
Under review as a conference paper at ICLR 2020

FLUID FLOW MASS TRANSPORT FOR GENERATIVE
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Adversarial Networks have been shown to be powerful tools for gener-
ating content resulting in them being intensively studied in recent years. Training
these networks requires maximizing a generator loss and minimizing a discrimi-
nator loss, leading to a difficult saddle point problem that is slow and difficult to
converge. Motivated by techniques in the registration of point clouds and the fluid
flow formulation of mass transport, we investigate a new formulation that is based
on strict minimization, without the need for the maximization. This formulation
views the problem as a matching problem rather than an adversarial one, and thus
allows us to quickly converge and obtain meaningful metrics in the optimization
path.

1 INTRODUCTION

Generative Networks have been intensively studied in recent years yielding some impressive results
in different fields (see for example Salimans et al. (2016); Karras et al. (2017); Brock et al. (2018);
Karras et al. (2018); Zhu et al. (2017) and reference within). The most common technique used
to train a generative network is by formulating the problem as a Generative Adversarial Networks
(GANs). Nonetheless, GANs are notoriously difficult to train and in many cases do not converge,
converge to undesirable points, or suffer from problems such as mode collapse.

Our goal here is to better understand the generative network problem and to investigate a new
formulation and numerical optimization techniques that do not suffer from similar shortcomings. To
be more specific, we consider a data set made up of two sets of vectors, template vectors (organized
as a matrix) T = [T1, . . . ,Tn] ∈ T and reference vectors R = [R1, . . . ,Rn] ∈ R. The goal of our
network is to find a transformation f(T,θ) that generates reference vectors, that is vectors from the
spaceR, from template vectors in the space T , where θ are parameters that control the function f .
For simplicity, we write our generator as

T(θ) = f(T,θ) (1.1)

Equation equation 1.1 defines a generator that depends on the template data and some unknown
parameters to be learned in the training process. We will use a deep residual network to approximate
the function with θ being the weights of the network.

In order to find the parameters for the generator we need to minimize some loss that captures how
well the generator works. Assume first that we have correspondence between the data points in T
and R, that is, we know that the vector Tj(θ) = Rj ,∀j. In other words, our training set consists of
paired input and output vectors. In this case we can find θ by simply minimizing the sum of squares
difference (and may add some regularization term such as weight decay).

E(θ) = 1

2n

∑
j

‖Tj(θ)−Rj‖2.

However, such correspondence is not always available and therefore, a different approach is needed if
we are to estimate the generator parameters.

The most commonly used approach to solve the lack of correspondence is Generative Adversarial
Networks (GANs) and more recently, the Wasserstein GANs (WGANs) Arjovsky et al. (2017). In
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these approaches one generates a discriminator network, or a critic in the case of WGANs, c(r,η)
that gives a score for a vector, r, to be in the space R. In the original formulation c(·, ·) yields the
probability and in more recent work on WGANs it yields a real number. The discriminator/critic
depends on the parameters η to be estimated from the data in the training process. One then defines
the function

J (η,θ) = g(c(R,η)) + h(c(T(θ),η)) (1.2)

In the case of a simple GAN we have that

g(x) = log(sm(x)) and h(x) = log(1− sm(x))

where the sm(·) function, is a soft max function that converts the score to a probability. In the case of
WGANs a simpler expression is derived where we use the score directly setting g to the identity and
h = −g, and require some extra regularity on the score function.

Minimizing J with respect to η detects the "fake" vectors generated by the generator while maximiz-
ing J with respect to θ ”fools” the discriminator, thus generating vectors T(θ) that are similar to
vectors that are drawn fromR. Training GANs is a minimax problem where J (η,θ) is minimized
with respect to η and maximize with respect to θ. Minimax problems are very difficult to solve and
are typically unstable. Furthermore, the solution is based on gradient d/ascent which is known to be
slow, especially when considering a saddle point problem Nocedal & Wright (1999), and this can be
demonstrated by solving the following simple quadratic problem.

