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ABSTRACT

Many tasks in natural language understanding require learning relationships be-
tween two sequences for various tasks such as natural language inference, para-
phrasing and entailment. These aforementioned tasks are similar in nature, yet they
are often modeled individually. Knowledge transfer can be effective for closely
related tasks, which is usually carried out using parameter transfer in neural net-
works. However, transferring all parameters, some of which irrelevant for a target
task, can lead to sub-optimal results and can have a negative effect on performance,
referred to as negative transfer.
Hence, this paper focuses on the transferability of both instances and parameters
across natural language understanding tasks by proposing an ensemble-based trans-
fer learning method in the context of few-shot learning.
Our main contribution is a method for mitigating negative transfer across tasks
when using neural networks, which involves dynamically bagging small recurrent
neural networks trained on different subsets of the source task/s. We present a
straightforward yet novel approach for incorporating these networks to a target task
for few-shot learning by using a decaying parameter chosen according to the slope
changes of a smoothed spline error curve at sub-intervals during training.
Our proposed method show improvements over hard and soft parameter sharing
transfer methods in the few-shot learning case and shows competitive performance
against models that are trained given full supervision on the target task, from only
few examples.

1 INTRODUCTION

Learning relationships between sentences is a fundamental task in natural language understanding
(NLU). Given that there is gradience between words alone, the task of scoring or categorizing sentence
pairs is made even more challenging, particularly when either sentence is less grounded and more
conceptually abstract e.g sentence-level semantic textual similarity and textual inference.

The area of pairwise-based sentence classification/regression has been active since research on
distributional compositional semantics that use distributed word representations (word or sub-word
vectors) coupled with neural networks for supervised learning e.g pairwise neural networks for textual
entailment, paraphrasing and relatedness scoring Mueller & Thyagarajan (2016).

Many of these tasks are closely related and can benefit from transferred knowledge. However, for
tasks that are less similar in nature, the likelihood of negative transfer is increased and therefore
hinders the predictive capability of a model on the target task. However, challenges associated
with transfer learning, such as negative transfer, are relatively less explored explored with few
exceptions Rosenstein et al. (2005); Eaton et al. (2008)and even fewer in the context of natural
language tasks Pan et al. (2012). More specifically, there is only few methods for addressing negative
transfer in deep neural networks Long et al. (2017).

Therefore, we propose a transfer learning method to address negative transfer and describe a simple
way to transfer models learned from subsets of data from a source task (or set of source tasks) to
a target task. The relevance of each subset per task is weighted based on the respective models
validation performance on the target task. Hence, models within the ensemble trained on subsets of a
source task which are irrelevant to the target task are assigned a lower weight in the overall ensemble
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prediction on the target task. We gradually transition from using the source task ensemble models
for prediction on the target task to making predictions solely using the single model trained on few
examples from the target task. The transition is made using a decaying parameter chosen according
to the slope changes of a smoothed spline error curve at sub-intervals during training. The idea is that
early in training the target task benefits more from knowledge learned from other tasks than later in
training and hence the influence of past knowledge is annealed. We refer to our method as Dropping
Networks as the approach involves using a combination of Dropout and Bagging in neural networks
for effective regularization in neural networks, combined with a way to weight the models within the
ensembles.

For our experiments we focus on two Natural Language Inference (NLI) tasks and one Question
Matching (QM) dataset. NLI deals with inferring whether a hypothesis is true given a premise. Such
examples are seen in entailment and contradiction. QM is a relatively new pairwise learning task in
NLU for semantic relatedness that aims to identify pairs of questions that have the same intent. We
purposefully restrict the analysis to no more than three datasets as the number of combinations of
transfer grows combinatorially. Moreover, this allows us to analyze how the method performs when
transferring between two closely related tasks (two NLI tasks where negative transfer is less apparent)
to less related tasks (between NLI and QM). We show the model averaging properties of our negative
transfer method show significant benefits over Bagging neural networks or a single neural network
with Dropout, particularly when dropout is high (p=0.5). Additionally, we find that distant tasks
that have some knowledge transfer can be overlooked if possible effects of negative transfer are not
addressed. The proposed weighting scheme takes this issue into account, improving over alternative
approaches as we will discuss.

