
NeurIPS Reproducibility Challenge:
“A Simple Baseline for Bayesian Uncertainty in Deep

Learning”

Victor Löfgren
KTH Royal Institute of Technology

vlov@kth.se

Josef Malmström
KTH Royal Institute of Technology

josefmal@kth.se

1 Introduction

As deep learning methods are being applied in increasingly critical settings (e.g. self-driving cars and
medical diagnosis) the importance of being able to accurately estimate the uncertainty of a model is
undeniable. A variety of methods for uncertainty estimation in deep learning have been suggested,
varying in complexity from simple post-processing of predictions, to more intricate methods that can
provide fully Bayesian inference.

In this work we reproduce the method proposed in [1] (henceforth referred to as“the SWAG paper” or
just “the paper”) which is suggested as a simple baseline for Bayesian uncertainty in deep learning.
The proposed method provides an intuitive way of getting uncertainty estimates, building on the
work of [2], by estimating a distribution over model weights using gradient descent iterates from the
training procedure.

Our report is structured as follows. In Section 2, we provide the necessary background and briefly
summarize and analyze the method suggested in the paper. In Section 3, we describe our experiments
in reproducing the method, and analyze its reproducibility. We describe any additional experiments
we did to evaluate the method in Section 4. In Sections 5, 6, and 7 respectively, we present our results,
analyze them, and provide our conclusions.

The code we used for our experiments is available at https://github.com/DD2412-Final-Projects/swag-
reproduced.

An error in our implementation meant we were not initially able to fully follow the method presented
by the authors. In this revised version of the report, we have fixed this error and are now able to use
an identical configuration to that of the paper. As our previous experiments are still deemed valid
however, we leave the core of the report untouched and present our new found results in Appendix A.

2 Background

2.1 Bayesian uncertainty

In typical Bayesian uncertainty in deep learning, a distribution over network weights is estimated.
This in turn allows for estimation of uncertainties in the predictions. A variety of different methods for
estimating a distribution over model parameters have been suggested in the field, including Markov
chain Monte Carlo (MCMC), variational inference, Dropout variational inference, and Laplace
approximations.

A related problem is the issue of miscalibration. If a model is able to provide accurate estimates of
the confidence associated with its predictions, we say the network is well-calibrated. If the confidence
output by the model does not accurately represent the ground truth correctness likelihood we say
the model is miscalibrated. There exists a variety of methods for improving the calibration of a

Reproducibility report - DD2412.

https://github.com/DD2412-Final-Projects/swag-reproduced
https://github.com/DD2412-Final-Projects/swag-reproduced

model. These include temperature scaling, the addition of an adversarial loss term during training, or
ensembling the predictions of multiple models. A commonly used metric for miscalibration is the
expected calibration error (ECE), defined as

Ê
P

[∣∣∣P(Ŷ = Y |P̂ = p)− p
∣∣∣] . (1)

where Ŷ is the set of predicted labels and Y is the set of ground-truth labels. This quantity can
be estimated by splitting the data samples into bins based on their confidence, and computing a
discretized approximation of the expected value, as described in [3].

2.2 SWA and SWAG

Stochastic Weight Averaging (SWA) is an algorithm proposed in [2], that computes an average of
network weights across training iterations. At prediction time, the model is then instantiated with the
average weights. It is shown that SWA improves generalization of the model while adding very little
additional computational overhead during training. As such, it is not a Bayesian uncertainty estimator
like MCMC nor is it a post-processing calibrator like temperature scaling, but rather a regularizing
training method that estimates an ensemble.

In the SWAG paper, the authors build upon SWA to propose a modified version of the algorithm
which allows a distribution over model weights to be estimated. Thus SWAG (or SWA-Gaussian)
is a fully Bayesian uncertainty estimator. The distribution over weights is assumed to be Gaussian,
θ ∼ N(θ̄,Σ), and therefore only the mean, θ̄, and the covariance, Σ, need to be estimated. In a simple
version of SWAG, referred to as SWAG-Diag, the covariance is assumed to be diagonal, Σ = Σdiag.
In the full version of SWAG the covariance is assumed to have a low-rank plus diagonal structure,
Σ = 1

2Σdiag + 1
2(K−1)D̂D̂

T , where K is the rank of matrix D̂. The mean θ̄, the diagonal part of the

covariance Σdiag, and the low-rank part of the covariance D̂, is computed in the SWAG algorithm,
outlined in Algorithm 1.

