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ABSTRACT

Conditional generation refers to the process of sampling from an unknown distri-
bution conditioned on semantics of the data. This can be achieved by augmenting
the generative model with the desired semantic labels, albeit it is not straightfor-
ward in an unsupervised setting where the semantic label of every data sample
is unknown. In this paper, we address this issue by proposing a method that can
generate samples conditioned on the properties of a latent distribution engineered
in accordance with a certain data prior. In particular, a latent space inversion
network is trained in tandem with a generative adversarial network such that the
modal properties of the latent space distribution are induced in the data generating
distribution. We demonstrate that our model, despite being fully unsupervised, is
effective in learning meaningful representations through its mode matching prop-
erty. We validate our method on multiple unsupervised tasks such as conditional
generation, dataset attribute discovery and inference using three real world im-
age datasets namely MNIST, CIFAR-10 and CelebA and show that the results are
comparable to the state-of-the-art methods.

1 INTRODUCTION

Unsupervised learning or extraction of semantically relevant information from unlabelled data is a
problem of great interest. It is useful for a wide range of tasks such as feature learning for super-
vised and semi-supervised classification, data augmentation and reconstruction (Hastie et al. (2009);
Hinton et al. (2006); Hinton & Salakhutdinov (2006); Bengio et al. (2013); Yann (1987); Radford
et al. (2015); Kingma et al. (2014); Cheung et al. (2014)). From a generative model’s perspective,
unsupervised learning amounts to divide the data manifold into semantically interpretable regions
and sample new points from each of the regions (Jaakkola & Haussler (1999); Hastie & Tibshirani
(1996)). However, distributions of most of the naturally occurring data such as images and speech
lie over complex high-dimensional manifolds and do not have tractable forms.

Deep generative neural networks, in particular Generative Adversarial Networks (GANs) (Goodfel-
low et al. (2016)), are shown to be effective in modelling complex distributions for several real-world
tasks (Radford et al. (2015); Isola et al. (2017); Van Den Oord et al. (2016); Odena et al. (2016);
Denton et al. (2015)). Basic idea of a GAN is to implicitly learn sampling from the data generating
distribution without explicitly estimating it. It is done by adopting an adversarial learning principle
where the problem of sampling from an unknown data distribution is formulated as a min-max game
between two function approximators called generator and discriminator. A generator learns to map
an input noise distribution to the data generating distribution. This is facilitated by the discrimina-
tor which is trained to distinguish between the generated and the true samples. At equilibrium, the
distribution of the generated samples converges to the data generating distribution. There are two
major differences between GANs and conventional generative models - First, in GANs, the poste-
rior of the latent variable conditioned on the data is intractable. This is due to the fact that GANs
are not designed to explicitly model the relation between the latent and data space. If this relation
can be inferred in a GAN setting, they can be readily used to perform a variety of unsupervised
learning tasks. Second, in conventional generative models, the prior on the latent variable is chosen
in accordance with some guess on the structure of the data. For example, number of clusters in
K-means is chosen to be ten if there are ten ‘classes’ in the data (Jain et al. (1999)). As a result, the
generated space inherits the properties of the latent space. Motivated by the these observations, in
this paper, we propose a GAN model in which latent space, engineered in accordance with the data
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space, is inverted back from the generated space. This enables the generation to be such that the
modal properties of the data generating distribution are matched to those of the latent distribution.

The idea of inverting the latent space while training a GAN has been incorporated in different con-
texts (Chen et al. (2016); Donahue et al. (2016); Dumoulin et al. (2016); Mescheder et al. (2017);
Larsen et al. (2015); Makhzani et al. (2015); Kim et al. (2017); Springenberg (2015); Bao et al.
(2017); Sohn et al. (2015)). It is shown to stabilize the training and prevent a degenerative solution
for the generator (known as mode collapse) (Che et al. (2016); Srivastava et al. (2017); Arjovsky
et al. (2017); Salimans et al. (2016)). Although our work has a similar ambit, the following are our
unique contributions:

• We propose to engineer the noise space according to the desired objective for unsupervised
learning.

• We combine the latent space engineering with an inverse mapping from the data space to
the latent space in order to enforce the matching the modal properties of generated data
distribution with the engineered latent space.

• We include an activity regularizer on latent space reconstruction to avoid intra-mode col-
lapse.

• Unlike some of the recent approaches (Chen et al. (2016); Srivastava et al. (2017)), which
rely on minimizing a lower bound on the actual cost via variational inference, the loss terms
in the proposed method are exact.

We demonstrate the use of the proposed method in several unsupervised learning tasks such as
conditional generation, inference and attribute discovery through experiments on multiple real-world
datasets1.