2 RELATED WORK

2.1 NEURAL NETWORK TRANSFER LEARNING

In transfer learning we aim to transfer knowledge from a one or more source task Ts in the form of
instances, parameters and/or external resources to improve performance on a target task Tt. This work
is concerned about improving results in this manner, but also not to degrade the original performance
of Ts, referred to as Sequential Learning. In the past few decades, research on transfer learning
in neural networks has predominantly been parameter based transfer. Yosinski et al. (2014) have
found lower-level representations to be more transferable than upper-layer representations since they
are more general and less specific to the task, hence negative transfer is less severe. We will later
describe a method for overcoming this using an ensembling-based method, but before we note the
most relevant work on transferability in neural networks.

Pratt et al. (1991) introduced the notion of parameter transfer in neural networks, also showing
the benefits of transfer in structured tasks, where transfer is applied on an upstream task from its
sub-tasks. Further to this

Pratt (1993), a hyperplane utility measure as defined by θs from Tt which then rescales the weight
magnitudes was shown to perform well, showing faster convergence when transferred to Tt.
Raina et al. (2006) focused on constructing a covariance matrix for informative Gaussian priors
transferred from related tasks on binary text classification. The purpose was to overcome poor
generalization from weakly informative priors due to sparse text data for training. The off-diagonals
of
∑

represent the parameter dependencies, therefore being able to infer word relationships to outputs
even if a word is unseen on the test data since the relationship to observed words is known. More
recently, transfer learning (TL) in neural networks has been predominantly studied in Computer
Vision (CV). Models such as AlexNet allow features to append to existing networks for further fine
tuning on new tasks . They quantify the degree of generalization each layer provides in transfer and
also evaluate how multiple CNN weights are used to be of benefit in TL. This also reinforces to the
motivation behind using ensembles in this paper.

2.1.1 TRANSFERABILITY IN NATURAL LANGUAGE

Mou et al. (2016) describe the transferability of parameters in neural networks for NLP tasks. Ques-
tions posed included the transferability between varying degrees of “similar” tasks, the transferability
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of different hidden layers, the effectiveness of hard parameter transfer and the use of multi-task
learning as opposed to sequential based TL. They focus on transfer using hard parameter transfer,
most relevantly, between SNLI Bowman et al. (2015) and SICK Marelli et al. (2014). They too find
that lower level features are more general, therefore more useful to transfer to other similar task,
whereas the output layer is more task specific. Another important point raised in their paper was that
a large learning rate can result in the transferred parameters being changed far from their original
transferred state. As we will discuss, the method proposed here will inadvertently address this issue
since the learning rates are kept intact within the ensembled models, a parameter adjustment is only
made to their respective weight in a vote.

Howard & Ruder (2018) have recently popularized transfer learning by transferring domain agnostic
neural language models (AWD-LSTM Merity et al. (2017)). Similarly, lexical word definitions have
also been recently used for transfer learning O’ Neill & Buitelaar (2018), which too provide a model
that is learned independent of a domain. This mean the sample complexity for a specific task greatly
reduces and we only require enough labels to do label fitting which requires fine-tuning of layers
nearer to the output Shwartz-Ziv & Tishby (2017).

2.2 PAIRWISE MODEL ARCHITECTURES

Before discussing the methodology we describe the current SoTA for pairwise learning in NLU.

Shen et al. (2017) use a Word Embedding Correlation (WEC) model to score co-occurrence probabil-
ities for Question-Answer sentence pairs on Yahoo! Answers dataset and Baidu Zhidao Q&A pairs
using both a translation model and word embedding correlations. The objective of the paper was to
find a correlation scoring function where a word vector is given while modelling word co-occurrence
given as C(qi, αj) = (vTqi/||vqi ||)× (Mvaj/M||vaj ||), where M is a correlation matrix, vq a word
vector from a question and a word vector va from an answer. The scoring function was then expanded
to sentences by taking the maximum correlated word in answer in a question divided by the answer
length.

Parikh et al. (2016) present a decomposable attention model for soft alignments between all pairs
of words, phrases and aggregations of both these local substructures. The model requires far less
parameters compared to attention with LSTMs or GRUs. This paper uses attention in an SN by
proposing attention across hidden layer representations of sentences, in an attempt to mimic how
humans compare sentences. Weights are often tied in networks, according to the symmetric property
(S1i ,S2i ).

Yang et al. (2017) have described a character-based intra attention network for NLI on the SNLI
corpus, showing an improvement over the 5-hidden layer Bi-LSTM network introduced by Nangia
et al. (2017) used on the MultiNLI corpus. Here, the architecture also looks to solve to use attention to
produce interactions to influence the sentence encoding pairs. Originally, this idea was introduced for
pairwise learning by using three Attention-based Convolutional Neural Networks Yin et al. (2015) that
use attention at different hidden layers and not only on the word level. Although, this approach shows
good results, word ordering is partially lost in the sentence encoded interdependent representations in
CNNs, particularly when max or average pooling is applied on layers upstream.

