
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Learn What Not to Learn: Action Elimination with Deep Reinforcement
Learning

Abstract

Learning how to act when there are many avail-
able actions in each state is a challenging task for
Reinforcement Learning (RL) agents, especially
when many of the actions are redundant or irrel-
evant. In such cases, it is easier to learn which
actions not to take. In this work, we propose
the Action-Elimination Deep Q-Network (AE-
DQN) architecture that combines a Deep RL algo-
rithm with an Action Elimination Network (AEN)
that eliminates sub-optimal actions. The AEN is
trained to predict invalid actions, supervised by an
external elimination signal provided by the envi-
ronment. Simulations demonstrate a considerable
speedup and added robustness over vanilla DQN
in text-based games with over a thousand discrete
actions.

1. Introduction
Learning control policies for sequential decision-making
tasks where both the state space and the action space are
very large is critical when applying Reinforcement Learn-
ing (RL) to real-world problems. This is because there is
an exponential growth of computational requirements as the
problem size increases, known as the curse of dimensional-
ity (Bertsekas & Tsitsiklis, 1995). Deep RL (DRL) tackles
the curse of dimensionality due to large state spaces by uti-
lizing a Deep Neural Network (DNN) to approximate the
value function and/or the policy. This enables the agent to
generalize across states without domain-specific knowledge
(Tesauro, 1995; Mnih et al., 2015).

Despite the great success of DRL methods, deploying them
in real-world applications is still limited. One of the main
challenges towards that goal is dealing with large action
spaces, especially when many of the actions are redundant
or irrelevant (for many states). While humans can usually
detect the subset of feasible actions in a given situation from
the context, RL agents may attempt irrelevant actions or
actions that are obviously inferior, thus wasting computa-
tion time. Control systems for large industrial processes
like power grids (Wen et al., 2015; Glavic et al., 2017;
Dalal et al., 2016) and traffic control (Mannion et al., 2016;
Van der Pol & Oliehoek, 2016) may have millions of pos-
sible actions that can be applied at every time step. Other
domains utilize natural language to represent the actions.
These action spaces are typically composed of all possible
sequences of words from a fixed size dictionary resulting
in considerably large action spaces. Common examples of

systems that use this action space representation include con-
versational agents such as personal assistants (Dhingra et al.,
2016; Li et al., 2017; Su et al., 2016; Lipton et al., 2016b;
Liu et al., 2017; Zhao & Eskenazi, 2016; Wu et al., 2016),
travel planners (Peng et al., 2017), restaurant/hotel bookers
(Budzianowski et al., 2017), chat-bots (Serban et al., 2017;
Li et al., 2016) and text-based game agents (Narasimhan
et al., 2015; He et al., 2015; Zelinka, 2018).

RL is currently being applied in all of these domains, facing
new challenges in function approximation and exploration
due to the larger action space. While most of the research in
the RL community has been focused on dealing with large
state spaces, there has been less attention in the literature
with regards to large discrete action spaces. Most of the prior
work concentrated on factorizing the action space into binary
subspaces (Pazis & Parr, 2011; Dulac-Arnold et al., 2012;
Lagoudakis & Parr, 2003). Other works proposed to embed
the discrete actions into a continuous space. Then, they use
a continuous-action policy gradient to find optimal actions
in the continuous space and choose the nearest discrete
action (Dulac-Arnold et al., 2015; Van Hasselt & Wiering,
2009). He et al. (2015) extended Deep Q-Networks (DQNs,
Mnih et al. (2015)) to unbounded action spaces by learning
action representations and then choosing the action that
provides the highest Q value. However, they only considered
large action spaces where a small number of actions (4) are
present in each state.