Example 1.1 Let

J (η, θ) = 1

2
θ2 − 1

20
η2 + 10θ η

The d/ascent algorithm used for the solution of the problem reads

θk+1 = θk − µ(θk + 10ηk) ηk+1 = ηk − µ(
1

10
ηk − 10θk+1)

The convergence path of the method is plotted in Figure 1. It is evident that the algorithm takes an

Figure 1: The convergence path for the solution of the quadratic problem in 1.1. The blue points
represent the ascent step and the red the descent step. Note the circular path the algorithm takes for
convergence. This path is typical when solving a saddle point problem using an a/descent method.

inefficient path to reach its destination. This inefficient path is a known property of the method and
avoiding it requires much more complex algorithms that, for example, eliminate one of the unknowns
at least locally (see a discussion in Nocedal & Wright (1999)). While such approaches have been
derived for problems in fluid dynamics and constrained optimization, they are much more difficult to
derive for deep learning due to the non-linearity of the learning problem.

Besides the slowly converging algorithm, the simple GAN approach has a number of known funda-
mental problems. It has been shown in Zhang et al. (2017) that a deep network can classify vectors
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with random labels. This implies that given sufficient capacity in the classifier, it is always possible
to obtain 0 loss even if R 6= T(θ) ∈ R, implying that there is no real metrics to stop the process (see
further discussion in Arjovsky & Bottou (2017)). This problem also leads to mode collapse, as it
is possible to obtain the saddle point of the function when T(θ) = R, however this yields a local
solution that is redundant. Therefore, it is fairly well known that the discriminator needs to be heavily
regularized in order to effectively train the generator Gulrajani et al. (2017), such as by using a very
small learning rate or by weight clipping in the case of WGANs. A number of improvements have
been proposed for GANs and WGANs, however these techniques still involve a minimax problem
that can be difficult to solve.

Another common property of all GANs is that they minimize some distance between the two vector
spaces that are spanned by some probabilities. While a simple GAN is minimizing the JS-Divergence,
the Wasserstein GAN minimizes the Wasserstein Distance. Minimizing the distance for probabilities
makes sense when the probabilities are known exactly. However, as we discuss in the next section,
such a process is not reasonable when the probabilities are estimated, that is, sampled and are
therefore noisy. Since both spaces,R and T are only sampled, we only have noisy estimations of the
probabilities and this has to be taken into consideration when solving the problem.

In this paper we therefore propose a different point of view that allows us to solve the problem without
the need of minimax. Our point of view stems from the following observation. Assume for a moment
that the vectors R and T(θ) are in R2 or R3. Then, the problem described above is nothing but a
registration of point clouds under a non-common transformation rule (i.e. not affine transformation).
Such problem has been addressed in computer graphics and image registration for decades (see for
example Eckart et al. (2018); Myronenko & Song (2010) and reference within) yielding successful
software packages, numerical analysis and computational treatment. This observation is demonstrated
in the following example, that we use throughout the paper.

Example 1.2 Assume that the space T is defined by vectors Ti that are in R2 and that each vector
is drawn from a simple Gaussian distribution with 0 mean and standard deviation of 1. To generate
the spaceR we use a known generator that is a simple resnet with fully connected layers

xj+1 = xj + hσ(Kjxj) j = 1, . . . , n x1 = T

Here σ(·) is the tanh activation function and we choose Kj and save them for later use. The original
points as well as points from the same distribution that are transformed using this simple resenet are
plotted in Figure 2. Finding the transformation parameters (the matrices Kj) is a kin to registering
the red and blue points, when no correspondence map is given.

Figure 2: Template points drawn from a Gaussian random distribution (blue) are transformed using
a simple ResNet to generate new reference points (red). There is no correspondence between the
red/blue points. The goal of the training is to recover a transformation that move the blue points into
the red ones without known correspondence.

We therefore propose to extend the ideas behind cloud point registration to higher dimensions,
adapting them to Generative Models. Furthermore, recent techniques for such registration are
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strongly connected to the fluid flow formulation of optimal mass transport. As we explore next,
there is a strong connection between our formulation and the Wasserstein GAN. Similar connections
have been proposed in Lei et al. (2019). Our approach can be viewed as a discretization of the fluid
flow formulation of the optimal mass transport problem proposed in Benamou & Brenier (2003) and
further discussed in Haber & Horesh (2014); Ryu et al. (2017). It has some commonalities with
normalized flow generators Kingma & Dhariwal (2018) with two main differences. First, our flow
become regular due to the addition of regularization that explicitly keep the flow normalized and
second, and more importantly, it solves the correspondence problem between the two data sets. The
fluid formulation is known to be easier to solve and less nonlinear than the standard approach and (at
least in 3D) leads to better and faster algorithms. We name our algorithm Mass Transport Generative
Networks (MTGN) since our algorithm is based on mass transport that tries to match distributions but
not adversarial networks. Similar to the fluid flow formulation for the OMT problem, our algorithm
leads to a simple minimization problem and does not require the solution of a minimax.

