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Abstract

Metric-based meta-learning techniques have successfully been applied to few-
shot classification problems. In this paper, we propose to leverage cross-modal
information to enhance metric-based few-shot learning methods. Visual and se-
mantic feature spaces have different structures by definition. For certain concepts,
visual features might be richer and more discriminative than text ones. While
for others, the inverse might be true. Moreover, when the support from visual
information is limited in image classification, semantic representations (learned
from unsupervised text corpora) can provide strong prior knowledge and context
to help learning. Based on these two intuitions, we propose a mechanism that
can adaptively combine information from both modalities according to new im-
age categories to be learned. Through a series of experiments, we show that by
this adaptive combination of the two modalities, our model outperforms current
uni-modality few-shot learning methods and modality-alignment methods by a
large margin on all benchmarks and few-shot scenarios tested. Experiments also
show that our model can effectively adjust its focus on the two modalities. The
improvement in performance is particularly large when the number of shots is very
small.

1 Introduction

Deep learning methods have achieved major advances in areas such as speech, language and vi-
sion [25]. These systems, however, usually require a large amount of labeled data, which can be
impractical or expensive to acquire. Limited labeled data lead to overfitting and generalization issues
in classical deep learning approaches. On the other hand, existing evidence suggests that human
visual system is capable of effectively operating in small data regime: humans can learn new concepts
from a very few samples, by leveraging prior knowledge and context [23, 30, 46]. The problem of
learning new concepts with small number of labeled data points is usually referred to as few-shot
learning [1, 6, 27, 22] (FSL).

Most approaches addressing few-shot learning are based on meta-learning paradigm [43, 3, 52, 13],
a class of algorithms and models focusing on learning how to (quickly) learn new concepts. Meta-
learning approaches work by learning a parameterized function that embeds a variety of learning
tasks and can generalize to new ones. Recent progress in few-shot image classification has primarily
been made in the context of unimodal learning. In contrast to this, employing data from another
modality can help when the data in the original modality is limited. For example, strong evidence
supports the hypothesis that language helps recognizing new visual objects in toddlers [15, 45]. This
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Figure 1: Concepts have different visual and semantic feature space. (Left) Some categories may have
similar visual features and dissimilar semantic features. (Right) Other can possess same semantic
label but very distinct visual features. Our method adaptively exploits both modalities to improve
classification performance in low-shot regime.

suggests that semantic features from text can be a powerful source of information in the context of
few-shot image classification.

Exploiting auxiliary modality (e.g., attributes, unlabeled text corpora) to help image classification
when data from visual modality is limited, have been mostly driven by zero-shot learning [24, 36]
(ZSL). ZSL aims at recognizing categories whose instances have not been seen during training. In
contrast to few-shot learning, there is no small number of labeled samples from the original modality
to help recognize new categories. Therefore, most approaches consist of aligning the two modalities
during training. Through this modality-alignment, the modalities are mapped together and forced to
have the same semantic structure. This way, knowledge from auxiliary modality is transferred to the
visual side for new categories at test time [9].

However, visual and semantic feature spaces have heterogeneous structures by definition. For certain
concepts, visual features might be richer and more discriminative than text ones. While for others, the
inverse might be true. Figure 1 illustrates this remark. Moreover, when the number of support images
from visual side is very small, information provided from this modality tend to be noisy and local.
On the contrary, semantic representations (learned from large unsupervised text corpora) can act as
more general prior knowledge and context to help learning. Therefore, instead of aligning the two
modalities (to transfer knowledge to the visual modality), for few-shot learning in which information
are provided from both modalities during test, it is better to treat them as two independent knowledge
sources and adaptively exploit both modalities according to different scenarios. Towards this end, we
propose Adaptive Modality Mixture Mechanism (AM3), an approach that adaptively and selectively
combines information from two modalities, visual and semantic, for few-shot learning.

AM3 is built on top of metric-based meta-learning approaches. These approaches perform classifi-
cation by comparing distances in a learned metric space (from visual data). On the top of that, our
method also leverages text information to improve classification accuracy. AM3 performs classifica-
tion in an adaptive convex combination of the two distinctive representation spaces with respect to
image categories. With this mechanism, AM3 can leverage the benefits from both spaces and adjust
its focus accordingly. For cases like Figure 1(Left), AM3 focuses more on the semantic modality to
obtain general context information. While for cases like Figure 1(Right), AM3 focuses more on the
visual modality to capture rich local visual details to learn new concepts.

Our main contributions can be summarized as follows: (i) we propose adaptive modality mixture
mechanism (AM3) for cross-modal few-shot classification. AM3 adapts to few-shot learning better
than modality-alignment methods by adaptively mixing the semantic structures of the two modalities.
(ii) We show that our method achieves considerable boost in performance over different metric-based
meta-learning approaches. (iii) AM3 outperforms by a considerable margin current (single-modality
and cross-modality) state of the art in few-shot classification on different datasets and different
number of shots. (iv) We perform quantitative investigations to verify that our model can effectively
adjust its focus on the two modalities according to different scenarios.