In this work, we propose a new approach for dealing with
large actions spaces that is based on action elimination; that
is, restricting the available actions in each state to a subset of
the most likely ones. We propose a method that eliminates
actions by utilizing an auxiliary elimination signal which
incorporates domain-specific prior knowledge regarding ac-
tions that can be eliminated. In many domains, creating an
elimination signal can be done using rule-based systems,
and then, designing a machine learning algorithm that will
generalize among these rules. For example, in parser-based
text games, the parser gives feedback regarding irrelevant
actions after the action is played (e.g., Player: "Climb the
tree". Parser: "There are no trees to climb"). Given such
signal, we can train a machine learning model to predict
it and then use it to generalize to unseen states. The core
assumption in our approach is that it should be easier to pre-
dict which actions are invalid or obviously inferior in each
state and leverage that information for control, rather than
learning the actual Q function for all possible state-action
pairs. We provide an argument to support this assumption
in Section 3.

More specifically, we propose a system that learns an ap-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

Figure 1. Zork interface

proximation of the Q-function, and concurrently learns to
eliminate actions. We focus on tasks where natural lan-
guage characterizes both the states and the actions, which
increases the complexity of the problem since, in addition
to eliminating irrelevant actions, good representations of the
states and actions are necessary. We introduce a novel DRL
approach with two networks, a DQN and an Action Elimina-
tion Network (AEN), both designed using a Convolutional
Neural Network (CNN) that is suited to NLP tasks (Kim,
2014). The AEN learns to eliminate irrelevant actions, and
the DQN learns Q-values for the remaining actions.

We tested our method in a text-based game called "Zork".
This game takes place in a virtual world in which the player
interacts with the world through a text-based interface (see
Figure 1). The player can type in any command, correspond-
ing to an in-game action. Since the input is text-based, this
yields more than a thousand of possible actions in each state
(e.g., "open door", "open mailbox", "close door" etc.). We
demonstrate the agent’s ability to advance in the game faster
than the baseline agents by eliminating irrelevant actions.

2. Related Work
Text-Based Games (TBG): Before the ubiquitousness of
graphical displays, text-based games like Zork were popu-
lar in the adventure gaming and role-playing communities.
Such games propose many challenges for AI research 1.
These include stochastic dynamics, delayed consequences
- actions that have long term consequences; memory - the
agent may have to remember which actions it took in the
past; dealing with inventory - items can be stored in an
inventory to be used at a later stage; action selection - there
are many actions to choose from in each state as the agent
interacts with the environment using natural language (See
Figure 1). In addition, some TBGs introduce stochastic
dynamics. For example, in Zork, with random probability
a troll can kill you, a thief can appear in each room, and
the inventory may get full. Stochasticity is challenging for
DRL agents and is currently missing in standard bench-
marks (Machado et al., 2017) like the Arcade Learning
Environment.

1See The CIG Competition for General Text-Based Adven-
ture Game Playing Agents, http://atkrye.github.io/
IEEE-CIG-Text-Adventurer-Competition/

Representations for text: To learn control policies from
high-dimensional complex data such as text, good word rep-
resentations are necessary. Kim (2014) designed a shallow
word-level CNN and demonstrated state-of-the-art results
on a large variety of text classification tasks by using word
embeddings. For classification tasks with millions of labeled
data, random embeddings were shown to outperform state-
of-the-art techniques (Zahavy et al., 2018). On smaller data
sets, using word2vec (Mikolov et al., 2013) is the default
choice (Kim, 2014).

Representations for TBG: Previous work on TBG used
pre-trained embeddings directly for control (Kostka et al.,
2017; Fulda et al., 2017). Other works combined pre-trained
embeddings with neural networks. For example, He et al.
(2015) proposed to use Bag Of Words features as an input
to a neural network, learned separate embeddings for states
and actions, and then computed the Q function from auto-
correlations between these embeddings. Narasimhan et al.
(2015) suggested to use a word level Long Short Term Mem-
ory (LSTM, Hochreiter & Schmidhuber (1997)) to learn a
representation end-to-end, and Zelinka (2018), combined
these two approaches.