2 PROPOSED METHOD

Let PX denote the data generating distribution from which the samples are to be drawn and X
denote its support. If X is a disconnected set, which is a union of k non-empty disjoint connected
open subsets (Xi, i = {1, 2...k}), each representing a mode, then PX is termed as a multimodal
distribution with k modes. Following we describe our method to induce multiple modes in the data
generating space by engineering the latent space along with inversion. For simplicity, we assume that
PX is a bimodal distribution, albeit all the analysis holds equally well for multimodal distributions.

Let z denote a latent variable with a distribution z ∼ PZ and Z be the support of PZ . Let g : Z→ X
be a continuous function mapping from z to x which serves as an estimator for PX . Let X0 ⊆ X
and X1 ⊆ X represent two modes of PX .

Proposition 1. Let Z0 ⊆ Z and Z1 ⊆ Z respectively be the inverse images of X0 and X1 under g,
then X0 ∩ X1 = Φ only if Z0 ∩ Z1 = Φ, where Φ is an empty set.

Proof: In Appendix A.

From proposition 1, to get a bimodal generated distribution, it is necessary to have a bimodal latent
distribution, however it is not a sufficient condition. If there exists a mapping h : X→ Ŷ which maps
x, the output of g, to another random variable ŷ in such a way that PŶ is bimodal, one can apply
proposition 1 again on h and achieve bimodality on PX . The following corollary to proposition 1 is
stated to affirm this fact.

Corollary 1.1. Let Ŷ0 ⊆ Ŷ and Ŷ1 ⊆ Ŷ be two subsets of Ŷ such that h : X0 → Ŷ0 and
h : X1 → Ŷ1 then Ŷ0 ∩ Ŷ1 = Φ only if X0 ∩ X1 = Φ. Given Z0 ∩ Z1 = Φ, Ŷ0 ∩ Ŷ1 = Φ is a
sufficient condition for X0 ∩ X1 = Φ.

Corollary 1.1 asserts if latent distribution is bimodal and h maps x to any bimodal distribution,
the generated distribution (PX ) will also be bimodal. However, since both g and h are continuous
mappings, conditional generation of samples from PX (conditioned on modes of z) is possible only
if h is in accordance with the modal properties of z. Thus, we introduce a new random variable y that
is an indicator of the modes of z. Formally, y := 1z∈Z1 , which implies that PY (y = 1) =

∫
Z1

PZ dz

1Code for implementation can be found at - https://github.com/NEMGAN/NEMGAN
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and PY (y = 0) =
∫
Z0

PZ dz. With this, we show that if PY and PŶ are close, then the modal
properties of PX will match with those of PZ .

Proposition 2. Define a random variable that is an indicator of modes of PX as follows: x̂ := 1x∈X1 ,
PX̂(x̂ = 1) =

∫
X1

PX dx and PX̂(x̂ = 0) =
∫
X0

PX dx. The minimization of DKL(PŶ ||PY ) is
equivalent to the minimization of DKL(PŶ ||PX̂).

Proof: In appendix A.

Corollary 2.1. Minimizing DKL(PŶ ||PX̂) leads to matching of modal properties of PX̂ and PY ,
that is,

∫
Xi

PX dx = PY (y = i), i ∈ {0, 1}.

Proof: In Appendix A.

Proposition 2 and Corollary 2.1. state an important fact - modal properties of the latent space and the
data generating space can be matched by choosing h which would minimize DKL(PŶ ||PY ). This
also implies that the imbalance (if any) in the modes of the latent distribution is reflected in the data
generating distribution. This is especially useful for datasets containing imbalanced classes, which
is often the case in real-world applications. The latent space Z can be constructed following the
presumed class imbalance ratio in the real data to conditionally generate imbalanced classes.

Using proposition 1 and 2, one can make the data generating distribution to be bimodal, however,
produced modes might be degenerated in a sense that Xi’s reduce to singletons (mode collapse).
To avoid this degenerative case, we propose to decompose h as a composite of two mappings h1 :

X → Ẑ and h2 : Ẑ → Ŷ. Minimizing a norm distance between the samples of Z and Ẑ prevents
degenerative modes in PX . This is because h1 enforces a unique reconstruction of every sample of z
which in turn ensures that a unique sample of x is generated by a unique sample of z. The function
h1 can be seen as an activity regularizer that would force every unique noise sample within each
mode to map to a unique samples in the inversion and the generated spaces.