2 Related Work

Few-shot learning. Meta-learning has a prominent history in machine learning [43, 3, 52]. Due
to advances in representation learning methods [11] and the creation of new few-shot learning
datasets [22, 53], many deep meta-learning approaches have been applied to address the few-shot
learning problem . These methods can be roughly divided into two main types: metric-based and
gradient-based approaches.

Metric-based approaches aim at learning representations that minimize intra-class distances while
maximizing the distance between different classes. These approaches rely on an episodic training
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framework: the model is trained with sub-tasks (episodes) in which there are only a few training
samples for each category. For example, matching networks [53] follows a simple nearest neighbour
framework. In each episode, it uses an attention mechanism (over the encoded support) as a similarity
measure for one-shot classification.

In prototypical networks [47], a metric space is learned where embeddings of queries of one category
are close to the centroid (or prototype) of supports of the same category, and far away from centroids
of other classes in the episode. Due to the simplicity and good performance of this approach, many
methods extended this work. For instance, Ren et al. [39] propose a semi-supervised few-shot learning
approach and show that leveraging unlabeled samples outperform purely supervised prototypical
networks. Wang et al. [54] propose to augment the support set by generating hallucinated examples.
Task-dependent adaptive metric (TADAM) [35] relies on conditional batch normalization [5] to
provide task adaptation (based on task representations encoded by visual features) to learn a task-
dependent metric space.

Gradient-based meta-learning methods aim at training models that can generalize well to new tasks
with only a few fine-tuning updates. Most these methods are built on top of model-agnostic meta-
learning (MAML) framework [7]. Given the universality of MAML, many follow-up works were
recently proposed to improve its performance on few-shot learning [33, 21]. Kim et al. [18] and
Finn et al. [8] propose a probabilistic extension to MAML trained with variational approximation.
Conditional class-aware meta-learning (CAML) [16] conditionally transforms embeddings based on
a metric space that is trained with prototypical networks to capture inter-class dependencies. Latent
embedding optimization (LEO) [41] aims to tackle MAML’s problem of only using a few updates
on a low data regime to train models in a high dimensional parameter space. The model employs
a low-dimensional latent model embedding space for update and then decodes the actual model
parameters from the low-dimensional latent representations. This simple yet powerful approach
achieves current state of the art result in different few-shot classification benchmarks. Other meta-
learning approaches for few-shot learning include using memory architecture to either store exemplar
training samples [42] or to directly encode fast adaptation algorithm [38]. Mishra et al. [32] use
temporal convolution to achieve the same goal.

Current approaches mentioned above rely solely on visual features for few-shot classification. Our
contribution is orthogonal to current metric-based approaches and can be integrated into them to
boost performance in few-shot image classification.

Zero-shot learning. Current ZSL methods rely mostly on visual-auxiliary modality alignment [9,
58]. In these methods, samples for the same class from the two modalities are mapped together so
that the two modalities obtain the same semantic structure. There are three main families of modality
alignment methods: representation space alignment, representation distribution alignment and data
synthetic alignment.

Representation space alignment methods either map the visual representation space to the semantic
representation space [34, 48, 9], or map the semantic space to the visual space [59]. Distribution
alignment methods focus on making the alignment of the two modalities more robust and balanced to
unseen data [44]. ReViSE [14] minimizes maximum mean discrepancy (MMD) of the distributions
of the two representation spaces to align them. CADA-VAE [44] uses two VAEs [19] to embed
information for both modalities and align the distribution of the two latent spaces. Data synthetic
methods rely on generative models to generate image or image feature as data augmentation [60, 57,
31, 54] for unseen data to train the mapping function for more robust alignment.

ZSL does not have access to any visual information when learning new concepts. Therefore, ZSL
models have no choice but to align the two modalities. This way, during test the image query can be
directly compared to auxiliary information for classification [59]. Few-shot learning, on the other
hand, has access to a small amount of support images in the original modality during test. This makes
alignment methods from ZSL seem unnecessary and too rigid for FSL. For few-shot learning, it
would be better if we could preserve the distinct structures of both modalities and adaptively combine
them for classification according to different scenarios. In Section 4 we show that by doing so, AM3
outperforms directly applying modality alignment methods for few-shot learning by a large margin.
3 Method
In this section, we explain how AM3 adaptively leverages text data to improve few-shot image
classification. We start with a brief explanation of episodic training for few-shot learning and a

3



summary of prototypical networks followed by the description of the proposed adaptive modality
mixture mechanism.

3.1 Preliminaries

3.1.1 Episodic Training

Few-shot learning models are trained on a labeled dataset Dtrain and tested on Dtest. The class sets
are disjoint between Dtrain and Dtest. The test set has only a few labeled samples per category. Most
successful approaches rely on an episodic training paradigm: the few shot regime faced at test time is
simulated by sampling small samples from the large labeled set Dtrain during training.