Action Elimination: Learning to eliminate actions was first
mentioned by Even-Dar et al. (2003) who studied elimina-
tion in multi-armed bandits and tabular MDPs. They pro-
posed to learn confidence intervals around the value function
in each state and then use it to eliminate actions that are not
optimal with high probability. Lipton et al. (2016a) studied a
related problem where an agent wants to avoid catastrophic
forgetting of dangerous states. They proposed to learn a
classifier that detects dangerous states and then use it to
shape the reward of a DQN agent. Fulda et al. (2017) stud-
ied affordances, the set of behaviors enabled by a situation,
and presented a method for affordance extraction via inner
products of pre-trained word embeddings.

3. Action Elimination
We now describe a learning algorithm for MDPs with an
elimination signal. Our approach builds on the standard
RL formulation (Sutton & Barto, 1998). At each time
step t, the agent observes a state st and chooses a dis-
crete action at ∈ {1, .., |A|}. After executing the action,
the agent obtains a reward rt(st, at) and observes the next
state st+1 according to a transition kernel P (st+1|st, at).
The goal of the algorithm is to learn a policy π(a|s) that
maximizes the discounted cumulative return V π(s) =
Eπ[
∑∞
t=0 γ

tr(st, at)|s0 = s] where 0 < γ < 1 is the
discount factor and V is the value function. The opti-
mal value function is given by V ∗(s) = maxπ V

π(s) and
the optimal policy by π∗(s) = arg maxπ V

π(s). The Q-
function Qπ(s, a) = Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]
corresponds to the value of taking action a in state s and
continuing according to policy π. The optimal Q-function
Q∗(s, a) = Qπ

∗
(s, a) can be found using the Q-learning

algorithm (Watkins & Dayan, 1992), and the optimal policy
is given by π∗(s) = arg maxaQ

∗(s, a).

After executing an action, the agent also observes a binary

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

elimination signal e(s, a), which equals 1 if action a may
be eliminated in state s; that is, any optimal policy in state s
will never choose action a (and 0 otherwise). The elimina-
tion signal can help the agent determine which actions not to
take, thus aiding in mitigating the problem of large discrete
action spaces. We use the following definitions throughout
the paper:
Definition 1. Valid state-action pairs with respect to an
elimination signal are state action pairs which the elimina-
tion process should not eliminate.

As stated before, we assume that the set of valid state-action
pairs contains all of the state-action pairs that are a part
of some optimal policy, i.e., only strictly suboptimal state-
actions can be invalid.
Definition 2. Admissible state-action pairs with respect to
an elimination algorithm are state action pairs which the
elimination algorithm does not eliminate.

In the following section, we present the main advantages of
action elimination in MDPs with large action spaces. After-
ward, we show that under the framework of linear contextual
bandits (Chu et al., 2011), probability concentration results
(Abbasi-Yadkori et al., 2011) can be adapted to guarantee
that action elimination is correct in high probability. Finally,
we prove that Q-learning coupled with action elimination
will still converge.

3.1. Advantages in action elimination

Action elimination allows the agent to overcome some of the
main difficulties in large action spaces, namely: Function
Approximation and Sample Complexity.

Function Approximation: It is well known that errors in
the Q-function estimates may cause the learning algorithm
to converge to a suboptimal policy, a phenomenon that be-
comes more noticeable in environments with large action
spaces (Thrun & Schwartz, 1993). Action elimination may
mitigate this effect by taking the max operator only on valid
actions, thus, reducing potential overestimation errors. An-
other advantage of action elimination is that the Q-estimates
need only be accurate for valid actions. The gain is two-
fold: first, there is no need to sample invalid actions for the
function approximation to converge; second, the function
approximation can learn a simpler mapping (i.e., only the
Q-values of the valid state-action pairs), and therefore may
converge faster and to a better solution (for valid actions)
by ignoring errors from states that are not explored by the
Q-learning policy (Hester et al., 2018).

