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Abstract

Super resolution (SR) methods typically assume that the low-resolution (LR) image
was downscaled from the unknown high-resolution (HR) image by a fixed ‘ideal’
downscaling kernel (e.g. Bicubic downscaling). However, this is rarely the case
in real LR images, in contrast to synthetically generated SR datasets. When
the assumed downscaling kernel deviates from the true one, the performance of
SR methods significantly deteriorates. This gave rise to Blind-SR — namely, SR
when the downscaling kernel (“SR-kernel”) is unknown. It was further shown
that the true SR-kernel is the one that maximizes the recurrence of patches across
scales of the LR image. In this paper we show how this powerful cross-scale
recurrence property can be realized using Deep Internal Learning. We introduce
“Kernel GAN”, an image-specific Internal-GAN [29], which trains solely on the LR
test image at test time, and learns its internal distribution of patches. Its Generator
is trained to produce a downscaled version of the LR test image, such that its
Discriminator cannot distinguish between the patch distribution of the downscaled
image, and the patch distribution of the original LR image. The Generator, once
trained, constitutes the downscaling operation with the correct image-specific
SR-kernel. KernelGAN is fully unsupervised, requires no training data other than
the input image itself, and leads to state-of-the-art results in Blind-SR when plugged
into existing SR algorithms. E]

1 Introduction

The basic model of SR assumes that the low-resolution input image I r is the result of down-scaling
a high-resolution image I r by a scaling factor s using some kernel & (the "SR kernel"), namely:

Itr = (Iur * ks) s (D

The goal is to recover I g given I r. This problem is ill-posed even when the SR-Kernel is assumed
known (an assumption made by most SR methods — older [8} 32} [7]] and more recent [5} 20} 19} 21138
35,112]). A boost in SR performance was achieved in the past few years introducing Deep-Learning
based methods [5,20L [19} 1211 138}, 135} [12]]. However, since most SR methods train on synthetically
downscaled images, they implicitly rely on the SR-kernel k4 being fixed and ‘ideal’ (usually a Bicubic
downscaling kernel with antialiasing— MATLAB’s default imresize command). Real LR images,
however, rarely obey this assumption. This results in poor SR performance by state-of-the-art
(SotA) methods when applied to real or ‘non-ideal’ LR images (see Fig. [La).

The SR kernel of real LR images is influenced by the sensor optics as well as by tiny camera motion
of the hand-held camera, resulting in a different non-ideal SR-kernel for each LR image, even if taken
by the same sensor. It was shown in [26] that the effect of using an incorrect SR-kernel is of greater
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(a) Comparison to SotA SR methods (SR x4):

Since they train on ’ideal’ LR images, they perform poorly on real non-ideal LR images.
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Figure 1: SRx4 on real ‘non-ideal’ LR images (downloaded from the internet, or downscaled by an
unknown kernel). Full images and additional examples in supplementary material (please zoom in on screen).



influence on the SR performance than any choice of an image prior. This observation was later shown
to hold also for deep-learning based priors [30]. The importance of the SR-kernel accuracy was
further analyzed empirically in [27]].

The problem of SR with an unknown kernel is known as Blind SR. Some Blind-SR methods [33} 17,
14,1131 13]] were introduced prior to the deep learning era. Few Deep Blind-SR methods [34}36] were
recently presented in the NTIRE’2018 SR challenge [31]]. These methods do not explicitly calculate
the SR-kernel, but propose SR networks that are robust to variations in the downscaling kernel. A
work concurrent to ours, IKC [[10], performs Blind-SR by alternating between the kernel estimation
and the SR image reconstruction. A different family of recent Deep SR methods [30, 37]], while not
explicitly Blind-SR, allow to input a different image-specific (pre-estimated) SR-kernel along with
the LR input image at test time. Note that SotA (non-blind) SR methods cannot make any use of an
image-specific SR kernel at test time (even if known/provided), since it is different from the fixed
downscaling kernel they trained on. These methods thus produce poor SR results in realistic scenarios
— see Fig.[Ta] (in contrast to their excellent performance on synthetically generated LR images).