In the above formulation, however, the generated distribution is not constrained to be close to the
distribution of the real data. For that, one has to rely on a technique (such as GANs) that would
enforce g(z) to be close to the distribution of the real data. Thus training a GAN according to the
proposed formulation, simultaneously enforces the generated data distribution to be close to the real
data distribution and match the modal properties of the latent distribution. Conversely, if the latent
distribution is chosen in accordance with the modal properties of the real data distribution, the gen-
erated data space will be clustered conditioned on the modes of the real data. This is a desirable
property because if the modes of the real data signify semantic separation, then by adopting the pro-
posed procedure one can achieve unsupervised semantically meaningful conditional generation. In
the following section, we detail the procedure to realize the proposed method in a GAN framework.

2.1 REALIZATION USING GENERATIVE ADVERSARIAL NETWORKS

GAN realizes the mapping g using a deep neural network. Additionally, to ensure that PX is close
to the real data distribution a second neural network, the discriminator denoted by d, is adversarially
trained to differentiate between a true data sample and generated data sample. At the optimum, the
generated distribution, PX approaches the distribution of the real data, PXr . The inversion network
h = h2 ◦ h1 is also modelled using deep neural networks. All neural networks, g, d and h are
simultaneously trained to optimize the following objective function:

min
g,h2◦h1

max
d

[
Exr

[log d(xr)] + Ez[log (1− d ◦ g(z)) + ||z− h1 ◦ g(z)||p] + DKL(PŶ ||PY )
]

(1)

The proposed method can be seen as establishing a chain of continuous functions of random vari-
ables - y → z → x → ẑ → ŷ and imposing a similar modal structures on all of them. The
model being completely unsupervised offers several advantages - (a) Once trained, sampling z from
a particular mode confines x to a unique mode leading to conditional generation, (b) when training
by imposing a fixed prior on z, unseen attributes in the data can be discovered, (c) post training,
the h network can be used independently to cluster the data, (d) if z is well-reconstructed by h1,
this architecture can be used for inference (Note that this is not guaranteed since the model con-
vergence can be defined only via convergence of h2 even if z is not reconstructed back by h1), (e)
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Mode-collapse when generated PX becomes independent of the latent random variable z is avoided
in our formulation since g is explicitly forced to produce a multi-modal distribution by the inversion
network h.

3 RELATED WORK

Data space auto-encoders

In these class of methods, the idea is to learn a mapping from the data to the latent space and back to
the data space. Methods such as vanilla autoencoders (AE) (Hinton & Salakhutdinov (2006), vari-
ational autoencoders (VAE) Kingma & Welling (2013), adverarial autoencoders (AAE) Makhzani
et al. (2015)), mode regularized GANs (Che et al. (2016)), VAE/GAN (Larsen et al. (2015)) and
Conditional VAE (Bao et al. (2017); Sohn et al. (2015)) fall into this category. While these methods
offer several advantages, there are two major issues with this idea -(a) without regularization, a naive
AE model ends up learning an identity mapping. Further, a vanilla autoencoder cannot be used as
a generative model because latent distribution is not tractable and hence cannot be sampled from,
(b) although VAE, AAE, VAE/GAN circumvent this problem by using either variational inference
or adversarial training, these models cannot find disentangled mappings and thus cannot be used for
unsupervised conditional generation tasks. Another approach adopted in Conditional VAEs (Bao
et al. (2017); Sohn et al. (2015) is to embed the label information in the latent space along with
variational inference setting. However these methods need the label information and it is shown that
often the label information is neglected by the encoder Yan et al. (2016).

Latent space auto-encoders

In an alternative setting, these class of methods essentially learn mappings from the latent space to
the data space and backwards, autoencoding the latent/noise space. These methods have an advan-
tage over the data autoencoders in a sense that it is relatively easy to reconstruct the noise vectors
as one has control over the distribution from which they are chosen. Methods such as Adversarially
learned inference (ALI) (Dumoulin et al. (2016)), Bidirectional GANs (BiGAN) (Donahue et al.
(2016), VEEGAN Srivastava et al. (2017)) and structured GANs (Deng et al. (2017)) are examples
of this approach. In ALI and BiGAN, an encoder is learned that would map the data space to the
latent space and additionally the discriminator is taken to classify between the tuples of encoded
data-real data and latent noise-generated data. However in these methods, the latent space encoding
is learned independently of the generated data, in the sense that the real-data is inverted back but
not the generated data. This is shown to lead to poor quality reconstruction and possibility of mode
collapse in the generated data space Srivastava et al. (2017). VEEGAN on the other hand maps both
the real and generated data space to a fixed distribution in order to prevent the problem of mode
collapse. While these methods are more advantageous over data-space autoencoders for the task at
hand, they still do not learn disentangled relation between the data and the latent space as they invert
the data to a semantically-meaningless fixed noise distribution.