3 METHODOLOGY

In this section we start by describing a co-attention GRU network that is used as one of the baselines
when comparing ensembled GRU networks for the pairwise learning-based tasks. We then describe
the proposed transfer learning method.

Co-Attention GRU Encoded representations for paired sentences are obtained from
(
~h
(l)
T1
,~h

(l)
T2

)
where ~h(l) represents the last hidden layer representation in a recurrent neural network. Since longer
dependencies are difficult to encode, only using the last hidden state as the context vector ct can
lead to words at the beginning of a sentence have diminishing effect on the overall representation.
Furthermore, it ignores interdependencies between pairs of sentences which is the case for pairwise
learning. Hence, in the single task learning case we consider using a cross-attention network
as a baseline which accounts for interdependencies by placing more weight on words that are
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more salient to the opposite sentence when forming the hidden representation, using the attention
mechanism Bahdanau et al. (2014). The softmax function produces the attention weights α by
passing all outputs of the source RNN, hS to the softmax conditioned on the target word of the
opposite sentence ht. A context vector ct is computed as the sum of the attention weighted outputs
by h̄s. This results in a matrix A ∈ R|S|×|T | where |S| and |T | are the respective sentence lengths
(the max length of a given batch). The final attention vector αt is used as a weighted input of the
context vector ct and the hidden state output ht parameterized by a xavier uniform initialized weight
vector Wc to a hyperbolic tangent unit.

3.1 LEARNING TO AVOID NEGATIVE TRANSFER

Here we describe the two approaches that are considered for accelerating learning and avoiding
negative transfer on Tt given the voting parameters of a learned model from Ts. We first start by
describing a method that learns to guide weights on Tt by measuring similarity between θŝ and θt̂
during training by using moving averages on the slope of the error curve. This is then followed by a
description on the use of smoothing splines to avoid large changes due to volatility in the error curve
during training.

Figure 1: Cross-Attention GRU-Siamese Network

Dropping Transfer Both dropout and bagging are common approaches for regularizing models, the
former is commonly used in neural networks. Dropout trains a number of subnetworks by dropping
parameters and/or input features during training while also have less parameter updates per epoch.
Bagging trains multiple models by sampling instances ~xk ∈ Rd from a distribution p(~x) (e.g uniform
distribution) prior to training. Herein, we refer to using both in conjunction as Dropping.

Source Tasks

Target Task
SNLI

QM

Multi-NLI

Figure 2: Nodes correspond to models within
an ensemble for a given task. Link size=
Model weight in target task ensemble predic-
tion.

The proposed methods is similar to Adaptive Boost-
ing (AdaBoost) in that there is a weight assigned
based on performance during training. However, in
our proposed method, the weights are assigned based
on the performance of each batch after Bagging, in-
stead of each data sample. Furthermore, the use of
Dropout promotes sparsity, combining both arith-
metic mean and geometric mean model averaging.
Avoiding negative transfer with standard AdaBoost
is too costly in practice too use on large datasets
and is prone to overfitting in the presence of noise
Mason et al. (2000). A fundamental concern in TL
is that we do not want to transfer irrelevant knowl-
edge which leads to slower convergence and/or sub-
optimal performance. Therefore, dropping places soft
attention based on the performance of each model
from Ts → Tt using a softmax as a weighted vote.
Once a target model ft is learned from only few ex-
amples on Tt (referred to as few-shot learning), the
weighted ensembled models from Ts can be transferred and merged with the Tt model. Equation
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1 shows the simple weighted vote between models where N is the number of ensembled models
each of which have batch size S, φ denotes the softmax function, zlsi = exp(−|hlT1

− hlT2
|) and āls

denotes weighted average output from the ensembles trained on subsets of Ts.

āls =

N∑
i=1

αi

( 1

S

S∑
s=1

φ(zlsi)
)

s.t,

N∑
i=1

αi = 1 (1)

Equation 2 then shows a straightforward update rule that decays the importance of Ts Dropping
networks as the Tt neural network begins to learn from only few examples. The prediction from few
samples alt is the single output from T lt and γ is the slope of the error curve that is updated at regular
intervals during training.We expect this approach to lead to faster convergence and more general
features as the regularization is in the form of a decaying constraint from a related task. The rate of
the shift towards the Tt model is proportional to the gradient of the error∇xs̃ for a set of mini-batches
xs̃. In our experiments, we have set the update of the slope to occur every 100 iterations.