The recurrence of small image patches (5x5, 7x7) across scales of a single image, was shown to be a
very strong property of natural images [8}39]]. Michaeli & Irani [[24] exploited this recurrence property
to estimate the unknown SR-kernel directly from the LR input image. An important observation
they made was that the correct SR-kernel is also the downscaling kernel which maximizes the
similarity of patches across scales of the LR image. Based on their observation, they proposed a
nearest-neighbor patch based method to estimate the kernel. However, their method tends to fail for
SR scale factors larger than X2, and has a very long runtime.

This internal cross-scale recurrence property is very powerful, since it is image-specific and unsu-
pervised (requires no prior examples). In this paper we show how this property can be combined
with the power of Deep-Learning, to obtain the best of both worlds — unsupervised SotA SR-kernel
estimation, with SotA Blind-SR results. We build upon the recent success of Deep Internal Learn-
ing [130]] (training an image-specific CNN on examples extracted directly from the test image), and in
particular on Internal-GAN [29] — a self-supervised GAN which learns the image-specific distribution
of patches.

More specifically, we introduce "Kernel GAN" — an image-specific Internal-GAN, which estimates the
SR kernel that best preserves the distribution of patches across scales of the LR image. Its Generator
is trained to produce a downscaled version of the LR test image, such that its Discriminator cannot
distinguish between the patch distribution of the downscaled image, and the patch distribution
of the original LR image. In other words, G trains to fool D to believe that all the patches of
the downscaled image were actually taken from the original one. The Generator, once trained,
constitutes the downscaling operation with the correct image-specific SR-kernel. KernelGAN is
fully unsupervised, requires no training data other than the input image itself, and leads to state-of-
the-art results in Blind-SR when plugged into existing SR algorithms.

Since downscaling by the SR-kernel is a linear operation applied to the LR image (convolution and
subsampling — see Eq.[T)), our Generator (as opposed to the Discriminator) is a linear network (without
non-linear activations). At first glance, it may seem that a single-strided convolution layer (which
stems from Eq. [I]) should suffice as a Generator. Interestingly, we found that using a deep linear
network is dramatically superior to a single-strided one. This is consistent with recent findings in
theoretical deep-learning [28l |2, (18] [11], where deep linear networks were shown to have optimization
advantages over a single layer network for linear regression models. This is further elaborated in

Sec. 411

Our contributions are therefore several-fold:

o This is the first dataset-invariant deep-learning method to estimate the unknown SR kernel (a
critical step for true SR of real LR images). KernelGAN is fully unsupervised and requires no
training data other than the input image itself, hence enables true SR in "the wild".

o KernelGAN leads to state-of-the-art results in Blind-SR when plugged into existing SR algorithms.

e To the best of our knowledge, this is the first practical use for deep linear networks (so far used
mostly for theoretical analysis), with demonstrated practical advantages.
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Figure 2: KernelGAN: The patch GAN trains on patches of a single input image (real). D tries to distinguish
real patches from those generated by G (fake). G learns to downscale X2 the image while fooling D i.e.
maintaining the same distribution of patches. Both networks are fully convolutional, which in the case of images
implies that each pixel in the output is a result of a specific receptive field (i.e. patch) in the input.

2 Overview of the Approach

Given only the input image, our goal is to find its underlying image-specific SR kernel. We seek the
kernel that best preserves the distribution of patches across scales of the LR image. More specifically,
we aim to "generate" a downscaled image (e.g. by a factor of 2) such that its patch distribution is as
close as possible to that of the LR image.

By matching distributions rather than individual patches, we can leverage recent advances in dis-
tribution modeling using Generative Adversarial Networks (GANs) [9]. GANs can be understood
as a tool for distribution matching [9]. A GAN typically learns a distribution of images in a large
image dataset. It maps examples from a source distribution, p,, to examples indistinguisable from
a target distribution, p,: G : © — y with x~p,, and G(x)~p,. An internal GAN [29] trains on a
single input image and learns its unique internal distribution of patches.