In general, models are trained onK-shot,N -way episodes. Each episode e is created by first sampling
N categories from the training set and then sampling two sets of images from these categories: (i) the
support set Se = {(si, yi)}N×Ki=1 containing K examples for each of the N categories and (ii) the
query set Qe = {(qj , yj)}Qj=1 containing different examples from the same N categories.

The episodic training for few-shot classification is achieved by minimizing, for each episode, the
loss of the prediction on samples in query set, given the support set. The model is a parameterized
function and the loss is the negative loglikelihood of the true class of each query sample:

L(θ) = E
(Se,Qe)

−
Qe∑
t=1

log pθ(yt|qt,Se) , (1)

where (qt, yt) ∈ Qe and Se are, respectively, the sampled query and support set at episode e and θ
are the parameters of the model.

3.1.2 Prototypical Networks

We build our model on top of metric-based meta-learning methods. We choose prototypical net-
work [47] for explaining our model due to its simplicity. We note, however, that the proposed method
can potentially be applied to any metric-based approach.

Prototypical networks use the support set to compute a centroid (prototype) for each category (in
the sampled episode) and query samples are classified based on the distance to each prototype. The
model is a convolutional neural network [26] f : Rnv → Rnp , parameterized by θf , that learns a
np-dimensional space where samples of the same category are close and those of different categories
are far apart.

For every episode e, each embedding prototype pc (of category c) is computed by averaging the
embeddings of all support samples of class c:

pc =
1

|Sce |
∑

(si,yi)∈Sc
e

f(si) , (2)

where Sce ⊂ Se is the subset of support belonging to class c.

The model produces a distribution over the N categories of the episode based on a softmax [4] over
(negative) distances d of the embedding of the query qt (from category c) to the embedded prototypes:

p(y = c|qt, Se, θ) =
exp(−d(f(qt),pc))∑
k exp(−d(f(qt),pk))

. (3)

We consider d to be the Euclidean distance. The model is trained by minimizing Equation 1 and the
parameters are updated with stochastic gradient descent.

3.2 Adaptive Modality Mixture Mechanism

The information contained in semantic concepts can significantly differ from visual contents. For
instance, ‘Siberian husky’ and ‘wolf’, or ‘komondor’ and ‘mop’, might be difficult to discriminate
with visual features, but might be easier to discriminate with language semantic features.

4



wc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pc
0

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Sc
e<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

{‘dog’} W
<latexit sha1_base64="VhN1wWNhwk0ZpvUXUCLBpch7jHs=">AAAB8nicbVDLSsNAFL3xWeur6tJNsAiuSiKCLotuXFawD0hDmUwn7dDJTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfdEqeAGPe/bWVvf2NzaruxUd/f2Dw5rR8cdozJNWZsqoXQvIoYJLlkbOQrWSzUjSSRYN5rcFX73iWnDlXzEacrChIwkjzklaKWgnxAcUyLy7mxQq3sNbw53lfglqUOJ1qD21R8qmiVMIhXEmMD3UgxzopFTwWbVfmZYSuiEjFhgqSQJM2E+jzxzz60ydGOl7ZPoztXfGzlJjJkmkZ0sIpplrxD/84IM45sw5zLNkEm6+CjOhIvKLe53h1wzimJqCaGa26wuHRNNKNqWqrYEf/nkVdK5bPiWP1zVm7dlHRU4hTO4AB+uoQn30II2UFDwDK/w5qDz4rw7H4vRNafcOYE/cD5/AJG+kW0=</latexit><latexit sha1_base64="VhN1wWNhwk0ZpvUXUCLBpch7jHs=">AAAB8nicbVDLSsNAFL3xWeur6tJNsAiuSiKCLotuXFawD0hDmUwn7dDJTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfdEqeAGPe/bWVvf2NzaruxUd/f2Dw5rR8cdozJNWZsqoXQvIoYJLlkbOQrWSzUjSSRYN5rcFX73iWnDlXzEacrChIwkjzklaKWgnxAcUyLy7mxQq3sNbw53lfglqUOJ1qD21R8qmiVMIhXEmMD3UgxzopFTwWbVfmZYSuiEjFhgqSQJM2E+jzxzz60ydGOl7ZPoztXfGzlJjJkmkZ0sIpplrxD/84IM45sw5zLNkEm6+CjOhIvKLe53h1wzimJqCaGa26wuHRNNKNqWqrYEf/nkVdK5bPiWP1zVm7dlHRU4hTO4AB+uoQn30II2UFDwDK/w5qDz4rw7H4vRNafcOYE/cD5/AJG+kW0=</latexit><latexit sha1_base64="VhN1wWNhwk0ZpvUXUCLBpch7jHs=">AAAB8nicbVDLSsNAFL3xWeur6tJNsAiuSiKCLotuXFawD0hDmUwn7dDJTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfdEqeAGPe/bWVvf2NzaruxUd/f2Dw5rR8cdozJNWZsqoXQvIoYJLlkbOQrWSzUjSSRYN5rcFX73iWnDlXzEacrChIwkjzklaKWgnxAcUyLy7mxQq3sNbw53lfglqUOJ1qD21R8qmiVMIhXEmMD3UgxzopFTwWbVfmZYSuiEjFhgqSQJM2E+jzxzz60ydGOl7ZPoztXfGzlJjJkmkZ0sIpplrxD/84IM45sw5zLNkEm6+CjOhIvKLe53h1wzimJqCaGa26wuHRNNKNqWqrYEf/nkVdK5bPiWP1zVm7dlHRU4hTO4AB+uoQn30II2UFDwDK/w5qDz4rw7H4vRNafcOYE/cD5/AJG+kW0=</latexit><latexit sha1_base64="VhN1wWNhwk0ZpvUXUCLBpch7jHs=">AAAB8nicbVDLSsNAFL3xWeur6tJNsAiuSiKCLotuXFawD0hDmUwn7dDJTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfdEqeAGPe/bWVvf2NzaruxUd/f2Dw5rR8cdozJNWZsqoXQvIoYJLlkbOQrWSzUjSSRYN5rcFX73iWnDlXzEacrChIwkjzklaKWgnxAcUyLy7mxQq3sNbw53lfglqUOJ1qD21R8qmiVMIhXEmMD3UgxzopFTwWbVfmZYSuiEjFhgqSQJM2E+jzxzz60ydGOl7ZPoztXfGzlJjJkmkZ0sIpplrxD/84IM45sw5zLNkEm6+CjOhIvKLe53h1wzimJqCaGa26wuHRNNKNqWqrYEf/nkVdK5bPiWP1zVm7dlHRU4hTO4AB+uoQn30II2UFDwDK/w5qDz4rw7H4vRNafcOYE/cD5/AJG+kW0=</latexit>

