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Abstract

We extend the Consensus Network [1] framework to Transductive Consensus1

Network (TCN), a semi-supervised multi-modal classification framework, and2

identify its two mechanisms: consensus and classification. By putting forward3

three variants as ablation studies, we show both mechanisms should be functioning4

together. Overall, TCNs outperform or align with the best benchmark algorithms5

when only 20 to 200 labeled data points are available.6

1 Introduction7

Traditionally, semi-supervised learning and multi-view learning are applied to increase data usage8

efficiency. On one hand, semi-supervised learning have shown good applications. TSVM [2]9

regularizes the decision boundaries using unlabeled data, Ladder [3] utilizes cascading autoencoder10

structures, and Categorical GAN [4] incorporates information theoretic optimization goals. On the11

other hand, multi-view learning distills information contained in multiple modalities. Co-training [5]12

and tri-training [6] directly sets up classifiers to supervise each other. PVAE [7] and SemiMVAE [8]13

set up variational autoencoder losses between modalities. Specifically, Consensus Networks [1] use14

adversarial training [9] that learns modality-invariant representations, and outperformed traditional15

algorithms on detecting cognitive impairments.16

However, Consensus Networks are supervised learning algorithms, hence are limited by the avail-17

ability of labeled data. This motivates us to push it forward to semi-supervised regime, resulting18

in Transductive Consensus Networks (TCN). TCNs function in two mechanisms, which we call19

the consensus mechanism and the classification mechanism. We put forward several variants in20

ablation study manner to study the roles of these two mechanisms, and show that the existence of both21

mechanisms are crucial to good performance of TCNs. Overall, TCN accuracies are better than or22

align with those of benchmark algorithms (semi-supervised or supervised, multi-modal or uni-modal)23

on Bank Marketing and DementiaBank datasets, when 20-200 labeled data points are available.24

2 Models25

2.1 Consensus Networks26

We first briefly review the CN framework [1] for supervised, multi-view classification. Consider a27

dataset, {x(i), y(i)} (x(i) ∈ X ), where each data point x is composed of feature values from multiple28

modalities (i.e., ’views’). If M is the total number of modalities, then x = [x1,x2, ...,xM]. For29

m = 1, ...,M , xm could have different dimensions, but the dimension of x(i)
m is consistent throughout30

the dataset. E.g., there may be 200 acoustic features and 100 semantic features for a data point, but31

all data points are constrained to those dimensions.32
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(a) TCN-vanilla and TCN-embed (b) TCN-svm (c) TCN-AE

Figure 1: Network structures for TCN and TCN-embed (left), TCN-svm (middle) and TCN-AE
(right), taking the example when there are two modalities in data (M=2).

There are M interpreter networks Im (m = 1, ..,M ), each compressing one modality of features
into a representation, which we call consensus interpretation vector. A discriminator D tries to
distinguish the origin of each latent representation. A classifier C makes predictions based on all
representations.

vm = Im(xm) P (m̂) = D(vm) P (ŷ) = C([v1, ..,vm])

The training is done by iteratively optimizing two targets:33

min
C,I
LC and min

D
max

I
LD, where (1)

LC = Ex[-logP (y|x)] LD = ExEm[-logP (m̂ = m|vm)]

Note that empirically, an additional noise modality v0 ∼ N (µ1..M, σ
2
1..M ) is injected to enhance the34

ability of the discriminator.35

2.2 Transductive Consensus Networks36

In this paper we extend CN to TCN. Formally, the input data include those labeled, {x(i), y(i)}37

(x(i) ∈ XL), and unlabeled, {x(i)} (x(i) ∈ XU ). In the semi-supervised learning setting, there38

can be a lot more unlabeled data points than labeled: |XU | � |XL|, where the whole dataset is39

X = XL ∪ XU .40

Here each data point x contains feature values from multiple modalities (i.e., ‘views’), and the41

interpreter networks Im(m = 1, ..,M), discriminator D and classifier C are set up identical to CN42

as well. Different from CN, the classification loss is defined on only those labeled data, while the43

discriminator loss is defined across both labeled and unlabeled data:44

LC = Ex∈XL and LD = Ex∈XEm[-logP (m̂ = m|vm)] (2)

2.3 TCN variants45

TCNs function in two mechanisms: The consensus mechanism compresses each data sample into46

"consensus interpretations", and the classifier mechanism tries to make these interpretations meaning-47

ful. To perform ablation studies on these mechanisms, we test the following three variants.48

TCN-embed consists of the same networks as TCN but Np = 30 iterations of min
D

max
I
LD are49

carried out before the iterative optimizations (1). TCN-embed enhances consensus mechanism, yet50

allowing both mechanisms to cooperate. TCN-embed results align with TCN.51

TCN-svm removes the classifier network from TCN-embed. After the pretraining phase across the52

whole dataset, we extract the consensus interpretations of those labeled data samples to train an SVM.53