Regularized information maximizers

Methods such as InfoGAN (Chen et al. (2016)) and CaTGAN (Springenberg (2015)) follow the idea
of regularized information maximization (Krause et al. (2010)). These methods train the GAN along
with a regularization term to maximize the mutual information between the generated data and parts
of the latent space. The methods are shown to learn disentangled mappings between the latent and
the data space in a completely unsupervised manner, albeit they might lead to mode collapse because
parts of latent space are not reconstructed. Further since there are no explicit function mapping for
noise reconstruction, the learned semantic disentanglement may not be completely faithful (Kim &
Mnih (2018); Ghosh et al.). Also inference in the data space is not possible because a major part of
the latent space is ignored while information maximization.

3.1 OUR CONTRIBUTIONS

1. Engineering latent/noise space - Almost all the aforementioned methods use unimodal dis-
tribution such as Gaussian or Uniform distribution for the latent space. As we have shown
in Proposition 1, multiple modes are produced in the data generating space when the latent
space has multiple modes. Further, even if reconstructed perfectly, a unimodal noise cannot
be used for conditional generation since the semantic relation between the latent and the
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data space is unknown. In this work we propose to engineer the noise space according to
the guess one has on the real data distribution. The specifics for the choice of noise space
depend upon the task and the guess one has on the data prior.

2. Two-stage latent reconstruction - The latent-space reconstruction network is made a com-
posite of two functions (h1 and h2), one for norm-based reconstruction (g(h1(xr)) used
in inference) and one to only reproduce the modal properties (g(z) used for conditional
generation). Among them, the KL-loss contributes to mode matching and the norm-loss to
the variety in the generated data, acting as an activity regularizer.

3. Devoid of approximate/variational inference - In many formulations such as InfoGAN and
VEEGAN, the loss involves an entropy term that requires sampling from an unknown (pos-
terior of the latent variable given the real data) distribution which cannot be computed.
These methods rely on minimizing a lower bound on the actual cost via variational infer-
ence. However, in our case both the loss terms are exact and hence there is no need for
constructing bounds.

Based on the above observations, we call our approach Noise Engineered Mode-matching GAN
(NEMGAN). During implementation, a multimodal noise is created by adding uniform noise with a
multinomial random variable (akin to y) which is selected in accordance to the assumed data prior.
The resulting distribution is a multimodal distribution with non-overlapping modes.

4 EXPERIMENTS

We conduct three sets of experiments on three real world datasets namely MNIST (LeCun et al.
(2010)), CelebA (Liu et al. (2015)) and CIFAR-10 (Krizhevsky & Hinton (2009)), to evaluate our
claims. (a) Mode matching - Design noise space in accordance with the semantic imbalance ratio in
the data and evaluate conditional generation, (b) Attribute discovery - Impose a fixed but arbitrary
prior on noise and see if the generated modes are semantically meaningful, (c) Semantic representa-
tion learning - No particular prior is imposed on noise except for the number of modes and evaluate
if meaningful representations are learned and, (d) Biased noise engineering - understand the effect
of incorrect guess on the priors and explore the possibility to correct the errors in conditional genera-
tion using semi-supervised training, (e) Data inference - validate the data reconstruction capabilities
of NEMGAN.

4.1 MODE MATCHING

We take two semantically ‘distinct’ classes (digits 0 and 4) for MNIST based on their t-SNE plots
(Maaten & Hinton (2008)), albeit this paradigm is applicable to any combination of digits. Three
imbalance ratios of 50:50, 25:75, and 02:98 are considered, signifying no imbalance, slight imbal-
ance and heavy imbalance, respectively in digit 0 and 4. Similar class imbalance is induced in PY

and hence in the latent space PZ , by construction. Figure 1 depicts the images generated by NEM-
GAN corresponding to two noise modes. It can be seen that even with an imbalance ratio of 02:98,
the network is able to conditionally generate semantically separated images. Further to illustrate the
mode matching, we plot the class-wise histograms of the distances between the individual samples
and their corresponding means in Figure 2, for both the noise and the generated data space. It can
be seen that there is evidence for mode matching between latent and generated spaces. As another
level of sanity check, we evaluate the classification accuracy of the reconstruction network on the
real data without imbalance h(xr) and observed accuracy of about 99% for first two and 90% for the
case with a class imbalance of 02:98 in the training data. Next to evaluate the semantic separation,
we consider images corresponding to digits 3 and 5, which have a significant overlap in the t-SNE,
with an imbalance ratio of 30:70. The left pane of Figure 3 shows the conditional generation for the
considered classes (3 and 5) which shows no overlap between the classes in spite of their closeness
in the data manifold. In fact, the inversion network h(xr) achieves a classification accuracy of 98.2
% on real test samples of the digits 3 and 5 in these settings.