Inspired by InGAN [29], Kernel GAN is also an image specific GAN that trains on a single input
image. It consists of a downscaling generator (&) and a discriminator (D) as depicted in Fig. 2} Both
G and D are fully-convolutional, which implies the network is applied to patches rather than the
whole image, as in [[16]. Given an input image I}, r, G learns to downscale it, such that, for D, at the
patch level, it is indistinguishable from the input image I .

D trains to output a heat map, referred to as D-map (see fig. 2 indicating for each pixel, how likely
is its surrounding patch to be drawn from the original patch-distribution. It alternately trains on
real examples (crops from the input image) and fake ones (crops from G’s output). The loss is the
pixel-wise MSE difference between the output D-map and the label map. The labels for training D
are a map of all ones for crops extracted from the original LR image, and a map of all zeros for crops
extracted from the downscaled image.

We adopt the LSGAN [23]] variant, and define the objective of the Kernel GAN as:
G*(ILr) = argénin max {Emwpamhesum) [(D(z) — 1)? + D(G(2)))?] + R} )

where R is the regularization term on the downscaling SR-kernel resulting from the generator GG (see
more details in Sec.[d.2). Once converged, the generator G* constitutes, implicitly, the ideal SR
downscaling function for the specific LR image.

The GAN trains for 3,000 iterations, alternating single optimization steps of G and D, with the
ADAM optimizer (81 = 0.5, B2 = 0.999). Learning rate is 2¢e~*, decaying x0.1 every 750 iters.

3 Discriminator

The goal of the discriminator D is to learn the distribution of patches of the input image Iz and
discriminate between real patches belonging to this distribution and fake patches generated by G.
D’s real examples are crops from I, g, while fake examples are crops currently outputed by G.

We use a fully-convolutional patch discriminator, as introduced in [[16], applied to learn the patch
distribution of a single image as in [29]]. To discriminate small image patches, we use no pooling
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or strides, thus achieving a small receptive field of a 7x7 patch. In this setting, D is implicitly
applied to each patch separately and produces a heat-map (D-map) where each location in the map
corresponds to a patch from the input. The labels for the discriminator are maps (matrices of real/fake,
i.e. 1/0 labels, respectively) of the same size as the input to the discriminator. Each pixel in D-map
indicates how likely is its surrounding patch to be drawn from the learned patch distribution. See
Fig. B for architecture details of the discriminator.

4 Deep Linear Generator = The downscaling SR-Kernel

4.1 Deep Linear Generator

The generator G constitutes the downscaling model. Since downscaling by convolution and subsam-
pling is a linear transform (Fig. [T), we use a linear Generator (without any non-linear activations).
We refer to the model of downscaling from Eq.[I} In principle, the expressiveness of a single strided
convolutional layer should cover all possible downscaling methods captured by Eq.|l| However, we
empirically found that such architecture does not converge to the correct solution (see[6). We attribute
this behavior to the following conjecture: A generator consisting of a single layer has exactly one set
of parameters for the correct solution (the set of weights that make the ground-truth kernel). This
means that there is only one point on the optimization surface that is acceptable as a solution and it is
the global minimum. Achieving such a global minimum is easy when the loss function is convex
(as in linear regression). But in our case the overall loss function is a non-linear neural network-
D which is highly non-convex. In such case, the probability for getting from some random initial
state to the global minimum using gradient based methods is negligible. In contrast to a single layer,
standard (deep) neural networks are assumed to converge from a random initialization due to the fact
that there are many good local minima and negligibly few bad local minima [6 [18]]. Hence, for a
problem that by definition has one valid solution, optimizing a single layer generator is impossible.

A non-linear generator would not be suitable either. Without an explicit constraint on G to be linear,
it will generate physically unwanted solutions for the optimization objective. Such solutions include
generating any image that contains valid patches but has no downscaling relation (Eq. [T). One
example is generating a tile of just several patches from the input. This would be a solution that
complies with eq. 2]but is unwanted.