Require: θ0: initial weights; η: learning rate; T : number of epochs; c: moment update
frequency; K: maximum number of columns in deviation matrix; S: number of samples in
Bayesian averaging at test time.

Train SWAG:
θ̄ ← θ0, θ̄2 ← θ2

0
for i = 1, 2, ..., T do

θi ← θi − η∇θi−1
Lθ(θi−1)

if MOD(i, c) == 0 then
n← i/c

θ̄ = nθ̄+θi
n+1 , θ̄2 =

nθ̄2+θ2i
n+1

if NUM_COLS(D̂) = K then
REMOVE_COL(D̂[:, 1])

end
APPEND_COL(D̂, θi − θ̄)

end
end
return θ̄, Σdiag = diag(θ̄2 − θ̄2), D̂

Test time - Do Bayesian model averaging
for i← 1, ..., S do

Draw θi ∼ N(θ̄,Σ),
where Σ = Σdiag for SWAG-Diag, and Σ = 1

2Σdiag + 1
2(K−1)D̂D̂

T for SWAG.
p(y∗|Data) = p(y∗|Data) + 1

S p(y
∗; θi)

end
return p(y∗|Data)

Algorithm 1: SWAG algorithm

2

At test time, network weights are iteratively sampled from the learned weight distribution S times, and
the set of predicted probability distributions are simply averaged to produce the calibrated predictions.
This procedure is also outlined in Algorithm 1. In the case of SWAG-Diag, the samples from N(θ̄,Σ)
are obtained through the identity

θ = θ̄ + Σ
1
2

diagz1, z1 ∼ N(0, Id). (2)

For SWAG the samples are obtained through the identity

θ = θ̄ +
1√
2

Σ
1
2

diagz1 +
1√

2(K − 1)
D̂z2, z1 ∼ N(0, Id), z2 ∼ N(0, IK). (3)

3 Reproducibility

In this section we describe our experiments in attempting to reproduce the methods in the paper. We
start by describing, on a high level, our implementation as compared to the original from the paper.
We then cover in detail the scope of our conducted experiments, and any details surrounding their
execution.

In addition to simply reproducing the results and conclusions of the paper by copying the
baselines, architectures, methods and evaluation metrics, we have implemented them in a dif-
ferent framework. The authors conducted their experiments in PyTorch whereas we do ours
in TensorFlow 1.14. For this report we have limited our focus to the results produced with
the VGG-16 [4] architecture. We base our implementation on the implementation available at
https://www.cs.toronto.edu/ frossard/vgg16/vgg16.py. Since this implementation is not related to the
works of the paper, a few changes were necessary to match the PyTorch implementation provided
by the authors (e.g. the size of the fully connected layers and weight initialization). Although the
PyTorch implementation includes an option for batch normalization, there are no mentions of this in
the paper and therefore we exclude it from our experiments.

Further we decided to only use the CIFAR-10, CIFAR-100 and STL-10 datasets because our resources
were too limited in both time and computational power to handle ImgageNet. With the architecture in
place, we implemented the methods SWA, SWAG-Diag and SWAG from scratch with only the paper
to guide us. We also implemented regular SGD as a baseline.

Since it is of importance that improvements seen by the implemented methods is not due to simply
improving SGD, it is critical that SGD has reached convergence on its own. We were unable to achieve
the level of performance of the SGD with the provided hyper-parameters, usage of momentum and
weight decay. In our attempts we faced strange behaviors during training which we assume are due
to implementation errors or poorly translated hyper-parameters and settings between programming
frameworks. At some point both loss and accuracy changed trends, either drastically (as in Figure 2)
or slowly. Either way, further training was unable to recover or change the trend likely due to the
now very small weights 1. We therefore decided to conduct our experiments with a vanilla SGD and
make use only of the hyper-parameters and learning rate schedule provided by the authors. With
convergence of the vanilla SGD we consider comparisons to remain fair to the proposed methods and
perhaps even add to their credibility.