TCN-svm lets the consensus mechanism to function alone, resulting in almost trivial classifiers.54
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TCN-AE contains an additional reconstructor network per modality R1..M (.), each recovering55

the input modality from latent interpretations: x̂m = Rm(vm + ε) Defining reconstruction loss as56

LR = Ex∈XEm|x̂m − xm|2, the optimization target in TCN-AE can be expressed as:57

min
C,I1..M ,R1..M

LC , and max
I1..M

min
D
LD, and min

I1..M ,R1..M

LR (3)

As shown in Figure 3, TCN-AE has inferior performances than TCN. Reconstruction in an autoen-58

coder style counteracts the consensus mechanisms, and should not be used with CN models.59

3 Experiments and Results60

We run experiments on two classification datasets, DementiaBank [10] and Bank Marketing [11].61

Dataset N. of samples %pos / %neg N. features per modality
Bank Marketing (’BM’) 9640 48.13 / 51.87 10 / 22 / 12
DementiaBank (’DB’) 473 50.76 / 49.26 185 / 117 / 110

Table 1: In BM, the three modalities correspond to basic information, statistical data, and employment.
In DB, the three modalities correspond to acoustic, syntactic-semantic, and lexical.

Figure 2: TCN (top blue line) outperforms or aligns with benchmark algorithms, including multi-
modal semi-supervised (tri-train [6]), uni-modal semi-supervised (TSVM [2], Ladder [3], CatGAN
[4]), and multi-modal supervised (CN [1]).

Figure 3: Accuracy plots for TCN vs its variants. Best viewed in colors. TCN-embed accuracies
aligns with TCN, both significantly outperforming TCN-AE, which is better than TCN-svm. The
consensus and classification mechanisms should both be present.
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4 Appendix106

4.1 Detailed description of datasets107

The Bank Marketing dataset is from the UCI machine learning repository[11]. used for predicting108

whether the customer will subscribe a term deposit in a bank marketing campaign via telephone[12].109

There are originally 4,640 positive samples (subscribe) and 36,548 negative ones (did not subscribe).110

Since consensus network models do not work well on imbalanced datasets, we randomly sample111

5,000 negative samples to create an (almost) balanced dataset. We also convert the categorical raw112

features1 into one-hot representations. We then divide the features into three somewhat arbitrary113

modalities: basic information, statistical data, and employment-related features.114

Three modalities are determined as following. The division are somewhat arbitrary, except that we115

try to make the binary features resulting from one categorical feature be in the same modality.116

1. Basic information: age, marital, education, housing, loan, contact, duration, pdays, previous,117

management118

2. Statistical information: campaign, poutcome, emp.var.rate, unknown, cons.conf.idx, eu-119

ribor3m, day_in_week (converted to 7 binary features), month (converted to 12 binary120

features)121

3. Employment-related information: consumer price index, never employed, retired, self-122

employed, technician, services, student, housemaid, entrepreneur, blue-collar123

DementiaBank2 contains 473 narrative picture descriptions of the clinical “cookie-theft124

picture”[10], containing 240 positive samples (the Dementia class) and 233 negative samples (the125

Control class). We extract 413 linguistic features from each speech sample and their transcriptions,126

including acoustic (e.g., pause durations), semantic-syntactic (e.g., complexity of the syntactic parse127

structures), and lexical modality(e.g., average word length).128

1. Acoustic-related features: phonation rate, mean pause duration, pause word ratio, total129

speech duration, short/medium/long pause count, speech rate, word/audio/(filled or un-130

filled) pauses durations, the mean/variance/kurtosis/skewness of the first 42 Mel Frequency131

Cepestral Coefficients132

2. Syntactic-semantic features: probabilistic context-free grammar parsing tree heights (average133

/ max / etc.), and the occurrences of 104 production rules (e.g: NP→ DT).134

3. Lexical and POS-derived features: the occurrences of part-of-speech tags, Brunet’s index,135

Honore’s statistics, word length, cosine distances between words in sentences, etc.136

4.2 Implementation137

For simplicity, we use fully connected networks for all of I1..M , D, C, and R1..M in this paper. To138

enable faster convergence, all fully connected networks have a batch normalization[13] layer. For139

training neural networks, the batch size is set to 10. The neural network models are implemented140

using PyTorch[14], and supervised learning benchmark algorithms (SVM, MLP) in scikit-learn[15].141

We use the Adam optimizer[16] with an initial learning rate of 0.001. In training TCN, TCN-embed,142

and TCN-AE, optimizations are stopped when the classification loss does not change by more than143