Sample Complexity: The sample complexity of the MDP
measures the number of steps, during learning, in which
the policy is not ε-optimal (Kakade et al., 2003). Assume
that there are A′ actions that should be eliminated and are
ε-optimal, i.e., their value is at least V ∗(s)− ε. According
to lower bounds by (Lattimore & Hutter, 2012), We need
at least ε−2(1− γ)−3 log 1/δ samples per state-action pair
to converge with probability 1 − δ. If, for example, the
eliminated action returns no reward and doesn’t change the
state, the action gap is ε = (1 − γ)V ∗(s), which trans-

lates to V ∗(s)
−2

(1 − γ)−5 log 1/δ ’wasted’ samples for
learning each invalid state-action pair. For large γ, this
can lead to a tremendous number of samples (e.g., for
γ = 0.99, (1 − γ)−5 = 1010). Practically, elimination
algorithms can eliminate these actions substantially faster,
and can, therefore, speedup the learning process approxi-
mately by A/A′ (such that learning is effectively performed
on the valid state-action pairs).

Embedding the elimination signal into the MDP is not triv-
ial. One option is to shape the original reward by adding an
elimination penalty. That is, decreasing the rewards when
selecting bad actions. Reward shaping, however, is tricky
to tune, may slow the convergence of the function approx-
imation, and is not sample efficient (irrelevant actions are
explored). Another option is to design a policy that is op-
timized by interleaved policy gradient updates on the two
signals, maximizing the reward and minimizing the elimina-
tion signal error. The main difficulty in this approach is that
both models are strongly coupled, and each model affects
the observations of the other model, such that convergence
of any of the models is not trivial.

Next, we present a method that decouples the elimination
signal from the MDP by using contextual multi-armed ban-
dits. The contextual bandit learns a mapping from states
(represented by context vectors x(s)) to the elimination sig-
nal e(s, a) that estimates which actions should be eliminated.
We start by introducing theoretical results on linear contex-
tual bandits, and most importantly, concentration bounds
for contextual bandits that require almost no assumptions
on the context distribution. We will later show that under
this model we can decouple the action elimination from
the learning process in the MDP, allowing us to learn using
standard Q-learning while eliminating actions correctly.

3.2. Action elimination with contextual bandits

Let x(st) ∈ Rd be the feature representation of state st.
We assume (realizability) that under this representation
there exists a set of parameters θ∗a ∈ Rd such that the
elimination signal in state st is et(st, a) = θ∗a

Tx(st) + ηt,
where ‖θ∗a‖2 ≤ S. ηt is an R-sub-Gaussian random variable
with zero mean that models additive noise to the elimi-
nation signal. When there is no noise in the elimination
signal, then R = 0. Otherwise, as the elimination signal is
bounded in [0, 1], it holds that R ≤ 1. We’ll also relax our
previous assumptions and allow the elimination signal to
have values 0 ≤ E[et(st, a)] ≤ ` for any valid action and
u ≤ E[et(st, a)] ≤ 1 for any invalid action, with ` < u.
Next, we denote by Xt,a (Et,a) the matrix (vector) whose
rows (elements) are the observed state representation vec-
tors (elimination signals) in which action a was chosen, up
to time t. For example, the ith row in Xt,a is the repre-
sentation vector of the ith state on which the action a was
chosen. Denote the solution to the regularized linear regres-
sion ‖Xt,aθt,a − Et,a‖22 + λ‖θt,a‖22 (for some λ > 0) by
θ̂t,a = V̄ −1

t,a X
T
t,aEt,a where V̄t,a = λI +XT

t,aXt,a.