3.1 The experiments

For the two main studied datasets, CIFAR-10 and CIFAR-100, we conduct experiments as close to the
ones presented in the paper as possible. As previously described, we find that, despite mimicking the
choice of hyper-parameters from the paper to the best of our ability, we do not achieve convergence
of the same quality with the authors’ configuration. We instead opt for a plain SGD setup without
momentum, and with 5 % Dropout as the only regularization. For the learning rate we adopt the same
decaying schedule as in the paper: a constant learning rate of 5×10−2 up to 50 % of the total number
of epochs, and then a linear decay down to a learning rate of 5× 10−4 until 90 % of the total number
of epochs, where once again the learning rate is kept constant until the end of training. We use a

1We have now identified the cause of this behavior, and are able to train the models with the authors’
configuration. We present updated results using their setup in Appendix A. Note however, that our previous
experiments and results are still deemed valid.

3

https://www.cs.toronto.edu/~frossard/vgg16/vgg16.py

(a) Loss during training. (b) Accuracy during training.

Figure 1: Loss and accuracy on the training and validation set respectively, during one of the SGD
training runs.

(a) Loss evolution during training. (b) Accuracy evolution during training.

(c) The weight norm evolution during training.

Figure 2: Top: Loss and accuracy on the training and validation set respectively, during SGD training
with the full configuration described in the paper. Bottom: The evolution of the weight norm during
the same training.

4

batch size of 128. Images input to the network during training are normalized so that pixel values are
in the interval [0, 1]. We also use the same data augmentation discovered in the authors’ code, but not
described in the paper: images are zero-padded and cropped randomly, as well as flipped horizontally
with 50 % probability. Review of the authors’ code also revealed other implementational details that
were not described in the paper. This includes hyperparameters connected to Dropout and weight
decay, as well as additional input normalization done in VGG-16.

For each of the methods (i.e. SGD, SWA, SWAG-Diag and SWAG) we train our models for 300
epochs, and start collecting samples for SWA/SWAG-Diag/SWAG after epoch 160. We use the
above learning rate schedule in the case of SGD, and adopt a constant learning rate of 0.01 for SWA,
SWAG-Diag, and SWAG, as prescribed in the paper. The training configuration is otherwise identical
for all methods. Figure 1 shows loss and accuracy on the training and validation sets, during one of the
SGD training runs. The equivalent plot for other training runs (including SWA/SWAG-Diag/SWAG
runs) looked essentially identical. We note that despite our lack of regularization, apart from a 5
% Dropout rate, the model does not appear to be overfitting since the validation accuracy is still
increasing (albeit slightly) toward the end of training. We do not expect our models to achieve the
same performance as in the paper, given our simplified training configuration. However, we argue that
since the training appears to have converged to a stable minimum without overfitting, comparing the
relative performance between the different methods should still be a sound approach for evaluating
the validity of the results in the paper.

It is not clear from the paper whether SWA, SWAG-Diag, and SWAG are each trained in separate
runs, or all derived from the same training run. Since SWAG is just an extension of SWAG-Diag,
which in turn is just an extension of SWA, one could simply run the full SWAG algorithm once and
obtain the other algorithms as well by making modifications only at test time. Since we see no real
disadvantage of doing so, we choose to derive all methods from the same training run (i.e. run the
full SWAG algorithm, and then also run SWA, SWAG-Diag, and SWA at test time). At test time we
use the reported "sufficiently good" S value of 30 samples for SWAG-Diag and SWAG.

In order to evaluate the difference between framework implementations, avoid overfitting and conduct
additional experiments with varying hyper-parameters we split our data into 90% and 10% for train
and validation respectively.

For each of the methods we do 3 training runs, with different random initialization. At test time,
we estimate the expected calibration error (ECE), compute the accuracy and negative log-likelihood
(NLL), and generate the modified version of a reliability diagram with the method described in the
SWAG paper. For the ECE estimation we use 20 bins, just as when producing the reliability diagram.
For the ECE, accuracy, and NLL we report the mean and the standard deviation of the 3 runs for each
method, just as in the paper.

During training we found that the diagonal covariance matrix Σdiag = diag(θ2 − θ2
) to produce

negative values which is inconsistent with variance being non-negative. This occurrence was not
mentioned in the paper so its significance is unknown to us. However, upon review of the authors’
code we found a solution where all values are clipped at 10−30 which we adopted.

