543, 2016.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493–
2537, November 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?
id=1953048.2078186.

Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip HW Leong. Syq: Learning symmet-
ric quantization for efficient deep neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4300–4309, 2018.

Michael Frechtling and Philip H. W. Leong. Mcalib: Measuring sensitivity to rounding error with
monte carlo programming. ACM Trans. Program. Lang. Syst., 37(2):5:1–5:25, April 2015. ISSN
0164-0925. doi: 10.1145/2665073. URL http://doi.acm.org/10.1145/2665073.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS10). Society for Artificial Intelligence and Statistics, 2010.

David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
Comput. Surv., 23(1):5–48, March 1991. ISSN 0360-0300. doi: 10.1145/103162.103163. URL
http://doi.acm.org/10.1145/103162.103163.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In Proceedings of the 32Nd International Conference on Interna-
tional Conference on Machine Learning - Volume 37, ICML’15, pp. 1737–1746. JMLR.org, 2015.
URL http://dl.acm.org/citation.cfm?id=3045118.3045303.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–
778, 2015.

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2002. ISBN 0898715210.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. ArXiv, abs/1704.04861, 2017.

9

http://arxiv.org/abs/1409.0473
http://dl.acm.org/citation.cfm?id=3045118.3045290
http://proceedings.mlr.press/v80/buchholz18a.html
http://proceedings.mlr.press/v80/buchholz18a.html
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://doi.acm.org/10.1145/2665073
http://doi.acm.org/10.1145/103162.103163
http://dl.acm.org/citation.cfm?id=3045118.3045303

Under review as a conference paper at ICLR 2020

Peter J. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35
(1):73–101, March 1964. ISSN 0003-4851. doi: 10.1214/aoms/1177703732. URL http:
//dx.doi.org/10.1214/aoms/1177703732.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size.
CoRR, abs/1602.07360, 2016. URL http://arxiv.org/abs/1602.07360.

IEEE. IEEE standard for binary floating-point arithmetic. Institute of Electrical and Electronics
Engineers, New York, 1985. Note: Standard 754–1985.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for effi-
cient integer-arithmetic-only inference. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 25, pp. 1097–
1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learn-
ing. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp.
3288–3298. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
6921-bayesian-compression-for-deep-learning.pdf.

Naveen Mellempudi, Sudarshan Srinivasan, Dipankar Das, and Bharat Kaul. Mixed precision train-
ing with 8-bit floating point. CoRR, abs/1905.12334, 2019. URL http://arxiv.org/abs/
1905.12334.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=r1gs9JgRZ.

Douglas Stott Parker and David Langley. Monte carlo arithmetic: exploiting randomness in floating-
point arithmetic. In Monte Carlo Arithmetic: exploiting randomness in floating-point arithmetic.
Computer Science Department, University Of California, 1997.

Douglas Stott Parker, Brad Pierce, and Paul R. Eggert. Monte carlo arithmetic: how to gamble with
floating point and win. Computing in Science and Engineering, 2:58–68, 2000.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems
28, pp. 91–99. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.
pdf.

Charbel Sakr and Naresh Shanbhag. An analytical method to determine minimum per-layer preci-
sion of deep neural networks. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1090–1094. IEEE, 2018.

Charbel Sakr and Naresh Shanbhag. Per-tensor fixed-point quantization of the back-propagation
algorithm. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rkxaNjA9Ym.

Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Analytical guarantees on numerical preci-
sion of deep neural networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 3007–3016. JMLR. org, 2017.

10

http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.1214/aoms/1177703732
http://arxiv.org/abs/1602.07360
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf
http://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf
http://arxiv.org/abs/1905.12334
http://arxiv.org/abs/1905.12334
https://openreview.net/forum?id=r1gs9JgRZ
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://openreview.net/forum?id=rkxaNjA9Ym
https://openreview.net/forum?id=rkxaNjA9Ym

Under review as a conference paper at ICLR 2020

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4510–4520, 2018.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 6105–6114, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL
http://proceedings.mlr.press/v97/tan19a.html.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le. Mnasnet: Platform-
aware neural architecture search for mobile. ArXiv, abs/1807.11626, 2018.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Train-
ing deep neural networks with 8-bit floating point numbers. In Proceedings of the 32Nd In-
ternational Conference on Neural Information Processing Systems, NIPS’18, pp. 7686–7695,
USA, 2018. Curran Associates Inc. URL http://dl.acm.org/citation.cfm?id=
3327757.3327866.

James H. Wilkinson. Rounding Errors in Algebraic Processes. Dover Publications, Inc., New York,
NY, USA, 1994. ISBN 0486679993.

Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad,
Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial
convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018a.

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in
deep neural networks. In International Conference on Learning Representations, 2018b. URL
https://openreview.net/forum?id=HJGXzmspb.

Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, and Christo-
pher De Sa. Swalp : Stochastic weight averaging in low precision training. In ICML, 2019.

Jackson H.C. Yeung, Evangeline F.Y. Young, and Philip H.W. Leong. A monte-carlo floating-
point unit for self-validating arithmetic. In Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’11, pp. 199–208, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0554-9. doi: 10.1145/1950413.1950453. URL http://doi.
acm.org/10.1145/1950413.1950453.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. ArXiv, abs/1606.06160,
2016.

A APPENDIX

A.1 EXPERIMENTAL SETUP

In all our experiments, for a given network, dataset, weight representation and t, we run 1000 Monte
Carlo trials. The network loss output from each trial is computed with the same single batch of
images from the training dataset. We then independently compute the Θt of the network loss for
t ∈ {1, 2, 3, ..., tmax} where tmax = 16.