Similar to Theorem 2 in (Abbasi-Yadkori et al.,

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

2011), for any state history and with probability
of at least 1 − δ, it holds for all t > 0

that
∣∣∣θ̂Tt,ax(st)− θ∗a

Tx(st)
∣∣∣ ≤ √

βt(δ)x(st)T V̄
−1
t,a x(st),

where
√
βt(δ) = R

√
2 log(

det(V̄t,a)1/2det(λI)−1/2

δ) +

λ1/2S. If ∀s, ‖x(s)‖2 ≤ L, then βt can be bounded by√
βt(δ) ≤ R

√
d log(1+tL2/λ

δ) + λ1/2S. Next, we define

δ̃ = δ
k and bound this probability for all the actions, i.e.,

∀a, t > 0 we get that

Pr{
∣∣∣θ̂Tt−1,ax(st)− θ∗t−1,a

Tx(st)
∣∣∣ ≤√

βt(δ̃)x(st)T V̄
−1
t−1,ax(st)} ≥ 1− δ (1)

Recall that any valid action a at state s satisfies
E[et(s, a)] = θ∗a

Tx(st) ≤ `. Thus, we can eliminate action
a at state st if

θ̂Tt−1,ax(st)−
√
βt−1(δ̃)x(st)T V̄

−1
t−1,ax(st) > ` (2)

This ensures that with probability 1− δ we never eliminate
any valid action. Notice that when there is no noise in the
elimination signal (R = 0), we correctly eliminate actions
with probability 1.

3.3. Concurrent Learning

We now show how the Q-learning and contextual bandit
algorithms can learn simultaneously, resulting in the conver-
gence of both algorithms, i.e., finding an optimal policy and
a minimal valid action space. The challenge here, which
we address below, is that each learning process affects the
state-action distribution of the other. We first define Action
Elimination Q-learning.
Definition 3. Action Elimination Q-learning is a Q-
learning algorithm which updates only admissible state-
action pairs and chooses the best action in the next state
from its admissible actions. We allow the base Q-learning
algorithm to be any algorithm that converges to Q∗ with
probability 1 after observing each state-action infinitely
often.

Given the contextual bandit action elimination result, we
can ensure that Action Elimination Q-learning converges by
Proposition 1 (See Appendix A for a full proof).
Proposition 1. Assume that all state action pairs (s, a)
are visited infinitely often, unless eliminated according to

θ̂Tt−1,ax(s) −
√
βt−1(δ̃)x(s)T V̄ −1

t−1,ax(s) > `. Then, with
probability of at least 1− δ, action elimination Q-learning
converges to the optimal Q-function for any valid state-
action pairs. In addition, actions which should be elimi-
nated are visited at most Ts,a(t) ≤ 4 βt

(u−`)2 + 1 times.

Note that in the noiseless case (R = 0), invalid actions will
be sampled a finite number of times, and otherwise, under
very mild assumptions, a logarithmic number of times.

In practice, the assumption that et(st, a) = θ∗a
Tx(st) + ηt

does not hold for raw features like word2vec. In addition,
the elimination signal is usually deterministic, which results
in R = 0 and a constant β which makes the solution less
robust to noise in the features. We believe this issue can
be solved by learning features φ(st) that are realizable, i.e.,
e(st, a) = θ∗a

Tφ(st), for example using neural networks.
Nevertheless, doing so in practice is not trivial, as the fea-
tures must be fixed when used by the contextual bandit.

Algorithm 1 deep Q-learning with action elimination
Input: ε, τ, C,N, p, nsample, nmax
Initialize Elimination and Q Networks with random
weights ω, θ respectively
Initialize Target Q Network Q− with a copy of θ
Initialize an empty Replay Memory D to capacity N
for t = 1,2,. . . , do
at = ACT(st, Q,E, ε, nsample, nmax)
Execute action at and observe {rt, et, st+1}
Store transition {st, at, rt, et, st+1} in D
Sample minibatch of transitions {sj , aj , rj , ej , sj+1}
from D
yj = Targets(sj+1, rj , γ,Q

−, E, τ)
Perform a gradient descent step on
(yj −Q(sj , aj ; θ))

2

Perform a gradient descent step on
BCE (ej ,E(sj , aj ;ω))
if (t mod C) = 0 then
Q− ← Q

end if
end for

Function Act (s,Q,E, p, ε, nsample, nmax, τ):
Eprediction ← E(s, a)
With probability ε, return Explore(A,Eprediction, p, τ)
Otherwise,
A′ ← topnmax