We also conducted experiments with transfer learning where the models ware all trained on CIFAR-10
and then evaluated on STL-10. The two datasets have similar classes but the image distribution
is different. When considering that the distribution is different from what was trained on, it is
expected for the model to exhibit a larger uncertainty no matter the accuracy. How the ECE and
reliability change due to this is interesting since most real world applications are susceptible to out of
distribution samples.

4 Additional experiments

In an attempt to validate the necessity of the full SWAG method for sampling, we propose a naive
approach to creating an ensemble. We do this by simply drawing samples from a compeletely
arbitrarily devised Gaussian distribution with the SGD model parameters as mean and a factor α of
their values as standard deviation, such that

θ ∼ N(θSGD, α · diag(θSGD)). (4)
This naive method of sampling makes no attempt to estimate the actual weight distribution, and
should therefore not yield better results than SWAG-Diag or SWAG, proving the importance of a

5

Figure 3: Reliability diagram when testing on CIFAR-10 for SGD-Noise with different values of the
parameter α.

good estimator. To keep the comparisons fair we sample S = 30, as with SWAG-Diag and SWAG. To
select an appropriate value for α, we test this method on the validation set of CIFAR-10 for a range
of different α-values and select a value that achieves respectable performance in terms of calibration,
negative log-likelihood and accuracy.

5 Results

In this section we present the results from our reproductions of the methods as well as from our
additional experiments.

In Table 1 we report mean and standard deviation of negative log-likelihood (NLL), expected
calibration error (ECE), and accuracy, when testing our SGD-Noise method on the CIFAR-10
validation set, with a variety of values of the parameter α. A corresponding reliability diagram,
for each value of α can be found in Figure 3. We observe that α = 0.4 appears to yield decent
performance in terms of calibration and accuracy, so we opt to use this value for the rest of our
comparisons to the methods from the paper.

Dataset 0.1 0.2 0.4 0.6
NLL 0.9006± 0.0239 0.6405± 0.0183 0.4747± 0.0032 0.5666± 0.0279
ECE 0.0919± 0.0003 0.0630± 0.0007 0.0130± 0.0032 0.0784± 0.0035
Accuracy 0.8701± 0.0007 0.8725± 0.0013 0.8611± 0.0044 0.8251± 0.0148

Table 1: NLL, ECE and Accuracy evaluated for SGD-Noise with varying α trained and evaluated on
CIFAR-10.

In Table 2 we report the mean and standard deviation of NLL for all considered models, on all
considered datasets, for the methods from the paper as well as for our SGD-Noise with α = 0.4.
Similarly, the ECE is presented in Table 3 and accuracy in Table 4. As a visual complement, the
corresponding reliability plots are presented in Figure 4 and Figure 5, providing further insight into
how reliability varies in different confidence regions.

6 Discussion

Firstly, we need to keep in mind the possibility that, due to our baseline implementation not being
identical to that of the paper, the results might be inherently flawed. However, the authors made no
claim that their method was only applicable to certain training schemes or only high preforming
models. With that in mind we continue to analyze our findings as relevant and valid.

In accordance with the SWAG paper we find that all proposed models improve on NLL and ECE
compared to standard SGD. For NLL we see the same relative improvement of SWAG/SGD as
they do, while ECE improves to a lesser extent in our case. Interestingly, the SGD-Noise model
improves the most over all the datasets. This is contradicting to both our initial expectation and the

6

Dataset SGD SWA SWAG-Diag SWAG SGD-Noise(α = 0.4)
CIFAR-10 1.2179± 0.0177 0.8646± 0.0163 0.8233± 0.0430 0.8298± 0.0164 0.4721± 0.0111
CIFAR-100 5.8375± 0.4832 4.5064± 0.4206 3.5330± 0.9499 3.4998± 0.9175 2.3309± 0.1216
CIFAR-10−→ STL-10 13.7784± 0.2199 7.9330± 0.0694 7.6975± 0.0748 7.7937± 0.0642 5.6247± 0.2322

Table 2: Negative log-loss of evaluated models on different datasets.

Dataset SGD SWA SWAG-Diag SWAG SGD-Noise(α = 0.4)
CIFAR-10 0.1119± 0.0002 0.1159± 0.0014 0.1100± 0.0059 0.1111± 0.0015 0.0114± 0.0037
CIFAR-100 0.3652± 0.0205 0.3517± 0.0312 0.2660± 0.1444 0.2615± 0.1450 0.0571± 0.0129
CIFAR-10−→ STL-10 0.5597± 0.0016 0.5447± 0.0020 0.5275± 0.0016 0.5339± 0.0017 0.3621± 0.0107

Table 3: Expected calibration error of evaluated models on different datasets.