The rest of this paper is organized as follows. In Section 2 we lay out the foundation of the idea
used to solve the problem, including discretization and numerical optimization. In Section 3 we
demonstrate the idea on very simple example that help us gain insight into the method. In Section 4
we perform numerical experiments in higher dimensions and discuss how to effectively use the
method and finally in Section 5 we summarize the paper and suggest future work.

2 GENERATIVE MODELS, MASS TRANSPORT AND CLOUD POINT
REGISTRATION

In this section we discuss our approach for the solution of the problem and the connection to the
registration of cloud of points and the fluid flow formulation of optimal mass transport.

2.1 GENERATIVE MODELS AND FLUID FLOW MASS TRANSPORT

We start by associating the spaces T andR with two probability density functions pT (x) and pR(x).
The goal is to find a transformation such that the probability, pT is transformed to the probability
pR, minimizing some distance (see the review paper Evans (1989) for details). An L2 distance leads
to the Monge Kantorovich problem but it is possible to use different distances to obtain different
transformations Burger et al. (2013). The computation of such a transformation has been addressed
by vast amount of literature. Solution techniques range from linear programming, to the solution
of the notoriously nonlinear Monge Ampre equation Evans (1989). However, in a seminal paper
Benamou & Brenier (2003), it was shown that the problem can be formed as minimizing the energy
of a simple flow

min E(v(x, t)) =
∫ 1

0

∫
Ω

ρ(x, t)|v(x, t)|2 dx dt (2.3a)

s.t ρt +∇ · (vρ) = 0 (2.3b)
ρ(0,x) = pT (x) ρ(1,x) = pR(x) (2.3c)

Here E is the total energy that depends on the velocity and density of the flow. The idea was extended
in Chen et al. (2017) to solve the problem with different distances on vector spaces. The problem
is also commonly solved in fields such as computational flow of fluids in porous media, where
different energy and more complex transport equations are considered Sarma et al. (2007). A simple
modification which we use here, is to relax the constraint ρ(1,x) = pR(x) and to demand it holds
only approximately. This formulation is better where we have noisy realizations of the distributions
and a perfect fit may lead to overfitting. The formulation leads to the optimization problem

min E(v(x, t)) = 1

2

∫
Ω

(ρ(1,x)− pR(x))2 dx+ α

∫ 1

0

∫
Ω

ρ(x, t)|v(x, t)|2 dx dt (2.4a)

s.t ρt +∇ · (vρ) = 0 ρ(0,x) = pT (x) (2.4b)

Here, the first term

M =
1

2

∫
Ω

(ρ(1,x)− pR(x))2 dx (2.5)
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can be viewed as a data misfit, while the second term

S =

∫ 1

0

∫
Ω

ρ(x, t)|v(x, t)|2 dxδt (2.6)

can be thought of as regularization. Typical to all learning problems, the regularization parameter
α needs to be chosen, usually by using some cross validation set. Such a formulation is commonly
solved in applied inverse transport problems Dean & Chen (2011).

Here we see that our formulation equation 2.4a differs from both WGAN and normalized flow. It
allows us to have a tradeoff between the regularity of the transformation as expressed in equation 2.6
to fitting the data as expressed in equation 2.5. This is different from both WGAN and normalized
flow when such a choice is not given.

2.2 DISCRETIZATION OF THE REGULARIZATION TERM

The optimization problem equation 2.4 is defined in continuous space x, t and in order to solve it
we need to discretize it. The work in Benamou & Brenier (2003); Haber & Horesh (2014) used an
Eulerian framework, and discretize both x and t on a grid in 2D and 3D. Such a formulation is not
suitable for our problems as the dimensionality of the problem can be much higher. In this case, a
Lagrangian approach that is based on sampling is suitable although some care must be taken if the
discrete problem to be solved is faithful to the continuous one. To this end, the flow equation 2.3b
is approximated by placing particles, of equal mass for now, at locations xi = ti, i = 1, . . . , n and
letting them flow by the equation

dxi

dt
= v(xi, t;θ) i = 1, . . . , n, t ∈ [0, 1] (2.7)

xi(0) = ti

Here v(xi, t;θ) is the velocity field that depends on the parameters θ. If we use the forward Euler
discretization in time, equation equation 2.7 is nothing but a resnet that transforms particles located
in xi = ti from the original distribution pT (x) to the final distribution pT (θ)(x), that is sampled
at points xi(t), i = 1, . . . , n. It is important to stress that other discretizations in time may be
more suitable for the problem. Using the point mass approximation to estimate the density, the
regularization part of the energy can be approximate in a straight forward way as