{Eprediction}∪{Mult(Eperdiction)}nsample
i=1

return arg max
a′∈A′

Q(s, a)

Function Explore (A,Eperdiction, p, τ):
WHILE(True) do:
a← Uniform(|A|)
If Eprediction[a] < τ then return a
Otherwise, with probability p return a

EndWhile
Function Targets (s, r, γ,Q,E, τ):

If s is terminal then return r
Otherwise,
A′ ← {a : E(s, a) ≤ τ}
return (r + γ max

a′∈A′
Q(s, a))

4. Method
While the previous section provided theoretical guarantees
for action elimination using contextual bandits, in practice,
it is not clear which features to use. Raw features like
word2vec are too high dimensional, resulting in exhaustive

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

computations. Features that are being learned by a DNN
(e.g., the activation of the last layer of the AEN or DQN)
are not fixed over time. Nevertheless, we now present an
approximate solution that is motivated by theory, i.e., elimi-
nating actions with high probability. We leave the empirical
integration of the contextual bandits using neural networks
to future work (more on that in Section 6).
Algorithm: We now present a hybrid approach for DRL
with Action Elimination (AE), by incorporating AE into
the well-known DQN algorithm to yield our AE-DQN (Al-
gorithm 1 and Figure 2). AE-DQN trains two networks: a
DQN denoted byQ and an AEN denoted byE. Action elim-
ination is used by the AE-DQN using the following three
procedures: (1) ACT() - selecting the action with highest
Q-value by taking an arg max on Q-values among admissi-
ble actions A′. The subset A′ is generated at each time step
and consists of the nmax most likely valid actions (sorted ac-
cording to the AEN probabilities) and an additional nsample
actions that are drawn at random from a multinomial distri-
bution w.p. softmax(1− prediction) (similar to Boltzmann
exploration, but on the AEN predictions). This sampling
procedure implicitly prioritizes actions by the confidence of
the AEN in eliminating them. We assume that there are at
most nvalid valid actions at each state, and that nmax ≥ nvalid.
(2) Explore() - giving a higher probability to admissible
actions, i.e., by adjusting an ε-greedy algorithm to give a
higher probability to these actions. (3) Targets() - estimat-
ing the value function by taking max over Q-values only
among admissible actions, hence, reducing function approx-
imation errors. The Targets() procedure defines actions as
admissible if their predictions are smaller than some thresh-
old τ ; this reduces the effect of using invalid actions during
bootstrapping. Architectures: The agent uses an Experi-
ence Replay (Lin, 1992) to store information about states,
transitions, actions and rewards. In addition, our agent also
stores feedback from the emulator regarding the validity
of its actions. Based on this information, we designed an
NLP CNN classification architecture, based on (Kim, 2014),
to predict actions’ relevance in each state. We represent
the state as a sequence of words, composed of the game
descriptor (Figure 1, "Observation") and the player’s inven-
tory. These are truncated or zero-padded (for simplicity) to
a length of 50 (descriptor) + 15 (inventory) words and each
word is embedded into continuous vectors using word2vec
(Mikolov et al., 2013) in R300. The features of the last four
states are then concatenated together such that our final state
representations s are in R78,000. The AEN is trained to min-
imize the BCE loss (binary cross-entropy) over all possible
game actions and estimates the probabilities for actions to
fail in a given state. We used 20 convolutional filters, with
three different 1D kernels of length (1,2,3) such that the last
hidden layer size is 60. Our DQN uses the same network
architecture but with 500 filters (last layer size 1500). 2

2Our code, the Zork domain, and the implementation of the
elimination signal can be found at:
http://anonymous.4open.science/repository/
5cc8d217-347e-4307-a895-a13dc972df75/

Figure 2. Diagram for AE-DQN.