Dataset SGD SWA SWAG-Diag SWAG SGD-Noise(α = 0.4)
CIFAR-10 0.8690± 0.0008 0.8466± 0.0014 0.8471± 0.0012 0.8469± 0.0017 0.8592± 0.0033
CIFAR-100 0.4941± 0.0274 0.4565± 0.0274 0.4797± 0.0120 0.4807± 0.0118 0.5141± 0.0116
CIFAR-10−→ STL-10 0.3989± 0.0034 0.3867± 0.0031 0.3865± 0.0031 0.3878± 0.0028 0.3840± 0.0080

Table 4: Accuracy of evaluated models on different datasets.

(a) Reliability diagram when testing on CIFAR-10.
(b) Reliability diagram when testing on CIFAR-100.

Figure 4: Reliability diagrams when testing on CIFAR-10 and CIFAR-100

reported reasoning for SWAG: that a good estimation of the prior from which to draw samples is
essential. Our findings suggest that it is simply the act of sampling around a good set of parameters
that constitutes the improvements. SWAG-Diag and most of our SGD-Noise models achieve lower
NLL and ECE than SWAG, indicating at the very least that the prior estimation is not the main
contributor to improvement.

The accuracy is slightly lower than that for SGD for all models on all datasets with the exception
of SGD-Noise on CIFAR-100. This again causes concern to the validity of our results as it also
contradicts the findings for SWA in [2]. On the other hand, in the both the SWA and SWAG papers,

Figure 5: Reliability diagram when training on CIFAR-10, and testing on STL-10.

7

the observed improvements in accuracy are minor (on the scale of 1 %), so this may not be sufficient
grounds to say our results differ significantly.

Transfer learning in our experiments suffers greatly, which is expected considering the very limited
regularization applied. However, the loss of accuracy is roughly the same for the different models
allowing relevant analysis of NLL and ECE. As expected, both NLL and ECE are reduced for for all
the proposed models but surprisingly SGD-Noise was again the best.

7 Conclusions

In terms of ease of reproducibility, we found some difficulty to reproduce certain details of the
paper but could to an extent find answers hidden within referenced code. As mentioned, translating
the baseline implementation from PyTorch to TensorFlow proved difficult, or rather the provided
hyper-parameters did not translate well. Ideally one would redo experiments after achieving an
identical baseline in order to verify the validity of the results presented in this report.

However, assuming that our results are valid, we find they show similar improvements to calibra-
tion when applying SWAG as was presented in the paper. We do not however, observe the same
improvements in accuracy as in the paper. Worthy of note is also that our simple method, SGD-Noise,
achieves similar, or better performance than the methods suggested in the paper, which may suggest
that accurately estimating the prior weight distribution is not of as vital importance as perceived by
the authors.

Acknowledgments

We would like to thank Erik Englesson for providing some useful guidance for our project, and
Hossein Azizpour for helping identify a critical error we had originally made in our implementation.

References
[1] W. Maddox, T. Garipov, P. Izmailov, D. Vetrov, and A. G. Wilson, “A Simple

Baseline for Bayesian Uncertainty in Deep Learning,” 2 2019. [Online]. Available:
http://arxiv.org/abs/1902.02476

[2] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson, “Averaging
Weights Leads to Wider Optima and Better Generalization,” 3 2018. [Online]. Available:
http://arxiv.org/abs/1803.05407

[3] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On Calibration of Modern Neural Networks,”
6 2017. [Online]. Available: http://arxiv.org/abs/1706.04599

[4] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image
Recognition,” 9 2014. [Online]. Available: http://arxiv.org/abs/1409.1556

A Updated results with authors’ optimizer configuration

In this appendix, we present updated results after fixing a previously unknown mistake in our
recreation of the authors optimization configuration. The cause of the behavior shown in Figure
2 was that the weight decay in our optimizer was decoupled from the loss, in such a way that the
optimizer first takes a gradient step, and then decays the network weights separately. As the learning
rate is annealed, the weight decay remains constant and eventually fully dominates the cross-entropy
loss, causing the training to explode. After fixing this error, and thereby enabling a setup identical
to that of the paper, we find much better convergence where the loss monotonically decreases. In
the following subsections, we present our results with this configuration and briefly append to the
previous discussion and conclusion.