This conjecture motivated us to use deep linear networks. These are networks consisting of a
sequence of linear layers with no activations, and are used for theoretical analysis [28, 2} [18} [11]].
The expressiveness of a deep linear network is exactly as the one of a single linear layer (i.e. Linear
regression), however, its optimization has several different aspects. While it can be convex with
respect to the input, the loss would never be convex with respect to the weights (assuming more than
one layer). In fact, linear networks have infinitely many equally valued global minima. Any choice of
network parameters matching to one of these minima would be equivalent to any other minimum point-
they are just different factorizations of the same matrix. Motivated by these observations, we employ
a deep linear generator. By that we allow infinitely many valid solutions to our optimization objective,
all equivalent to the same linear solution. Furthermore, it was shown by [2], that gradient-based
optimization is faster for deeper linear networks than shallow ones.

Fig. @ depicts the architecture of G. We use 5 hidden convolutional layers with 64 channels each.
The first 3 filters are 7x7, 5x5, 3x3 and the rest are 1x 1. This makes a receptive field of 13 x 13
(allowing for a 13 x 13 SR kernel). This setting of filters takes into account the effective receptive
field [22]; maintaining the same receptive field while having filters bigger than 1x 1 following the
first layer encourages the center of the kernel to have higher values. To provide a reasonable initial
starting point, the generator’s output is constrained to be similar to an ideal downscaling (e.g. bicubic)
of the input, for the first iterations. Once satisfied, this constraint is discarded.
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4.2 Extracting the explicit kernel

At any iteration during the training, the generator G constitutes the currently estimated downscaling
operation for the specific LR input image. The image-specific kernel is implicitly captured by the
trained weights of G. However, there are two reasons to explicitly extract the kernel from G. First,
we are interested in having a compact downscaling convolution kernel rather than a downscaling
network. This step is trivial; convolving all the filters of G sequentially with sride 1 results in the
SR-kernel k (see Fig. ). When extracted, the kernel is just a small array that can be supplied to
SR algorithms. The second reason for explicitly extracting the kernel is to allow applying explicit
and physically-meaningful priors on the kernel. This is the goal of the regularization term R in
Eq[2] which decreases the hypotheses space to a sub-set of the plausible kernels, that obey certain
restrictions. Such restrictions are that the kernel would sum up to 1 and be centered so it will not
shift the image. The regularization also ameliorates faulty tendencies of the optimization process to
produce kernels that are too spread out and smooth. However, it is not enough to extract the kernel,
this extraction must be differentiable so that the regularization losses can be back-propagated through
it. At each iteration, we apply a differentiable action of calculating the kernel (convolving all the
filters of G sequentially with stride-1). The regularization loss term R is then applied and included in
the optimization objective.

The regularization term in our objective in eq. [2]is the following:

R = aﬁsum_to_l + Bﬁboundaries + ’V»Csparse + §£center (3)
where a = 0.5, 6 = 0.5,y =5,6 = 1, and:

Lsum_to1 = ’1 — th k”’ encourages k to sum to 1.

Lyoundaries = El j |k; ; - m; ;| penalizing non-zero values close to the boundaries. m is a
constant mask of weights exponentially growing with distance from the center of &.

Lsparse = ZZ. j ;. ; |1/ 2 encourages sparsity to prevent the network from oversmoothing kernels.

Leenter = H (o, Y0) — % H encourages k’s center of mass to be at the center of the
0,5 i 2

kernel, where (x, yo) denote the center indices.

SR kernels are not only image specific, but also depend on the desired scale-factor s. However,
there is a simple relation between SR-kernels of different scales. We are thus able to obtain a
kernel for SR x4 from G that was trained to downscale by x2. This is advantageous for two
reasons: First, it allows extracting kernels for various scales by one run of Kernel GAN. Second,
it prevents downscaling the LR image too much. Small LR images downscaled by a scale factor
of 4 may result in tiny images (x 16 smaller than the HR image) which may not contain enough
data to train on. KernelGAN is trained to estimate a kernel ko for a scale-factor of 2. It is easy
to show that the kernel for a scale factor of 4, i.e. k4, can be analytically calculated by requiring:
Inr * kg La= (Ipg * k2 l2) * k2 o

. ko |ZL, 21 nq,no even
It implies that kg = ko * ko _gitateda » Where ka_giiated [nl, ng] = [ 272 } ’

else

For a mathematical proof of the above derivation, as well as an ablation study of the various kernel
constraints — see our| project website.