Sn(θ) =
δt

n

∑
ij

‖v(xi, tj ;θ)‖2 (2.8)

where δt is the time interval used to discretize the ODE’s equation 2.7. We see that the L2 OMT
energy is simply a sum of squared activations for all particles and layers. Other energies can be used
as well and can sometimes lead to more regular transportation maps Burger et al. (2013).

2.3 DISCRETIZING THE MISFIT AND POINT OF CLOUD REGISTRATION

Estimating the first term in the objective functionM, the misfit, requires further discussion. Assume
that we have used some parameters θ and push the particles forward. The main problem is how to
compare the distributions pT (θ) that is sampled at points Ti(θ) = xi(t), i = 1, . . . , n and pR(x)
sampled at Ri, i = 1, . . . , n.

In standard Lagrangian framework one usually assumes correspondence between the particles in
the different distributions, however this is not the case here. Since we have unpaired data there is
no way to know which particle in R corresponds to a particle in T(θ). This is exactly the problem
solved when registering two point clouds to each other. We thus discuss the connection between our
approach to point cloud registration.

One approach for measuring the difference between two point clouds is using the closest point
match. This is the basis for the Iterative Closest Point (ICP) Besl & McKay (1992) algorithm that is
commonly used to solve the problem. Nonetheless, the ICP algorithm tends to converge only locally
and thus we turn to other algorithms that usually exhibit better properties.

Following the work Myronenko & Song (2010) we use the idea of coherent point drift for the solution
of the problem. To this end, we use a Gaussian Mixture Model to evaluate the distribution of each of
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the data. We define the approximations pn(x,R) and pn(x,T(θ)) to p(x,R) and p(x,T(θ)) as

pn(x,R) =

n∑
i=1

1

(2πσ2)
d
2

exp

(
−‖x−Ri‖2

σ2

)
(2.9)

and

pn(x,T(θ)) =

n∑
i=1

1

(2πσ2)
d
2

exp

(
−‖x−Ti(θ)‖2

σ2

)
(2.10)

The integral equation 2.5 can be now written as

Mn(θ) =
1

2

∫
Ω

(pn(x,T(θ))− pn(x,R))2 dx (2.11)

Finally, we approximateMn by replacing x by the sampled points T(θ) and R in a symmetric
distance obtaining

Mnh(θ) =
1

2
‖pn(T(θ),T(θ))− pn(T(θ),R)‖2 + 1

2
‖pn(R,T(θ))− pn(R,R)‖2 (2.12)

To summarize, we minimize the fluid flow formulation equation 2.4 by discretizing the misfit term
equation 2.5 and the regularization term equation 2.6.

2.4 NUMERICAL OPTIMIZATION

The optimization problem equation 2.4 can be solved using any standard optimization technique,
however, there are a number of points that require special attention. First, the batch size in both
R and T(θ) cannot be too small. This is because we are trying to match probabilities that are
approximated by particles. For example, using a batch of a single vector is very likely to not represent
the probability density. Better approximations can be obtained by using a different approximation to
the distribution, for example, by using a small number of Gaussians but this is not explored here. A
second point is the choice of σ is the estimation of the probability. When the distributions are very
far it is best to pick a rather large σ. Such a choice yields a very "low resolution" approximation to
the density, that is, only the low frequencies of the densities are approximated. As the fit becomes
better, we decrease σ and obtain more details in the density’s surfaces. This principle is very well
known in image registration Modersitzki (2004).

3 NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

In this section we perform numerical experiments using synthetic data. The goals of these experiments
are twofold. First, experimenting in 2D allows us to plot the distributions and obtain some highly
needed intuition. Second, synthetic experiments allow us to quantitatively test the results as we can
always compute the true correspondence for a new data point.