5. Experimental Results
"This is an open field west of a white house, with a
boarded front door. There is a small mailbox here. A
rubber mat saying ’Welcome to Zork!’ lies by the door".
This is an excerpt of the opening provided to a player in
“Zork I: The Great Underground Empire”; one of the first
interactive fiction computer games, created by members
of the MIT Dynamic Modeling Group in the late 70s. By
exploring the world via interactive text-based dialogue, the
players progress in the game. The world of Zork presents
a rich environment with a large state and action space (see
Figure 3).

Zork players describe their actions using natural language
instructions. For example, in the opening excerpt, an action
might be ‘open the mailbox’ (Figure 1). Once the player
describes his/her action, it is processed by a sophisticated
natural language parser. Based on the parser’s results, the
game presents the outcome of the action. The ultimate
goal of Zork is to collect the Twenty Treasures of Zork and
install them in the trophy case. Finding the treasures require
solving a variety of puzzles such as the navigation of two
complex mazes and intricate action sequences. During the
game, the player is awarded points for performing deeds that
bring him closer to the game’s goal (e.g., solving puzzles).
Placing all of the treasures into the trophy case generates
a total score of 350 points for the player. Points that are
generated from the game’s scoring system are given to the
agent as a reward. Zork presents multiple challenges to
the player, like building plans to achieve long-term goals;
dealing with random events like troll attacks; remembering
implicit clues as well as learning the interactions between

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

Figure 3. Left: the world of Zork. Right: subdomains of Zork; the Troll (green) and Egg (blue) Quests. Credit: S. Meretzky, The Strong
National Museum of Play. Larger versions in Appendix B.
objects in the game and specific actions.

Before we started experimenting in the “Open Zork“ do-
main, i.e., playing in Zork without any manipulations on
the domain, we evaluated our algorithm in two subdomains
of Zork. These subdomains are inspired by the Zork plot
and referred to as the Egg Quest and the Troll Quest (Fig-
ure 3, right, and Appendix B). For these subdomains, we
introduced an additional reward signal (in addition to the
reward provided by the environment) to guide the agent
towards solving specific tasks and make the results more
visible (we only use the environment reward when solving
“Open Zork“). The agent’s goal in each subdomain is to
maximize its cumulative reward. A reward of −1 is applied
at every time step to encourage the agent to favor short paths.
Each trajectory terminates upon completing the quest or af-
ter T = 100 steps are taken. We set the discounted factor γ
during training to γ = 0.8 but use γ = 1 during evaluation
(as in the DQN paper).

We considered three different action spaces. (1) The “take”
action set, is composed of two subsets. A fixed subset of 9
actions that allow it to complete the Egg Quest like navigate
(south, east etc.) open an item and fight. A similar set is
used in the Troll Quest, but with 15 actions. The second
subset consists of 200 “take” actions for possible objects
in the game. The “take” actions correspond to taking a
single object and include objects that need to be collected in
order to complete quests, as well as other irrelevant objects
from the game dictionary. (2) The “Minimal Zork“ action
set, is the minimal set of actions (131) that is required to
solve the game. The actions are taken from a tutorial for
solving the game. (3) The “Open Zork“ action set, includes
1227 actions. This set is created from action "templates",
composed of {Verb, Object} tuples for all the verbs (19) and
objects (62) in the game (e.g, open mailbox). In addition,
we include a fixed set of 49 actions of varying length (but
not of length 2) that are required to solve the game.

5.1. The Egg Quest: Action Set Size

In this quest, the agent’s goal is to find and open the jewel-
encrusted egg, hidden up on a tree in the forest. The agent
is awarded 100 points upon successful completion of this
task. We experimented with the AE-DQN (blue) agent and
a vanilla DQN agent (green) in this quest (Figure 4(a)).
The goal of this experiment is to test the effect that the
size of the action set has on learning. For that goal, we
experimented with two action sets: action set 1 3 and action
set 3 4. We can see that for action set 1 (Figure 4(a), top),
Both agents can solve the task; however, the AE-DQN agent
learns considerably faster. Increasing the number of actions
to action set 3 (Figure 4(a), bottom) makes it impossible for
the vanilla agent to solve the task. On the other hand, the AE-
DQN was able to solve it, implying that action elimination
is crucial for large action spaces.