ŷt = γāls + (1− γ)alt s.t, γ = e−δ (2)

The assumption is that in the initial stages of learning, incorporating past knowledge is more important.
As the model specializes on the target task we then rely less on incorporating prior knowledge over
time. In its simplest form, this can be represented as a moving average over the development set error
curve so to choose δt = E[∇[t,t+k]], where k is the size of the sliding window. In some cases an
average over time is not suitable when the training error is volatile between slope estimations. Hence,
alternative smoothing approaches would include kernel and spline models Eubank (1999) for fitting
noisy, or volatile error curves. A kernel ψ can be used to smooth over the error curve, which takes
the form of a Gaussian kernel ψ(x̂, xi) = exp

(
− (x̂− xi)2/2b2

)
. Another approach is to use Local

Weighted Scatterplot Smoothing (LOWESS) Cleveland (1979); Cleveland & Devlin (1988) which is
a non-parametric regression technique that is more robust against outliers in comparison to standard
least square regression by adding a penalty term.

Equation 3 shows the regularized least squares function for a set of cubic smoothing splines ψ which
are piecewise polynomials that are connected by knots, distributed uniformly across the given interval
[0, T ]. Splines are solved using least squares with a regularization term λθ2j ∀ j and ψj a single
piecewise polynomial at the subinterval [t, t+ k] ∈ [0, T ], as shown in Equation 3. Each subinterval
represents the space that γ is adapted for over time i.e change the influence of the Ts Dropping
Network as Tt model learns from few examples over time. This type of cubic spline is used for the
subsequent result section for Dropping Network transfer.

δ̂[t] = arg min
θ

k∑
i=1

(
yi −

J∑
j=1

θjψj(xi)
)2

+ λ

J∑
j=1

θ2j (3)

The standard cross-entropy (CE) loss is used as the objective as shown in Equation 4.

L = − 1

N

N∑
i=1

M∑
c=1

yi,c log(ŷi,c) (4)

This approach is relatively straightforward and on average across all three datasets, 58% more
computational time for training 10 smaller ensembles for each single-task was needed, in comparison
to a larger global model on a single NVIDIA Quadro M2000 Graphic Processing Unit.

Some benefits of the proposed method can be noted at this point. Firstly, the distance measure to
related tasks is directly proportional to the online error of the target task. In contrast, hard parameter
sharing does not address such issues, nor does recent approaches that use Gaussian Kernel Density
estimates as parameter contraints on the target task O’ Neill & Buitelaar (2018). Secondly, although
not the focus of this work, the Tt model can be trained on a new task with more or less classes by
adding or discarding connections on the last softmax layer. Lastly, by weighting the models within
the ensemble that perform better on Tt we mitigate negative transfer problems. We now discuss some
of the main results of the proposed Dropping Network transfer.
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Model MNLI SNLI QM

Train Test Train Test Train Test
Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL

GRU-1 91.927 0.230 68.420 1.112 89.495 0.233 77.347 0.755 84.577 0.214 78.898 0.389
GRU-2 90.439 0.243 68.277 1.121 89.464 0.224 79.628 0.626 86.308 0.096 77.059 0.092

Bi-GRU-2 90.181 0.253 68.716 1.065 89.703 0.226 80.594 0.636 88.011 0.108 77.522 0.267
Co-Attention GRU-2 94.341 0.183 70.692 0.872 91.338 0.211 82.513 0.583 89.690 0.088 81.550 0.218
Ensemble Bi-GRU-2 91.767 0.260 70.748 0.829 90.091 0.218 81.650 0.492 88.481 0.177 83.820 0.194

Table 1: Single Task Compositional Similarity Learning Results (shaded values represent best
performing models)

4 EXPERIMENTAL SETUP

4.1 DATASET DESCRIPTION

NLI deals with inferring whether a hypothesis is true given a premise. Such examples are seen in
entailment and contradiction. The SNLI dataset Bowman et al. (2015) provides the first large scale
corpus with a total of 570K annotated sentence pairs (much larger than previous semantic matching
datasets such as the SICK Marelli et al. (2014) dataset that consisted of 9927 sentence pairs). As
described in the opening statement of McCartney’s thesis MacCartney (2009), “the emphasis is
on informal reasoning, lexical semantic knowledge, and variability of linguistic expression.” The
SNLI corpus addresses issues with previous manual and semi-automatically annotated datasets of its
kind which suffer in quality, scale and entity co-referencing that leads to ambiguous and ill-defined
labeling. They do this by grounding the instances with a given scenario which leaves a precedent for
comparing the contradiction, entailment and neutrality between premise and hypothesis sentences.