pc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

f
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

prototypes

convex  
combination

h
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ec
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2: (Left) Adaptive modality mixture model. The final category prototype is a convex combi-
nation of the visual and the semantic feature representations. The mixing coefficient is conditioned
on the semantic label embedding. (Right) Qualitative example of how AM3 works. Assume query
sample q has category i. (a) The closest visual prototype to the query sample q is pj . (b) The semantic
prototypes. (c) The mixture mechanism modify the positions of the prototypes, given the semantic
embeddings. (d) After the update, the closest prototype to the query is now the one of the category i,
correcting the classification.

In zero-shot learning, where no visual information is given at test time (that is, the support set is
void), algorithms need to solely rely on an auxiliary (e.g., text) modality. On the other extreme, when
the number of labeled image samples is large, neural network models tend to ignore the auxiliary
modality as it is able to generalize well with large number of samples [20].

Few-shot learning scenario fits in between these two extremes. Thus, we hypothesize that both
visual and semantic information can be useful for few-shot learning. Moreover, given that visual
and semantic spaces have different structures, it is desirable that the proposed model exploits both
modalities adaptively, given different scenarios. For example, when it meets objects like ‘ping-pong
balls’ which has many visually similar counterparts, or when the number of shots is very small from
the visual side, it relies more on text modality to distinguish them.

In AM3, we augment metric-based FSL methods to incorporate language structure learned by a word-
embedding modelW (pre-trained on unsupervised large text corpora), containing label embeddings
of all categories in Dtrain ∪ Dtest. In our model, we modify the prototype representation of each
category by taking into account their label embeddings.

More specifically, we model the new prototype representation as a convex combination of the two
modalities. That is, for each category c, the new prototype is computed as:

p′c = λc · pc + (1− λc) ·wc , (4)
where λc is the adaptive mixture coefficient (conditioned on the category) and wc = g(ec) is a
transformed version of the label embedding for class c. The representation ec is the pre-trained
word embedding of label c fromW . This transformation g : Rnw → Rnp , parameterized by θg, is
important to guarantee that both modalities lie on the space Rnp of the same dimension and can be
combined. The coefficient λc is conditioned on category and calculated as follows:

λc =
1

1 + exp(−h(wc))
, (5)

where h is the adaptive mixing network, with parameters θh. Figure 2(left) illustrates the proposed
model. The mixing coefficient λc can be conditioned on different variables. In Appendix F we show
how performance changes when the mixing coefficient is conditioned on different variables.

The training procedure is similar to that of the original prototypical networks. However, the distances
d (used to calculate the distribution over classes for every image query) are between the query and
the cross-modal prototype p′c:

pθ(y = c|qt, Se,W) =
exp(−d(f(qt),p

′
c))∑

k exp(−d(f(qt),p′k))
, (6)

where θ = {θf , θg, θh} is the set of parameters. Once again, the model is trained by minimizing
Equation 1. Note that in this case the probability is also conditioned on the word embeddingsW .
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Figure 2(right) illustrates an example on how the proposed method works. Algorithm 1, on supple-
mentary material, shows the pseudocode for calculating the episode loss. We chose prototypical
network [47] for explaining our model due to its simplicity. We note, however, that AM3 can
potentially be applied to any metric-based approach that calculates prototypical embeddings pc for
categories. As shown in next section, we apply AM3 on both ProtoNets and TADAM [35]. TADAM
is a task-dependent metric-based few-shot learning method, which currently performs the best among
all metric-based FSL methods.