S Experiments and results

We evaluated our method on real LR images, as well as on ‘non-ideal’ synthetically generated LR
images with ground-truth (both ground-truth HR images, as well as the true SR-kernels).
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Figure 5: SR kernel estimation: We compare
ground truth kernel, Michaeli and Irani [24|]
and KernelGAN (ours). PSNR of ZSSR [30],
when supplied with those kernels, is noted in
the bottom right of each kernel, emphasizing the
significance of kernel estimation accuracy. Our
method outperforms [24] in SR performance (as
well as in visual similarity to ground truth SR kernel)
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Type 1:

SotA SR algorithms
(trained on bicubically
downscaled images)

Blcublc Interpolation
Bicubic kernel + ZSSR [30]
EDSRplus [21]

RCANDlus [38]]

28.731/0.8040
29.102/0.8215
29.172/0.8216
29.198/0.8223

25.330/0.6795
25.605/0.6911
25.638/0.6928
25.659/0.6936

Type 2: PDN [34] - 1st in NTIRE track4 - 26.340/0.7190
Blind-SR WDSR [36] - 1st in NTIRE track2 - 21.546/0.6841
NTIRE’18 [31] WDSR [36]] - 1st in NTIRE track3 - 21.539/0.7016
winners WDSR [36] - 2nd in NTIRE track4 - 25.636/0.7144

Type 3: Michaeli & Irani [24] + SRMD [37] | 25.511/0.8083 | 23.335/0.6530

kernel estimation Michaeli & Irani [24] + ZSSR [30] 29.368 /0.8370 | 26.080/0.7138

+ KernelGAN (Ours) + SRMD [37] 29.565/0.8564 | 25.71170.7265

non Blind-SR algorithm || KernelGAN (Ours) + ZSSR [30] 30.363/0.8669 | 26.810/0.7316

Type 4:
Upper bound

Ground-truth kernel + SRMD [37]]
Ground-truth kernel + ZSSR [30]

31.962 /0.8955
32.436/0.8992

27.37570.7655
27.527/0.7446

Table 1: SotA SR performance (PSNR(dB) / SSIM) on 100 images of DIV2KRK (sec.
best performance, blue indicates second best.

. Red indicates the

5.1 Evaluation Method

The performance of our method is analyzed in 2 ways: Kernel estimation accuracy and SR perfor-
mance. The latter is done both visually (see fig.[Ta]and supplementary material), and empirically on
the synthetic dataset analyzing PSNR and SSIM measurements (Table[T). Evaluation is done using
the script provided by [19] and used by many works, including [30} 20, 21]]. For evaluation of the
kernel estimation we chose two non-blind SR algorithms that accept a SR-kernel as input 30} 37]],
provide them with different kernels (bicubic, ground truth SR-kernel, ours and [30]]) and compared
their SR performance. We present four types (categories) of algorithms for the analysis:

e Type I includes the non-blind SotA SR methods trained on bicubically downscaled images.

e Type 2 are the winners of the NTIRE’2018 Blind-SR challenge [31].

e Type 3 consists of combinations of 2 methods for SR-kernel estimation, [24] and ours, and 2
non-blind SR methods, [130}137]], that regard the estimated kernel as input. This combination is
itself, a full Blind-SR algorithm.

e Type 4, is again the combination above, only with the use of the ground truth SR-kernel, thus
providing an upper bound to Type 3.

When providing a kernel to ZSSR [30] (whether ours, [24]’s, ground-truth kernel), we provide both
the x2 and x4 kernels, in order to exploit the gradual process of ZSSR (using 2 sequential SR steps).

We compare our kernel estimation to Michaeli & Irani [24] which, to the best of our knowledge, is
the leading method for SR-kernel estimation from a single image.