Since the introduction of this large annotated corpus, further resources for Multi-Genre NLI
(MultiNLI) have recently been made available as apart of a Shared RepEval task Nangia et al.
(2017); Williams et al. (2017). MultiNLI extends a 433k instance dataset to provide a wider coverage
containing 10 distinct genres of both written and spoken English, leading to a more detailed analysis
of where machine learning models perform well or not, unlike the original SNLI corpus that only
relies only on image captions. As authors describe, “temporal reasoning, belief, and modality become
irrelevant to task performance” are not addressed by the original SNLI corpus. Another motivation for
curating the dataset is particularly relevant to this problem, that is the evaluation of transfer learning
across domains, hence the inclusion of these datasets in the analysis. These two NLI datasets allow
us to analyze the transferability for two closely related datasets.

Question Matching (QM) is a relatively new pairwise learning task in NLU for semantic relatedness,
first introduced by the Quora team in the form of a Kaggle competition1. The task has implications for
Question-Answering (QA) systems and more generally, machine comprehension. A known difficulty
in QA is the problem of responding to a question with the most relevant answers. In order to respond
appropriately, grouping and relating similar questions can greatly reduce the possible set of correct
answers.

4.2 TRAINING DETAILS

For single-task learning, the baseline proposed for evaluating the co-attention model and the ensemble-
based model consists of a standard GRU network with varying architecture settings for all three
datasets. During experiments we tested different combinations of hyperparameter settings. All models
are trained for 30,000 epochs, using a dropout rate p = 0.5 with Adaptive Momentum (ADAM)
gradient based optimization Kingma & Ba (2014) in a 2-hidden layer network with an initial learning
rate η = 0.001 and a batch size bT = 128. As a baseline for TL we use hard parameter transfer with
fine tuning on 50% of X ∈ Ts of upper layers.

For comparison to other transfer approaches we note previous findings by Yosinski et al. (2014)
which show that lower level features are more generalizable. Hence, it is common that lower level
features are transferred and fixed for Tt while the upper layers are fine tuned for the task, as described
in Section 2.2. Therefore, the baseline comparison simply transfers all weights from θs → θt

1see here: https://www.kaggle.com/c/quora-question-pairs
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Zero-Shot Hard Parameter Transfer

Train Test
Acc. / % LL Acc. / % LL

S→M 60.439 0.243 61.277 1.421
S+Q→M 62.317 0.208 62.403 1.392

M→ S 74.609 0.611 71.662 0.844
M+Q→ S 74.911 0.603 68.006 0.924

Table 2: Zero-Shot Hard Parameter Transfer

from a global model instead of ensembles and these parameters as initialization before training on
few examples on Tt. Although, negative transfer can occur if the more generalizable lower level
representations include redundant or irrelevant examples for the Tt. Instead, here we are allowing
the Tt to guide the lower level feature representations based on a weighted vote in the context of a
decaying ensemble-based regularizer.

5 RESULTS

The evaluation is carried out on both the rate of convergence and optimal performance. Hence, we
particularly analyze the speedup obtained in the early stages of learning. Table 1 shows the results on
all three datasets for single-task learning, the purpose of which is to clarify the potential performance
if learned from most of the available training data (between 70%-80% of the overall dataset for the
three datasets).

The ensemble model slightly outperforms other networks proposed, while the co-attention network
produces similar performance with a similar architecture to the ensemble models except for the use of
local attention over hidden layers shared across both sentences. The improvements are most notable
on MNLI, reaching competitive performance in comparison to state of the art (SoTA) on the RepEval
task2, held by Chen et al. (2017) which similarly uses a Gated Attention Network. These SoTA
results are considered as an upper bound to the potential performance when evaluating the Dropping
based TL strategy for few shot learning.

Figure 3 demonstrates the performance of the zero-shot learning results of the ensemble network
which averages the probability estimates from each models prediction on the Tt test set (few-shot
Tt training set or development set not included). As the ensembles learn on Ts it is evident that
most of the learning has already been carried out by 5,000-10,000 epochs. Producing entailment
and contradiction predictions for multi-genre sources is significantly more difficult, demonstrated by
lower test accuracy when transferring SNLI→MNLI, in comparison to MNLI→ SNLI that performs
better relative to recent SoTA on SNLI. Table 2 shows best performance of this hard parameter
transfer from Ts → Tt. The QM dataset is not as “similar” in nature and in the zero-shot learning
setting the model’s weights aS and aQ are normalized to 1 (however, this could have been weighted
based on a prior belief of how “similar” the tasks are). Hence, it is unsurprising that the QM dataset
has reduced the test accuracy given that it is further to Tt than S is.