Returning to Example 1.2, we use the data generated with some chosen parameters θtrue. We train
the generator to estimate θ and obtain convergence in 8 epochs. The optimization path is plotted in
Figure 3. We have also used a standard GAN Zhu et al. (2017) in order to achieve the same goal.
The GAN converged much slower and to a visually less pleasing solution that can be qualitatively
assessed to be of lower accuracy.

One of the advantages of synthetic experiments is that we have the "true" transformation and therefore
can qualitatively validate our results. To this end, we choose a new set of random points, Ttest

and used them with the optimal parameters θ to generate Ttest(θ) and its associate approximate
distribution. We also generate the "true" distribution from the chosen parameters θtrue by pushing
Ttest with the true parameters, generating Ttest(θtrue) We then compute the mean square error

E =
‖Ttest(θ)−Ttest(θtrue)‖

‖Ttest(θtrue)‖
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Epoch 1 Epoch 2 Epoch 3 Epoch 4

Epoch 5 Epoch 6 Epoch 7 Epoch 8

Epoch 2000 Epoch 4000 Epoch 6000 Epoch 8000

Figure 3: Path of the optimization. Top two panels: The template points are transformed into the
reference space using our approach in 8 epochs. The density estimated from the red points is displayed
in colour. The bottom panel is the path of optimization taken by the GAN training. It takes more than
8000 epochs and the results are clearly not worse.

For the experiment at hand we obtained an error of E = 8 × 10−2 with our method, while the
GAN gave us an error of E = 3.6× 10−1, which is substantially worse than our estimated network.
This implies that the using our training the network managed to learn the transformation rather well.
Unfortunately, this quantitative measure can only be obtained when the transformation is known and
this is why we believe that such simple tests are important.

4 NUMERICAL EXPERIMENTS IN HIGHER DIMENSIONS

In order to match higher dimensional vectors and distributions we slightly modify the architecture
of the problem. Rather than working on the spaces T andR directly, we use a feature extractor to
obtain latent space T` and R` respectively. Such spaces can be formed for example by training an
auto-encoder and then use the encoded space as the latent space. We then register the points in T`
to the points inR`. In the experiments we have done here we used the MNIST data set and used a
simple encoder similar to Kingma & Welling (2019) to learn the latent space ofR. We then use our
framework to obtain the transformation that maps a template vector sampled from a Gaussian random
distribution, T`, with 0 mean and a standard deviation of 1 to the latent spaceR`. In our experiments
the size of the latent space was only 32 which seems to be sufficient to represent the MNIST images.
We use a simple ResNet50 network with a single layer at every step that utilizes 3× 3 convolutions.
We run our network for 200 epochs in total with a constant learning rate. Better results are obtained if
we change σ, the kernel width, throughout the optimization. We start with σ very large, a value of 50,
and slowly decrease it, dividing by 2 every 30 steps. The final value of σ is 0.78 which yields a rather
local support. Convergence curve for our method is plotted in Figure 4. Convergence is generally
monotonic and the misfit grows only when we choose σ, changing the problem to a more challenging
one.
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Figure 4: Convergence path of our method. Note the jumps in misfit when we change σ.

Results of our results are presented in Figure 5. Although not all images look real, we have a very

Figure 5: A random set of transformed template vectors that has been trained using encoded MNIST
images as reference vectors.

large number (over 80% by visual inspection) that look like they can be taken from the reference
set. Unlike the previous experiment where we have a quantitative measure of how successful our
approach is, here we have to rely on visual inspection.

5 CONCLUSIONS AND FUTURE WORK

In this work we have introduced a new approach for Generative Networks. Rather than viewing the
problem as ”fooling” an adversary which leads to a minimax we view the problem as a matching
problem, where correspondence between points is unknown. This enables us to formulate the problem
as strictly a minimization problem, using the theory of optimal mass transport that is designed to
match probabilities, coupled with numerical implementation that is based on particles and cloud point
registration.

When comparing our approach to typical GANs in low dimensions, where it is possible to construct
examples with known solution it is evident that our algorithm is superior in terms of iterations to
convergence and also in terms of visual inspection. Although we have shown only preliminary results
in higher dimensions we believe that our approach is more appropriate for the problem and we will
be pursuing variations of this problem in the future. Indeed, is it not better to find a match, that is
commonalities, rather than to be adversary?
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