4 Experiments

In this section we compare our model, AM3, with three different types of baselines: uni-modality
few-shot learning methods, modality-alignment methods and metric-based extensions of modality-
alignment methods. We show that AM3 outperforms the state of the art of each family of baselines.
We also verify the adaptiveness of AM3 through quantitative analysis.

4.1 Experimental Setup

We conduct main experiments with two widely used few-shot learning datasets: miniImageNet [53]
and tieredImageNet [39]. We also experiment on CUB-200 [55], a widely used zero-shot learning
dataset. We evaluate on this dataset to provide a more direct comparison with modality-alignment
methods. This is because most modality-alignment methods have no published results on few-shot
datasets. We use GloVe [37] to extract the word embeddings for the category labels of the two image
few-shot learning data sets. The embeddings are trained with large unsupervised text corpora.

More details about the three datasets can be found in Appendix B.

Baselines. We compare AM3 with three family of methods. The first is uni-modality few-shot
learning methods such as MAML [7], LEO [41], Prototypical Nets [47] and TADAM [35]. LEO
achieves current state of the art among uni-modality methods. The second fold is modality alignment
methods. CADA-VAE [44], among them, has the best published results on both zero and few-shot
learning. To better extend modality alignment methods to few-shot setting, we also apply the metric-
based loss and the episode training of ProtoNets on their visual side to build a visual representation
space that better fits few-shot scenario. This leads to the third fold baseline, modality alignment
methods extended to metric-based FSL.

Details of baseline implementations can be found in Appendix C.

AM3 Implementation. We test AM3 with two backbone metric-based few-shot learning methods:
ProtoNets and TADAM. In our experiments, we use the stronger ProtoNets implementation of [35],
which we call ProtoNets++. Prior to AM3, TADAM achieves the current state of the art among all
metric-based few-shot learning methods. For details on network architectures, training and evaluation
procedures, see Apprendix D. Source code is released at https://github.com/ElementAI/am3.

4.2 Results

Table 1 and Table 2 show classification accuracy on miniImageNet and on tieredImageNet, respec-
tively. We conclude multiple results from these experiments. First, AM3 outperforms its backbone
methods by a large margin in all cases tested. This indicates that when properly employed, text
modality can be used to boost performance in metric-based few-shot learning framework very
effectively.

Second, AM3 (with TADAM backbone) achieves results superior to current state of the art (in both
single modality FSL and modality alignment methods). The margin in performance is particularly
remarkable in the 1-shot scenario. The margin of AM3 w.r.t. uni-modality methods is larger with
smaller number of shots. This indicates that the lower the visual content is, the more important
semantic information is for classification. Moreover, the margin of AM3 w.r.t. modality alignment
methods is larger with smaller number of shots. This indicates that the adaptiveness of AM3 would
be more effective when the visual modality provides less information. A more detailed analysis about
the adaptiveness of AM3 is provided in Section 4.3.
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Model Test Accuracy
5-way 1-shot 5-way 5-shot 5-way 10-shot

Uni-modality few-shot learning baselines

Matching Network [53] 43.56 ± 0.84% 55.31 ± 0.73% -
Prototypical Network [47] 49.42 ± 0.78% 68.20 ± 0.66% 74.30 ± 0.52%
Discriminative k-shot [2] 56.30 ± 0.40% 73.90 ± 0.30% 78.50 ± 0.00%
Meta-Learner LSTM [38] 43.44 ± 0.77% 60.60 ± 0.71% -
MAML [7] 48.70 ± 1.84% 63.11 ± 0.92% -
ProtoNets w Soft k-Means [39] 50.41 ± 0.31% 69.88 ± 0.20% -
SNAIL [32] 55.71 ± 0.99% 68.80 ± 0.92% -
CAML [16] 59.23 ± 0.99% 72.35 ± 0.71% -
LEO [41] 61.76 ± 0.08% 77.59 ± 0.12% -

Modality alignment baselines

DeViSE [9] 37.43±0.42% 59.82±0.39% 66.50±0.28%
ReViSE [14] 43.20±0.87% 66.53±0.68% 72.60±0.66%
CBPL [29] 58.50±0.82% 75.62±0.61% -
f-CLSWGAN [57] 53.29±0.82% 72.58±0.27% 73.49±0.29%
CADA-VAE [44] 58.92±1.36% 73.46±1.08% 76.83±0.98%