The second approach is shown on the LHS of Table 3 which is the baseline few-shot learning
performance with fixed parameter transferred from Tt on the lower layer with fine-tuning of the 2nd

layer. Here, we ensure that instances from each genre within MNLI are sampled at least 100 times
and that the batch of 3% the original size of the corpus is used (14,000 instances). Since SNLI and
QM are created from a single source, we did not to impose such a constraint, also using a 3% random
sample for testing. Therefore, these results and all subsequent results denoted as Train Acc. % refers
to the training accuracy on the small batches for each respective dataset. We see improvements that
are made from further tuning on the small Tt batch that are made, particularly on MNLI with a 2.815
percentage point increase in test accuracy. For both SNLI + QM→ MNLI and MNLI + QM→
SNLI cases final predictions are made by averaging over the class probability estimates before using
CE loss.

2https://repeval2017.github.io/shared/
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Few-Shot Transfer Learning Dropping-GRU CSES

Train Test Train Test
Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL

S→M 89.655 0.248 64.897 1.696 90.439 0.243 66.207 1.721
S+Q→M 87.014 0.376 65.218 1.255 86.649 0.317 70.703 0.576

M→ S 86.445 0.260 73.141 0.729 90.181 0.253 72.716 0.615
M+Q→ S 85.922 0.281 70.541 0.911 91.783 0.228 77.926 0.598

Table 3: Few-Shot Transfer Learning with Fixed Lower Hidden GRU-Layer Parameter Transfer
From Ts and Fine-Tuned Upper Layer Trained On Tt and Dropping GRU Between Ts → Tt Using

Cubic Spline Error Curve Smoothing

Figure 3: Zero-Shot Learning Between NLU Tasks

On the RHS, we present the results of the pro-
posed method which transfers parameters from
the Dropping network trained with the output
shown in Equation 2 using a spline smoother
with piecewise polynomials (as described in
Equation 3). As aforementioned, this approach
finds the slope of the online error curve between
sub-intervals so to choose γ i.e the balance be-
tween the source ensemble and target model
trained on few examples. In the case with SNLI
+ QM (ie. SNLI + Question Matching) and
MNLI + QM, 20 ensembles are transferred, 10
from each model with a dropout rate pd = 0.5.
We note that unlike the previous two baselines
methods shown in Table 2 and 3, the perfor-
mance does not decrease by transferring the QM
models to both SNLI and MultiNLI. This is ex-
plained by the use of the weighting scheme pro-
posed with spline smoothing of the error curve i.e γ decreases at a faster rate for Tt due to the
ineffectiveness of the ensembles created on the QM dataset.

In summary, we find transfer of MNLI + QM→ SNLI and SNLI+QM→ MNLI showing most
improvement using the proposed transfer method, in comparison to standard hard and soft parameter
transfer. This is reflected in the fact that the proposed method is the only one which improved on
SNLI while still transferring the more distant QM dataset. The method for transfer only relies on
one additional parameter γ. We find that in practice using a higher decay rate γ (0.9-0.95) is more
suitable for closely related tasks. Decreasing γ in proportion to the slope of a smooth spline fitted to
the online error curve performs better than arbitrary step changes or a fixed rate for γ (equivalent to
static hard parameter ensemble transfer). Lastly, If a distant tasks has some knowledge transfer they
can be overlooked if possible effects of negative transfer are not addressed. The proposed weighting
scheme takes this into account, which is reflected on the RHS of Table 3, showing M + Q→ S and S
+ Q→M show most improvement, in comparison to alternative approaches posed in Table 2 where
transferring M + Q→ S performed worse than M→ S.

6 CONCLUSION

Our proposed method combines neural network-based bagging with dynamic cubic spline error
curve fitting to transition between source models and a single target model trained on only few
target samples. We find our proposed method overcomes limitations in transfer learning such as
avoiding negative transfer when attempting to transfer from more distant task, which arises during
few-shot learning setting. This paper has empirically demonstrated this for learning complex semantic
relationships between sentence pairs for pairwise learning tasks. Additionally, we find the co-attention
network and the ensemble GRU network to perform comparably for single-task learning.
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