A.1 Results

In Tables 5, 6, and 7 we present mean and standard deviation of NLL, ECE, and accuracy for all
methods on all datasets.

8

http://arxiv.org/abs/1902.02476
http://arxiv.org/abs/1803.05407
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1409.1556

Dataset SGD SWA SWAG-Diag SWAG SGD-Noise(α = 0.4)
CIFAR-10 0.4323± 0.0066 0.3663± 0.0083 0.3079± 0.0047 0.3262± 0.0060 0.2795± 0.0027
CIFAR-100 2.3205± 0.0646 1.9320± 0.0868 1.5081± 0.0757 1.6199± 0.0882 1.4852± 0.0259
CIFAR-10−→ STL-10 6.1335± 0.0707 5.7642± 0.0794 5.0635± 0.0627 5.2649± 0.0965 4.4450± 0.0103

Table 5: Negative log-loss of evaluated models on different datasets (authors’ training configuration).

Dataset SGD SWA SWAG-Diag SWAG SGD-Noise(α = 0.4)
CIFAR-10 0.0595± 0.0017 0.0541± 0.0020 0.0315± 0.0013 0.0407± 0.0014 0.0124± 0.0014
CIFAR-100 0.2292± 0.0072 0.2016± 0.0102 0.0824± 0.0116 0.1254± 0.0145 0.0476± 0.0056
CIFAR-10−→ STL-10 0.5061± 0.0051 0.4783± 0.0025 0.4272± 0.0045 0.4480± 0.0022 0.3983± 0.0017

Table 6: Expected calibration error of evaluated models on different datasets (authors’ training
configuration).

Dataset SGD SWA SWAG-Diag SWAG SGD-Noise(α = 0.4)
CIFAR-10 0.9188± 0.0018 0.9070± 0.0025 0.9067± 0.0021 0.9074± 0.0017 0.9119± 0.0014
CIFAR-100 0.6684± 0.0062 0.6343± 0.0136 0.6401± 0.0137 0.6387± 0.0139 0.6536± 0.0042
CIFAR-10−→ STL-10 0.4292± 0.0035 0.4258± 0.0008 0.4263± 0.0016 0.4263± 0.0010 0.4288± 0.0023

Table 7: Accuracy of evaluated models on different datasets (authors’ training configuration).

The resulting reliability diagrams when testing on CIFAR-10 and CIFAR-100 are shown in Figure
6. The resulting reliability diagram when training on CIFAR-10, and testing on STL-10 is shown in
Figure 7.

(a) Reliability diagram when testing on CIFAR-10. (b) Reliability diagram when testing on CIFAR-100.

Figure 6: Reliability diagrams when testing on CIFAR-10 and CIFAR-100 (authors’ training configu-
ration).

A.2 Discussion

In relative comparison between the different methods, we see similar results to our previous findings.
However, compared to the original paper, we do not see the same improvement in ECE, NLL, nor
accuracy when using any of the SWA/SWAG-Diag/SWAG methods over regular SGD. We note
also, that for regular SGD we do not reach the level of performance achieved by the authors in any
of the metrics (NLL, ECE, and accuracy), which would indicate that our implementation does not
mimic theirs exactly. Since this difference in baseline performance is still rather small, we assume it
stems from differences in the frameworks, or minor differences in the implementations, rather than
additional implementational errors.

Looking at the reliability diagrams also further confirms the results from our previous findings.
SGD-Noise outperforms the other methods in terms of calibration, closely followed by SWAG-Diag
and SWAG.

9

Figure 7: Reliability diagram when training on CIFAR-10, and testing on STL-10 (authors’ training
configuration).

A.3 Conclusion

With our mistake corrected, we find very similar trends to our original findings. Considering that our
mistake constitutes a completely separate case, we consider our analysis to have increased credibility,
that sampling is the main source of improvements rather than the quality of the estimated prior weight
distribution.

10

	Introduction
	Background
	Bayesian uncertainty
	SWA and SWAG

	Reproducibility
	The experiments

	Additional experiments
	Results
	Discussion
	Conclusions
	Updated results with authors' optimizer configuration
	Results
	Discussion
	Conclusion