Following this, we then run linear regression and calculate K and tmin using MCALIB6. To com-
pute the linear regression, MCALIB uses a log transformed variable, with log(Θ) as the dependant
variable and t as the exploratory variable (Frechtling & Leong, 2015).

log10(Θ) = log10(2K−t) (10)
= − log10(2)t+ log10(2)K (11)
= mt+ c (12)

6https://github.com/mfrechtling/mcalib

11

http://proceedings.mlr.press/v97/tan19a.html
http://dl.acm.org/citation.cfm?id=3327757.3327866
http://dl.acm.org/citation.cfm?id=3327757.3327866
https://openreview.net/forum?id=HJGXzmspb
http://doi.acm.org/10.1145/1950413.1950453
http://doi.acm.org/10.1145/1950413.1950453

Under review as a conference paper at ICLR 2020

Algorithm 1 Summary of Linear Regression Analysis for MCDA

Initialize: Pre-train a single-precision DNN model. Set tmax. Set number of trials M .
Inputs: Batch of inputs & targets (X, Ŷ), loss function loss(f(x;w), ˆy(x)), current weights w
Outputs: tmin and K

Monte Carlo Trials:
for t = 1 to tmax do

for trials=1 to M do
L(X;w) = ForwardPath (X, Ŷ ,w, t) using (9)

end for
Compute µ and σ of all trials
Compute Θt using (6)

end for

Calculate K and tmin:
for t = 1 to tmax do

Compute Pt using (10) - (14)
Compute Pt −Θt

if Pt −Θt < log10(20.5) then
tmin = t
break

else
continue

end if
end for
Compute K using (6) and (7)

where m = − log10(2) = −0.30103 is the slope and c is the intercept such that K = log2(10c).
Given these inputs, the intercept c is calculated by minimizing the following objective function using
Brents method (Brent, 1973) for single variable optimization:

f(x) =

tmax∑
t=1

γtmax−iρH(ei) (13)

where ei = Θi − (mti + c) is the residual error, c ∈ [(Θtmax
−mtmax)± 2m] is the initial search

space for the intercept, γ = 0.75 and ρH(e) is the Huber loss function (Huber, 1964):

ρH(e) =

{
1
2e

2 for |e| ≤ k
k |e| − 1

2k
2 for |e| > k

(14)

where k = 1.345σe and σe is the standard deviation of the residual error set, e. After determining
the linear regression model, Pt = mt+ c, we determine whether each Θt is an outlier. If a value for
Θt differs to the equivalent Pt by more than half a binary digit, then it is classed an outlier. tmin is
then defined as the lowest t where Pt − Θt < log10(20.5). To compute K for a given network, we
then average the values for Kt whereby t > tmin. This removes the outliers from the computation
of K. We have summarized how the experiments were simulated in Algorithm 1.

A.2 QUANTIZED FLOATING POINT WITH STOCHASTIC ROUNDING

To quantize our pre-trained networks to Q-FP representations, we used stochastic rounding as de-
scribed in (Wang et al., 2018) and implemented in QPytorch7. Two common forms of rounding for
FP arithmetic are round-to-nearest and stochastic rounding. The former discards information in the
least significant bit (LSB) which is rounded off. This information loss can be significant, especially
when quantizing to a small number of bits. Stochastic rounding provides a method to capture this
information loss from rounding off the LSB. Given x = (−1)sx(1 + mx)2ex as described in (1).

7https://github.com/Tiiiger/QPyTorch

12

Under review as a conference paper at ICLR 2020

Figure 6: Comparison of K and tmin for different instances of EfficientNet-b0 (Left) and
MobileNet-v2 (Right) at different virtual precisions on the ImageNet dataset.

Assume thatmx is in fixed precision with z′ bits which needs to be rounded to z bits, then stochastic
rounding is as follows:

Round(x) =

{
(−1)sx(1 + bmxc+ ε)2ex with probability mx−bmxc

ε

(−1)sx(1 + bmxc)2ex with probability 1− mx−bmxc
ε

(15)

where bmxc is the truncation of z′ − z LSBs of m, ε = 2−z . For each Q-FP accuracy reported in
our experiments, we tested all possible combinations of the number of bits allowed for the exponent
and mantissa which satisfied the desired precision. We then chose the combination which produced
the highest accuracy.

A.3 CIFAR-10 REGRESSION ANALYSIS

In Figure 6, we display the linear regression analysis using MCALIB for the 8 MobileNet-v2 and
EfficientNet-b0 models trained on CIFAR-10. As shown, Monte Carlo trials were run for each of
these models for t ∈ {1, 2, 3, ..., 16}. The corresponding tmin and K values were then calculated
using methods discussed in Appendix A.1. Thus, in Figure 3, it is these K values which are plotted
against 8 and 7-bit Q-FP validation accuracy. Also, the models with lowest K values are chosen for
MCDA model selection in Table 1.

13

	Introduction
	Related Work
	Background
	Floating Point Arithmetic
	Monte Carlo Arithmetic
	Analysis

	Monte Carlo Deep Neural Network Arithmetic
	Network Model
	Monte Carlo Network Inference

	Experimental Results
	Distinguishing Weight Parameter Representations
	Comparison To Previous Work
	Network Comparison

	Conclusion
	Appendix
	Experimental Setup
	Quantized Floating Point With Stochastic Rounding
	CIFAR-10 Regression Analysis