Modality alignment baselines extended to metric-based FSL framework

DeViSE-FSL 56.99 ± 1.33% 72.63 ± 0.72% 76.70 ± 0.53%
ReViSE-FSL 57.23 ± 0.76% 73.85 ± 0.63% 77.21 ± 0.31%
f-CLSWGAN-FSL 58.47 ± 0.71% 72.23 ± 0.45% 76.90 ± 0.38%
CADA-VAE-FSL 61.59 ± 0.84% 75.63 ± 0.52% 79.57 ± 0.28%

AM3 and its backbones

ProtoNets++ 56.52 ± 0.45% 74.28 ± 0.20% 78.31 ± 0.44%
AM3-ProtoNets++ 65.21 ± 0.30% 75.20 ± 0.27% 78.52 ± 0.28%
TADAM [35] 58.56 ± 0.39% 76.65 ± 0.38% 80.83 ± 0.37%
AM3-TADAM 65.30 ± 0.49% 78.10 ± 0.36% 81.57 ± 0.47 %

Table 1: Few-shot classification accuracy on test split of miniImageNet. Results in the top use only
visual features. Modality alignment baselines are shown on the middle and our results (and their
backbones) on the bottom part.

Model Test Accuracy
5-way 1-shot 5-way 5-shot

Uni-modality few-shot learning baselines

MAML† [7] 51.67 ± 1.81% 70.30 ± 0.08%
Proto. Nets with Soft k-Means [39] 53.31 ± 0.89% 72.69 ± 0.74%
Relation Net† [50] 54.48 ± 0.93% 71.32 ± 0.78%
Transductive Prop. Nets [28] 54.48 ± 0.93% 71.32 ± 0.78%
LEO [41] 66.33 ± 0.05% 81.44 ± 0.09%

Modality alignment baselines

DeViSE [9] 49.05±0.92% 68.27±0.73%
ReViSE [14] 52.40±0.46% 69.92±0.59%
CADA-VAE [44] 58.92±1.36% 73.46±1.08%

Modality alignment baselines extended to metric-based FSL framework

DeViSE-FSL 61.78 ± 0.43% 77.17 ± 0.81%
ReViSE-FSL 62.77 ± 0.31% 77.27 ± 0.42%
CADA-VAE-FSL 63.16 ± 0.93% 78.86 ± 0.31%

AM3 and its backbones

ProtoNets++ 58.47 ± 0.64% 78.41 ± 0.41%
AM3-ProtoNets++ 67.23 ± 0.34% 78.95 ± 0.22%
TADAM [35] 62.13 ± 0.31% 81.92 ± 0.30%
AM3-TADAM 69.08 ± 0.47% 82.58 ± 0.31%

Table 2: Few-shot classification accuracy on test split of tieredImageNet. Results in the top use only
visual features. Modality alignment baselines are shown in the middle and our results (and their
backbones) in the bottom part. †deeper net, evaluated in [28].

Finally, it is also worth noting that all modality alignment baselines get a significant performance
improvement when extended to metric-based, episodic, few-shot learning framework. However, most
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AM3-ProtoNets++ AM3-TADAM

ProtoNets++ TADAM

(a) Accuracy vs. # shots
AM3-ProtoNets++ AM3-TADAM

ProtoNets++ TADAM

(b) λ vs. # shots

Figure 3: (a) Comparison of AM3 and its corresponding backbone for different number of shots
(b) Average value of λ (over whole validation set) for different number of shot, considering both
backbones.

of modality alignment methods (original and extended), perform worse than current state-of-the-art
uni-modality few-shot learning method. This indicates that although modality alignment methods are
effective for cross-modality in ZSL, it does not fit few-shot scenario very much. One possible reason
is that when aligning the two modalities, some information from both sides could be lost because two
distinct structures are forced to align.

We also conducted few-shot learning experiments on CUB-200, a popular dataest for ZSL dataset, to
better compare with published results of modality alignment methods. All the conclusion discussed
above hold true on CUB-200. Moreover, we also conduct ZSL and generalized FSL experiments to
verify the importance of the proposed adaptive mechanism. Results on on this dataset are shown in
Appendix E.

4.3 Adaptiveness Analysis

We argue that the adaptive mechanism is the main reason for the performance boosts observed in the
previous section. We design an experiment to quantitatively verify that the adaptive mechanism of
AM3 can adjust its focus on the two modalities reasonably and effectively.

Figure 3(a) shows the accuracy of our model compared to the two backbones tested (ProtoNets++ and
TADAM) on miniImageNet for 1-10 shot scenarios. It is clear from the plots that the gap between
AM3 and the corresponding backbone gets reduced as the number of shots increases. Figure 3(b)
shows the mean and std (over whole validation set) of the mixing coefficient λ for different shots and
backbones.

First, we observe that the mean of λ correlates with number of shots. This means that AM3 weighs
more on text modality (and less on visual one) as the number of shots (hence, the number of visual
data points) decreases. This trend suggests that AM3 can automatically adjust its focus more to text
modality to help classification when information from the visual side is very low. Second, we can
also observe that the variance of λ (shown in Figure 3(b)) correlates with the performance gap of
AM3 and its backbone methods (shown in Figure 3(a)). When the variance of λ decreases with the
increase of number of shots, the performance gap also shrinks. This indicates that the adaptiveness of
AM3 on category level plays a very important role for the performance boost.