5.2 Dataset for Blind-SR

There is no adequate dataset for quantitatively evaluating Blind-SR. The data used in the NTIRE 2018
Blind-SR challenge [31]] has an inherent problem,; it suffers from sub-pixel misalignments between
the LR image and the HR ground truth, resulting in subpixel misalignments between the reconstructed
SR images and the HR ground truth images. Such small misalignments are known to prefer (i.e.
give lower error to) blurry images over sharp ones. A different benchmark suggested by [4] is not
yet available, and is only restricted to 3 SR blur kernels. As a result, we generated a new Blind-SR
benchmark, referred to as DIV2KRK (DIV2K random kernel).
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Figure 6: Depth is of the essence for the linear network: The deep linear generator outperforms the single
layer version by 3.8dB and 1.6dB for x2 and x4 over DIV2KRK. Kernel examples emphasize superiority of the
deep linear network.

Using the validation set (100 images) from the widely used DIV2K [[1]] dataset, we blurred and sub-
sampled each image with a different, randomly generated kernel. Kernels were 11x11 anisotropic
gaussians with random lengths Ay, Ao~1/(0.6, 5) independently distributed for each axis, rotated
by a random angle O~U[—m, 7). To deviate from a regular gaussian, we further apply uniform
multiplicative noise (up to 25% of each pixel value of the kernel) and normalize it to sum to one. See
Figs.[5and[6|for a few such examples. Data and reproduction code are available on| project website!

5.3 Results

Our method together with ZSSR [30] outperforms SotA SR results visually and numerically
by a large margin of 1dB and 0.47dB for scales x2 and x4 respectively. When the kernel
deviates from bicubic, as in DIV2KRK and real images, Type I, SotA SR, tends to produce blurry
results (often comparable to naive bicubic interpolation), and highlights undesired artifacts (e.g. JPEG
compression), such examples are shown in Fig. [Ta] Type 2, i.e. SotA Blind-SR methods, produce
significantly better quantitative results, than Type I. Although visually (as shown in Fig. [Ib), tend to
over-smooth patterns and over-sharpen edges in an artificial and graphical manner.

Our SR-kernel estimation, plugged into ZSSR [30]], shows superior results over both types by a large
margin of 1.1dB, 0.47dB for scales x2, x4 respectively, and visually recovering small details from
the LR image as shown in Fig[I] Although, our kernel together with [37]] did not perform as well for
scale x4, ranking lower than [34] in PSNR (but higher in SSIM).

Regarding SR-kernel estimation, we analyze Type 3. When fixing a SR algorithm, our kernel
estimation outperforms [24] visually, as seen in Fig. and quantitatively by 1dB, 0.73dB when
plugged in [30] and 4dB, 2.3dB when plugged in [37] for scales x2, x4 respectively.

The superiority of Type 3 and Type 4 (as shown in Table [T)) shows empirically the importance of
performing SR with regard to the image specific SR-kernel. Moreover, using a SR algorithm with
different SR-kernels leads to significantly different results, demonstrating the importance of the
SR-kernel accuracy. This is also shown in Fig. [5| with a large difference in PSNR while small (but
visible) difference in the estimated kernel. For more visual results+comparisons see | project website.

Run-time: Network training is done during test time. There is no actual inference step since the
trained GG implicitly contains the resulting SR-kernel. Runtime is 61 or 102 seconds per image on a
single Tesla V-100 or Tesla K-80 GPU, respectively. Runtime is independent both of image size and
scale factor, since the GAN analyzes patches rather than the whole image. Since the same kernel
applies to the entire image, analyzing a fixed number of crops suffices to estimate the kernel. Fixed
sized image crops (64 x64 to (G, and accordingly 32x32 to D) are randomly selected with probability
proportional to their gradient content. Kernel GAN first estimates the X2 SR-kernel, and then derives
analytically kernels for other scales (e.g., x4). For comparison, [24] runs 45 minutes per image on
our DIV2KRK and time consumption grows with image size.

6 Conclusion

We present significant progress towards real-world SR (i.e., Blind-SR), by estimating an image-
specific SR-kernel based on the LR image alone. This is done via an image-specific internal-GAN,
which trains solely on the LR input image, and learns its internal distribution of patches without
requiring any prior examples. This gives rise to true SR "in the wild''. We show both visually
and quantitatively that when our kernel estimation is provided to existing off-the-shelf non-blind SR
algorithms, it leads to SotA SR results, by a large margin.
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