We conduct the mode matching experiments with complex color data sets - CIFAR-10 and CelebA.
CIFAR in particular is known to have very high intra-class variability. First, we consider two rela-
tively distinct classes namely airplane and frogs, with an imbalance ratio of 30:70. Once again, the
modes are matching leading to conditional generation results shown in right pane of Figure 3 with
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(a) 50:50 (b) 25:75 (c) 02:98

Figure 1: Sample images generated in the experiments with different class ratios. Surprisingly the
network is able to do conditional generation even with an imbalance of 02:98 with variety in class
corresponding to 2 % (Digit 4).

(a) 50:50 (b) 25:75 (c) 02:98

Figure 2: Distribution of sample distances from the corresponding class means for different ratios.
The plots indicate mode matching between the latent and generated data space.

Figure 3: Sample images generated in the experiments with class ratio of 30:70 for digits 3 and 5 in
MNIST (left pane), Airplanes and Frogs from CIFAR dataset (right pane). Conditional generation
is observed with respective clustering accuracies of 98 and 81.05%.

an inversion network classification accuracy of 81.05% on unseen real data. Similarly, the facial
images generated conditioned on presence and absence of glasses, when the latent space is induced
with an imbalance of 07:93, shown in first two panes of Figure 4. Furthermore, for an imbalance of
05:95 the network learns to latch on to another facial attribute namely presence or absence of rosy
cheeks as observed in last two panes of Figure 4. Another interesting observation in all these experi-
ments is that there is considerable amount of visual variety in the images from each class suggesting
reduction of mode collapse, even within a single mode with 2% occurrence. These experiments
thus demonstrate the ability of NEMGAN to perform an unsupervised generation conditioned on
semantically meaningful classes through mode matching.
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Glasses Without glasses Rosy cheeks Non-rosy cheeks

Figure 4: Sample images generated in the experiments with class ratio of 07:93 for glass and non-
glass faces, 05:95 for rosy cheeks and non rosy cheeks for the CelebA dataset.

Table 1: Modes captured by different models for the stacked MNIST dataset.

Method Modes(Max 1000)
DCGAN 99

VEEGAN 150
NEMGAN(Ours) 1000

To end the section on mode matching, we evaluate our method on standard mode-counting tasks.
Specifically, as mentioned in Srivastava et al. (2017) we used stacked MNIST dataset which is
obtained by stacking three random MNIST digits along color channels of an RGB image to obtain
color images. This dataset can have 1000 modes corresponding to every possible combination of
digit triplets. We used experimental settings identical to Srivastava et al. (2017). Table 1 lists the
results of our method and three other methods on discovering the modes in the stacked MNIST.
For our method, latent space is a discrete uniform distribution with 1000 modes. It can be seen
that NEMGAN is able to discover all 1000 modes, which is quite significant. Appendix D shows
generated images and also depicts the outcome of NEMGAN on a eight component GMM arranged
over a circle in which case NEMGAN discovers all the modes.

4.2 ATTRIBUTE DISCOVERY

In a few real-life scenarios, the class imbalance ratio is unknown. In such cases, an unsupervised
technique should discover semantically plausible regions in the data space. To evaluate NEMGANs
ability to perform such a task, we perform experiments where sample from PY are drawn with an
assumed class ratio rather than a known ratio. Two experiments are performed on CelebA, first with
the assumption of 2 classes having a ratio of 70:30 and the second with the assumption of 3 classes
having a ratio of 10:30:60. In the first experiment, the network discovers visibility of teeth as an
attribute to the faces whereas in the second it learns to differentiate between the facial pose angles.
Conditional generation from both the experiments are shown in figure 5 and 6, respectively. Note
that these attributes are not labelled in the dataset but are discovered by NEMGAN.

Figure 5: Discovery of the facial attribute smile with teeth visible. Sample images generated in the
experiments with class ratio of 70:30 for faces from the CelebA dataset.

4.3 SEMANTIC REPRESENTATION LEARNING

In these experiments, we use a PZ that has k uniform modes and train NEMGAN on MNIST and
CIFAR-10. In the first experiment, k is set to 10 for both the datasets based on the fact that there are
10 uniformly distributed semantically distinct classes in both of them. Figure 7 shows the generated
MNIST samples. It can be seen that every generated mode corresponds to a digit type. Further a
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Figure 6: Discovery of the attribute facial pose-angle. Sample images generated in the experiments
with class ratio of 10:30:60 for from the CelebA dataset.