5 Conclusion

In this paper, we propose a method that can adaptively and effectively leverage cross-modal informa-
tion for few-shot classification. The proposed method, AM3, boosts the performance of metric-based
approaches by a large margin on different datasets and settings. Moreover, by leveraging unsupervised
textual data, AM3 outperforms state of the art on few-shot classification by a large margin. The
textual semantic features are particularly helpful on the very low (visual) data regime (e.g. one-shot).
We also conduct quantitative experiments to show that AM3 can reasonably and effectively adjust its
focus on the two modalities.
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A Algorithm for Episode Loss

Algorithm 1: Training episode loss computation for adaptive cross-modality few-shot learning. M is
the total number of classes in the training set, N is the number of classes in every episode, K is the
number of supports for each class, KQ is the number of queries for each class,W is the pretrained
label embedding dictionary.

Input: Training set Dtrain = {(xi, yi)}i, yi ∈ {1, ...,M}. Dctrain = {(xi, yi) ∈ Dtrain | yi = c}.
Output: Episodic loss L(θ) for sampled episode e.
{Select N classes for episode e}
C ← RandomSample({1, ...,M}, N )
{Compute cross-modal prototypes}
for c in C do
Sce ← RandomSample(Dctrain,K)
Qce ← RandomSample(Dctrain \ Sce ,KQ)
pc ← 1

|Sc
e |
∑

(si,yi)∈Sc
e
f(si)

ec ← LookUp(c,W)
wc ← g(ec)
λc ← 1

1+exp(−h(wc))

p′c ← λc · pc + (1− λc) ·wc

end for
{Compute loss}
L(θ)← 0
for c in C do

for (qt, yt) in Qce do
L(θ)← L(θ) + 1

N ·K [d(f(qt),p
′
c)) + log

∑
k exp(−d(f(qt),p

′
k))]

end for
end for

B Descriptions of data sets

miniImageNet. This dataset is a subset of ImageNet ILSVRC12 dataset [40]. It contains 100
randomly sampled categories, each with 600 images of size 84× 84. For fair comparison with other
methods, we use the same split proposed by Ravi et al. [38], which contains 64 categories for training,
16 for validation and 20 for test.

tieredImageNet. This dataset is a larger subset of ImageNet than miniImageNet. It contains 34
high-level category nodes (779,165 images in total) that are split in 20 for training, 6 for validation
and 8 for test. This leads to 351 actual categories for training, 97 for validation and 160 for the
test. There are more than 1,000 images for each class. The train/val/test split is done according to
their higher-level label hierarchy. According to Ren et al. [39], splitting near the root of ImageNet
hierarchy results in a more realistic (and challenging) scenario with training and test categories that
are less similar.

CUB-200. Caltech-UCSD-Birds 200-2011 (CUB-200) [55] is a fine-grained and medium scale
dataset with respect to both number of images and number of classes, i.e. 11,788 images from 200
different types of birds annotated with 312 attributes [58]. We chose the split proposed by Xian et
al. [58]. We used the 312-dimensional hand-crafted attribution as the semantic modality for fair
comparison with other published modality alignment methods.

Word embeddings. We use GloVe [37] to extract the semantic embeddings for the category labels.
GloVe is an unsupervised approach based on word-word co-occurrence statistics from large text
corpora. We use the Common Crawl version trained on 840B tokens. The embeddings are of
dimension 300. When a category has multiple (synonym) annotations, we consider the first one. If
the first one is not present in GloVe’s vocabulary we use the second. If there is no annotation in
GloVe’s vocabulary for a category (4 cases in tieredImageNet), we randomly sample each dimension
of the embedding from a uniform distribution with the range (-1, 1). If an annotation contains more
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than one word, the embedding is generated by averaging them. We also experimented with fastText
embeddings [17] and observed similar performances.

C Baselines

For modality alignment baselines, we follow CADA-VAE [44]’s few-shot experimental setting.
During training, we randomly sample N -shot images for the test classes, and add them in the training
data to train the alignment model. During test, we compare the image query and the class embedding
candidates in the aligned space to make decisions as in ZSL and GZSL.

For the meta-learning extensions of modality alignment methods, instead of including the N -shot
images into training data, we follow the standard episode training (explained in Section 3) of metric-
based meta-learning approach and train models only with samples from training classes. Moreover,
during training, we add an additional loss illustrated in Equation 1 and 3, to ensure the metric space
learned on the visual side matching the few-shot test scenario. At test, we employ the standard
few-shot testing approach (described in Appendix D) and calculate the prototype representations of
test classes as follows:

pc =
Σir

c
i + wc

N + 1
, (7)

where ri is the representation of the i-th support image. For both training and test, we need a visual
representation space to calculate prototype representations. For DeViSE, they are calculated in its
visual space before the transformer [9]. For both ReViSE and CADA-VAE, prototype representations
are calculated in the latent space. For f-CLSWGAN, they are calculated in the discriminator’s input
space.