10−5 in comparison to the previous step, or when the step count reaches 100. In the pre-training144

phase of TCN-embed and TCN-svm, training is stopped when the discrimination loss changes by145

less than 10−5, or when pretraining step count reaches 20.146

Sometimes the iterative optimization (i.e., the I-D-CI cycle for TCN / TCN-embed, and the I-D-RI-CI147

cycle for the TCN-AE variant) is trapped in local saddle points – the training classification loss does148

not change while the training classification loss is higher than log2≈ 0.6933. We check once more149

when training stops. If the training classification loss is higher than log2, the model is re-initialized150

1https://archive.ics.uci.edu/ml/datasets/bank+marketing
2https://dementia.talkbank.org
3expected loss of a binary classifier with zero knowledge
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with a new random seed and the training is restarted. Empirically this re-initialization only happen no151

more than once per ten runs, but the underlying cause need to be examined further.152

4.3 Monitoring the similarity of interpretations153

The similarity of interpretations It is important to evaluate whether the adversarial and classifier154

mechanisms make the interpretations more similar. To evaluate the similarity, we treat the hidden155

dimensions of each interpretation vector vm = [vm,1, vm,2, .., vm,j , ...] (after normalization by their156

sum) as discrete values of a probability mass function4, which we write as pm. The M modalities for157

each data point are therefore approximated by M probability distributions. Now, we can measure the158

relative JS divergences between each pair of interpretation vectors vm and vn derived from the same159

data sample (D̂(pm||pn)). To acquire the relative value, we normalize the JS divergence by the total160

entropy in pm and pn:161

D̂(pm||pn) =
1

2(Hpm
+Hpn

)
(DKL(pm||pn) +DKL(pn||pm))

where DKL(pm||pn) =
∑
j

vm,j log
vn,j
vm,j

where vm,j and vn,j are the jth component of vm and vn respectively. In total, for each data sample,162
M(M−1)

2 pairs of relative divergences are calculated. We average the negative of these divergences to163

get the similarity for the interpretations:164

Similarity = EiEm,n∈{1..M} and m6=n

{
− D̂(p(i)m ||p(i)n )

}
Note that the “similarity” is defined such that its maximum possible value is 0 (where there is no JS165

divergence between any pair of the interpretation vectors), and it has no theoretical lower bound.166

Figure 4: Examples of similarity plots against the number of steps taken, for DementiaBank using 80
labeled samples (“DB80”, blue) and Bank Marketing using 20 labeled samples (“BM20”, green). The
y axis are scaled to (-0.035, 0) except TCN-AE, where the relative JS divergences “explode”. Note
that training stops when losses converge (as detailed in §4.2), so the trials may stop at different steps.

Experiments monitoring similarities We monitor the similarities (defined as negative relative JS167

divergence) between interpretation vectors. Several trends can be observed in Figure 4:168

1. In vanilla TCN on DementiaBank, the similarity usually first rises, then drops to a stable169

final value. On Bank Marketing, the similarity drops without first rising. This might be170

4There is a ReLU layer at output of each interpreter, so the probability mass will be non-negative.
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attributed to Bank Marketing modalities (containing only ≈ 15 features per modality) being171

not as “sufficient and redundant” (borrowing from [6]) as DementiaBank (containing ≈110172

per modality).173

2. In the absence of the classifier mechanism, similarities converge to almost the highest174

possible value under the consensus mechanism. This can be seen in the pretraining phase of175

TCN-embed and TCN-svm. Note that there is no explicit steps of ‘converging to the high176

similarity’ on the Bank Marketing dataset – they directly go to the max values – because each177

Bank Marketing step contains more pretraining iterations than DementiaBank (≈10,000178

samples vs. ≈500 samples), resulting in much stronger consensus mechanisms.179

3. In TCN-embed, the classifier mechanism later “pulls down” the similarity. Note that the180

accuracy of TCN-svm is around 50%; we can infer that a meaningful consensus state need181

not have perfect similarity.182

4. The addition of reconstructors inhibit the consensus mechanism in terms of reaching a high183

similarity between interpretations, as shown by the exploding JS divergences in TCN-AE184

models. This further illustrates that TCN distills information in a different aspect from185

denoising autoencoders.186

4.4 Visualizing the interpretations187

Figure 5 shows several 2D visualizations of interpretation vectors drawn from an arbitrary run, as188

an example of interpretations with low, medium, and high similarity. In §??, we illustrate how the189

similarities between interpretations evolve during optimization in TCN models.190

(a) Step 2: sim=-0.0206 (b) Step 30: sim=-0.0072 (c) Step 110: sim=-0.0146

Figure 5: Three 2-D T-SNE[17] visualizations comparing interpretation vectors among modalities,
taken from a run of the vanilla TCN (on DementiaBank dataset with 80 labeled data). The three
colors represent three modalities. At step 2, the interpretations are distributed randomly. At step 110,
they become mixed evenly. The most interesting embedding happens at step 30, when interpretations
of the three modalities form three ‘drumstick’ shapes. With the highest symmetricity visually, this
configuration of interpretations also has the highest similarity among the three.
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