Figure 7: Conditional generation of ten MNIST classes using NEMGAN - left pane: Generated
digits, right pane: Class-wise KL between generated and real data.

Table 2: FID values for the MNIST digits
generated by different models

Method FID score
InfoGAN 26.46 ± 0.16
VEEGAN 203.05 ± 0.78

NEMGAN(Ours) 4.37 ± 0.13

Table 3: FID values for the CIFAR images
generated by different models

Method FID score
DCGAN 40
ACGAN 116.2

NEMGAN(Ours) 28.73

classification accuracy of 96.09% was obtained on the real test data from h(xr). To quantify the
separability, we compute the class-wise KL divergence between the real and the generated digits
(for each class) using a nearest neighbor density estimation technique (Duda et al. (2012)), shown in
Figure 7. It can be seen that each mode (class) in the generated data has a unique digit with which the
KL is least, signifying a digit-wise semantic separation. To quantify the goodness of the generated
data, we compute “Frchet Inception Distance” (FID) which is a measure proposed to capture the
closeness of the generated images to real data Heusel et al. (2017). Table 2 lists the FID obtained
after 5 runs for NEMGAN and two comparable models, VEEGAN and InfoGAN. It can been seen
that NEMGAN achieves the least FID that is close to the real MNIST digits signifying the goodness
of the images generated.

Next we repeat the experiment with k = 10 on CIFAR-10. Given the huge intra and inter class
variety in the CIFAR it is difficult for a fully unsupervised method to generate ten semantically
separated modes. However, as seen in the left pane of Figure 8, NEMGAN is surprisingly able to
generate ten modes with every mode dominated by one CIFAR class. The generated space seperation
is also corroborated from the class-wise KL plot in the right pane of Figure 8. To the best of our
knowledge, ours is the first study to report unsupervised class-conditional generation on CIFAR
images. Similar to MNIST experiment, NEMGAN performs the best in terms of FID for CIFAR
also, as shown in Table 3. Further we conducted the CIFAR experiment with k = 5 (5 modes) taking
five semantically ‘distinct’ classes from CIFAR (horses, airplanes, dogs, frogs and automobiles) and
the results are shown in Appendix F along with the KL divergence. The class-wise separation is
qualitatively more in this case as expected since the classes are ‘more’ distinct.

4.4 ABLATION STUDIES

Our model involves two reconstruction stages for the latent space (h1 and h2). In this section, to
study the effect of individual components of the model, we perform the following ablation studies -
(a) training a NEMGAN without the h1 network, (b) training a NEMGAN without the h2 network,
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Figure 8: Conditional generation of CIFAR classes using NEMGAN. Every mode in the generated
space (one row) is dominated by one CIFAR class in the left pane. The separation is seen evident
from the class-wise KL divergence(second pane).

(c) training a conventional GAN with noise engineering. Experiment (a) and (b) are conducted on
the MNIST dataset and the output images are shown in Fig 9. It can be seen that the absence of
the KL-loss (h2) results in the mixing of classes within each mode and the absence of norm-loss
(h1) results in lack of variety within each mode. For example, 1’s with serifs are not generated in
absence of h1. Results for the experiment (c) is depicted in the Appendix E which suggests that a
conventional GAN with latent space engineering cannot separate out the modes. These experiments
suggests that the inclusion of the norm-based reconstruction term encourages the model to avoid the
intra-class mode collapse unlike in the case of supervised conditional GANs (Rui Shu (2017)).

Figure 9: Ablation studies for the latent-space reconstruction terms. Left pane - NEMGAN output
in the absence of h2, right pane - NEMGAN output in the absence of h1. It can be seen that absence
of h2 results in mode mixing and absence of h1 results in less-variety within modes.

4.5 EFFECT OF BIASED NOISE ENGINEERING

In this section we investigate the effect of incorrect guess on the priors for conditional generation
task. Samples of two MNIST digits 3 and 5 are taken with an imbalance ratio of 30:70. The
imbalance ratio in latent space is induced with errors varying from 5% to 20%. It is seen that NEM-
GAN is unable to perform semantic separation of the generated space when trained in unsupervised
manner, as shown in Fig. 10. To improve the performance, we explore the possibility of using
semi-supervised training, where, 5% of the total training samples (taken without replacement) from
each class are used to train the inversion network h(xr) (not the generator and discriminator) after
every 100 steps of unsupervised training. As shown in Fig. 10, semi-supervised training results in
an accurate semantic separation of the generated space. For quantitative evaluation, KL divergence
between the generated and real data from the two classes is measured. As shown in Fig. 11, with
little supervision, the conditional generation is robust and KL divergence is consistently better than
unsupervised training.