D Implementation Details of AM3 Experiments

We model the visual feature extractor f with a ResNet-12 [12], which has shown to be very effective
for few-shot classification [35]. This network produces embeddings of dimension 512. We use this
backbone in all the modality-alignment baselines mentioned above and in AM3 implementations
(with both backbones). We call ProtoNets++ the prototypical network [47] implementation with this
more powerful backbone.

The semantic transformation g is a neural network with one hidden layer with 300 units which
also outputs a 512-dimensional representation. The transformation h of the mixture mechanism
also contains one hidden layer with 300 units and outputs a single scalar for λc. On both g and h
networks, we use ReLU non-linearity [10] and dropout [49] (we set the dropout coefficient to be 0.7
on miniImageNet and 0.9 on tieredImageNet).

The model is trained with stochastic gradient descent with momentum [51]. We use an initial learning
rate of 0.1 and a fixed momentum coefficient of 0.9. On miniImageNet, we train every model for
30,000 iterations and anneal the learning rate by a factor of ten at iterations 15,000, 17,500 and
19,000. On tieredImageNet, models are trained for 80,000 iterations and the learning rate is reduced
by a factor of ten at iteration 40,000, 50,000, 60,000.

The training procedure composes a few-shot training batch from several tasks, where a task is a fixed
selection of 5 classes. We found empirically that the best number of tasks per batch are 5,2 and 1
for 1-shot, 5-shot and 10-shot, respectively. The number of query per batch is 24 for 1-shot, 32 for
5-shot and 64 for 10-shot. All our experiments are evaluated following the standard approach of
few-shot classification: we randomly sample 1,000 tasks from the test set each having 100 random
query samples, and average the performance of the model on them.

All hyperparameters were chosen based on accuracy on validation set. All our results are reported
with an average over five independent run (with a fixed architecture and different random seeds) and
with 95% confidence intervals.

E Results on CUB-200

We also conduct experiments on CUB-200 to better compare with modality-alignment baselines
from ZSL. Table 3 shows the results. For 0-shot scenario, AM3 degrades to the simplest modality
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alignment method that maps the text semantic space to the visual space. Therefore, without the
adaptive mechanism, AM3 performs roughly the same with DeViSE, which indicates that the adaptive
mechanism play the main role on the performance boost we observed in FSL. The results on other
few-shot cases on CUB-200 are consistent with the other two few-shot learning data sets.

We also conduct generalized few-shot learning experiments as reported for CADA-VAE in [44] to
compare AM3 with the published FSL results for CADA-VAE. Figure 4 shows that AM3-ProtoNets
outperforms CADA-VAE in every case tested. We consider as a metric the harmonic mean (H-acc)
between the accuracy of seen and unseen classes, as defined in [56, 44].

Model Test Accuracy
0-shot 1-shot 5-shot

DeViSE [9] 52.0% 54.7% 60.4%
ReViSE [14] 55.2% 56.3% 63.7%
VZSL [] 57.4% 60.8% 70.0%
CBPL [29] 61.9% - -
f-CLSWGAN [57] 62.1% 64.7% 73.7%
CADA-VAE [44] 61.7% 64.9% 71.9%

ProtoNets - 68.8% 76.4%
AM3-ProtoNets 51.3% 73.6% 79.9%
TADAM [35] - 69.2% 78.6%
AM3-TADAM 50.7% 74.1% 79.7%

Table 3: Few-shot classification accuracy on unseen-test split of CUB-200.
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Figure 4: H-acc of generalized few-shot learning on CUB-200.

F Ablation study on the input of the adaptive mechanism

We also perform an ablation study to see how the adaptive mechanism performs with respect to
different features. Table 4 shows results, on both datasets, of our method with three different inputs
for the adaptive mixing network h: (i) the raw GloVe embedding (h(e)), (ii) the visual representation
(h(p)) and (iii) a concatenation of both the query and the language embedding (h(q,w)).

We observe that conditioning on transformed GloVe features performs better than on the raw features.
Also, conditioning on semantic features performs better than when conditioning on visual ones,
suggesting that the former space has a more appropriate structure to the adaptive mechanism than
the latter. Finally, we note that conditioning on the query and semantic embeddings helps with the
ProtoNets++ backbone but not with TADAM.
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Method ProtoNets++ TADAM
1-shot 5-shot 1-shot 5-shot

h(e) 61.23 74.77 57.47 72.27
h(p) 64.48 74.80 64.93 77.60
h(w,q) 66.12 75.83 53.23 56.70

h(w) (AM3) 65.21 75.20 65.30 78.10

Table 4: Performance of our method when the adaptive mixing network is conditioned on different
features. Last row is the original model.
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