4.6 INFERENCE

In the final set of experiments, though not the main objective of the paper, we qualitatively evaluate
NEMGAN on an inference task where the real images are reconstructed using the outputs of the
norm (L1, used in this work) loss layer. Figure 12 depicts the inference for arbitrarily chosen 10
digits from MNIST and CIFAR samples from the two class (Frog Vs. Airplane) experiment (more
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Unsupervised learning Semi-supervised learning

Figure 10: Conditional data generation using NEMGAN with incorrect latent space bias with un-
supervised and semi-supervised training. From left-to-right, the error in the latent bias is increased
from 5% to 20%. While completely unsupervised training does not separate out the semantic modes,
but 5% supervision does.

Figure 11: Evaluation of conditional generation using KL divergence in presence of errors in the
latent prior, with unsupervised and semi-supervised training. It is seen that with little supervision the
conditional generation is robust and KL divergence is consistently better than unsupervised training.

(a) MNIST (b) CIFAR

Figure 12: Inference results of MNIST and CIFAR data. Samples from real test data(top row) are
passed through the g(h1(xr)) network to generate the images(bottom row).

images with qualitative comparison is given in the Appendix). We have observed that the semantic
category is almost always preserved. Given that the network was trained with a skewed class ratio
of 70-30, it is significant that a class-wise faithful reconstruction is obtained.

5 CONCLUSION

We introduced a method for unsupervised conditional generation using generative adversarial net-
works through engineered latent space inversion. We demonstrated through multiple experiments,
that certain desirable properties could be induced in the generated data by creating a latent noise
space that is engineered in accordance to the need. Being fully unsupervised, NEMGAN can be
used in multiple applications spanning from conditional generation to data space clustering. It also
has several desirable side effects like reduction of the infamous mode collapse. Even though NEM-
GAN is fully unsupervised, we believe its performance can be improved by augmenting it with some
supervision.
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A. Proofs for Propositions

Proposition 1: Let Z0 ⊆ Z and Z1 ⊆ Z respectively be the inverse images of X0 and X1 under g,
then X0 ∩ X1 = Φ only if Z0 ∩ Z1 = Φ, where Φ is an empty set.

Proof: Given X0 ∩ X1 = Φ, assume, Z0 ∩ Z1 6= Φ =⇒ ∃zi ∈ Z0 ∩ Z1. Given zi ∈ Z0, let
g(zi) = xi0 ∈ X0 and similarly, given zi ∈ Z1, g(zi) = xi1 ∈ X1. Since g is a continuous function,
xi0 = xi1 = xi =⇒ xi ∈ X0 ∩ X1 contradicting the fact that X0 ∩ X1 = Φ, hence Z0 ∩ Z1 = Φ.

Proposition 2: Define a random variable that is an indicator of modes of PX as follows: x̂ := 1x∈X1
,

PX̂(x̂ = 1) =
∫
X1

PX dx and PX̂(x̂ = 0) =
∫
X0

PX dx. The minimization of DKL(PŶ ||PY ) is
equivalent to the minimization of DKL(PŶ ||PX̂).

Proof: As we know

DKL(PŶ ||PY ) =
∑
ŷ

PŶ log
PŶ

PY
(2)

=
∑
ŷ

(
PŶ logPŶ − PŶ logPY

)
(3)

=
∑
ŷ

PŶ logPŶ − PŶ (ŷ = 0) logPY (y = 0)− PŶ (ŷ = 1) logPY (y = 1) (4)

=
∑
ŷ

PŶ logPŶ − PŶ (ŷ = 0) log

∫
Z0

PZ dz− PŶ (ŷ = 1) log

∫
Z1

PZ dz (5)

Since
∫
Zi

PZ dz =
∫
Xi

PX dx, equation 3 can be written as

DKL(PŶ ||PY ) =
∑
ŷ

PŶ logPŶ − PŶ (ŷ = 0) log

∫
X0

PX dx− PŶ (ŷ = 1) log

∫
X1

PX dx (6)

Since
∫
Xi

PX dx = PX̂(x̂ = i), by definition, equation 6 can be written as

DKL(PŶ ||PY ) =
∑
ŷ

PŶ logPŶ − PŶ (ŷ = 0) logPX̂(x̂ = 0)− PŶ (ŷ = 1) logPX̂(x̂ = 1) (7)

=
∑
ŷ

(
PŶ logPŶ − PŶ logPX̂

)
(8)

= DKL(PŶ ||PX̂) (9)

Corollary 2.1: Minimizing DKL(PŶ ||PX̂) leads to matching of modal properties of PX̂ and PY ,
that is,

∫
Xi

PX dx = PY (y = i), i ∈ {0, 1}.

Proof: The optimum value of DKL(PŶ ||PX̂) is achieved when PX̂(x̂ = i) = PY (y = i). Further
from equation 9, PY (y = i) = PŶ (ŷ = i). Hence, PX̂(x̂ = i) = PY (y = i), i ∈ {0, 1}.
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B.1. Qualitative Comparison with existing architectures

(a) Conditional generation using NEMGAN. (b) Conditional generation using InfoGAN.

Figure 13: Conditional generation comparison.

B.2. Inference comparison

(a) Real images from MNIST (b) Images inferred using g(h1(xr)).

Figure 14: Inference results of MNIST data. Samples from real test data are passed through the
g(h1(xr)) network to generate the images.

(a) Real images from MNIST (b) Images inferred using BiGAN

Figure 15: Inference results of MNIST data from BiGAN.
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(a) Top: real images of frogs from CIFAR dataset,
bottom: Inference results obtained using NEMGAN.

(b) Top: real images of airplane from CIFAR dataset,
bottom: Inference results obtained using NEMGAN.

Figure 16: Top: real images from CIFAR, bottom: Inference results obtained using NEMGAN.

(a) Top: real images of frogs from CIFAR dataset,
bottom: Inference results obtained using ALI.

(b) Top: real images of airplane from CIFAR dataset,
bottom: Inference results obtained using ALI.

Figure 17: Top: real images from CIFAR dataset, bottom: Inference results obtained using ALI.

C. Mode Separation

In this work, semantics of the data refer to the modes in data distribution. These semantics repre-
sent different attributes of the samples and are separated out by the proposed method. For a better
understanding, experiments are conducted with samples of only a single digit type from the MNIST
dataset. Samples of digit 7 and 4 are considered for this purpose. NEMGAN is trained with a dis-
crete uniform latent space with 10 modes and the generated images are shown in Fig. 18. Each row
in Fig. 18 corresponds on one latent space mode and shows different attributes of the considered
digits. For example, the fifth row in left pane contains generated images of digit 7 with slits. Simi-
larly in right pane, the third row contains images of digit 4 with a closed notch. Note that, even with
images of a single digit, no mode collapse is observed with NEMGAN.

Figure 18: Demonstration of mode separation using NEMGAN. Every row in each figure depicts
sample from a mode when the NEMGAN is trained only with a single digit type with a latent space
with ten modes.

D. Mode counting using NEMGAN

We trained NEMGAN for mode counting experiment on stacked MNIST dataset. It is able to gener-
ate 993 modes. Some of the generated images are shown in Fig. 19. Similar performance is observed
in 8 component GMM experiment, as shown in Fig. 21.
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Figure 19: Mode counting experiment result for stacked MNIST dataset. NEMGAN is able to
produce variety of modes after training.

(a) Real data (a) Generated data

Figure 20: Density plots of true data and NEMGAN generator output for 8 component GMM ar-
ranged over a circle

(a) Real data (a) Generated data

Figure 21: Density plots of true data and NEMGAN generator output for two classes arranged in an
interleaved crescent pattern.

E. Conventional GAN with latent space engineering

Proposition 1 and 2 show that if there exists a mapping from the generated data space back to the
latent space, the generated space is deemed to have as many modes as in the latent space. Multimodal
latent space is necessary to generate date with multiple modes, however, it is not sufficient. To
understand this, the mode matching experiment performed with images of digits 3 and 5 in section
4.1 is repeated with conventional GAN. Images of digit 3 and 5 with an imbalance ratio of 30:70
are used to train the conventional GAN with a bimodal latent space having a modal mass of 30:70.
Observations of the experiment are shown in Fig. 22. The conventional GAN is not able to separate
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the modes and most of the samples drawn are from the dominant mode Fig. 22(b). On the other
hand, NEMGAN separates out the modes accurately.

(a) NEMGAN output (b) Conventional GAN output

Figure 22: NEMGAN and conventional GAN output in presence of latent space engineering. Images
of digit 3 and 5 with an imbalance ratio of 30:70 are used in the experiment.
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F. Conditional generation of CIFAR images

Figure 23: Conditional generation of CIFAR 5 classes using NEMGAN and corresponding KL
divergence matrix. It is seen, and affirmed by KL divergence, that every mode in the generated
space (one row) represents one CIFAR class.
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Figure 24: Conditional generation of CIFAR 10 classes using NEMGAN. It is seen that the every
mode in the generated space (one row) is dominated by one CIFAR class.
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