5.2. The Troll Quest: Ablative Analysis

In this quest, the agent must find a way to enter the house,
grab a sword and a lantern, expose the hidden entrance to the
underworld and then defeat the troll guarding it, awarding
him 100 points. The Troll Quest presents a larger problem
than the Egg Quest, but smaller than the full Zork domain; it
is large enough to gain a useful understanding of our agents’
performance. The agent uses action set (1) consisting of
200 take actions and 15 essential actions (215 in total).

Figure 4(b) presents an ablative analysis of our method in
the Troll quest, where we chose nmax = 10, nsample = 5 for
the AE mechanism. We can see that the vanilla agent strug-
gles to solve this quest. A second baseline, termed reward
shaping, represents a vanilla agent trained with an additional
reward of −1 that is given after an invalid action was taken
(similar to (Lipton et al., 2016a)). We can see that although

3contains 209 actions, where nmax = 5, nsample = 2 were
chosen for the AE mechanism

4contains 1227 actions, where nmax = 100, nsample = 20 were
chosen for the AE mechanism

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

(a) Egg quest, with action sets (1) (top) and (3) (bottom) (b) Troll quest, 209 actions, ablative analysis

Figure 4. A comparison of different agents performance in sub-domains of Zork. Results are averaged over 5 random seeds and are shown
alongside error bars (std/3).

the reward shaping improves the agent’s performance, it is
still low. Next, we present three variants of our approach.
The first, act, uses elimination only for the ACT () proce-
dure and performs standard epsilon-greedy exploration (Act
procedure, Algorithm 1). The second, act+explore, uses our
exploration mechanism in addition to act (Explore proce-
dure, Algorithm 1), and the third act+explore+targets also
uses elimination for training (Targets procedure, Algorithm
1). We can see that AE allows the agent to solve the quest
and that adding each of the components provides additional
improvement.

5.3. “Open Zork“

Next, we evaluated our agent in the “Open Zork“ domain.
To compare our results with previous work, we trained our
agent for 1M steps: each trajectory terminates upon com-
pleting T = 500 steps, and a total of 2000 trajectories were
executed 5. We used two action sets: action set (2), which
was created from the game tutorial, is comparable with the
one used by Kostka et al. (2017); Action set (3), which
contains all verb-noun tuples, is comparable with (Fulda
et al., 2017) (it is larger but uses more prior knowledge on
the domain). Table 1 presents the maximal reward obtained
by our AE-DQN agent in this domain while using action
sets 2&3, showing that our agent achieves state-of-the-art
results, outperforming all previous work.

6. Summary
In this work, we proposed the AE-DQN, a DRL approach
for eliminating actions while performing Q-learning, for
solving MDPs with large state and action spaces. We tested
our approach on the text-based game Zork, showing that by
eliminating actions, the size of the action space is reduced,

5The same amount of steps that was used in previous work on
Zork (Fulda et al., 2017; Kostka et al., 2017).

Table 1. Experimental results in Zork

#actions cumulative
reward

Kostka et al. (2017) ≈ 150 13.5

Ours, action set 2 131 39

Fulda et al. (2017) ≈ 500 8.8

Ours, action set 3 1227 16

exploration is more effective, and learning is improved. In
future work, we plan to investigate more sophisticated archi-
tectures, as well as learning shared representations for action
elimination and control which may boost performance on
both tasks (Jaderberg et al., 2016).
Our theoretical analysis in Section 3 suggests that using
linear contextual bandits for action elimination guarantees
convergence in high probability. In practice, the features
that are learned by the AEN can be used for learning a linear
contextual bandit on top of the representation of the last
layer of the AEN. Since these features must be fixed to be
used for learning the bandit, in future work we plan on pur-
suing a shallow update approach; i.e., continuously training
an AEN with new data in order to learn good representation,
but every few steps, learning a bandit model on top of it to
gain accurate uncertainty estimates and better exploration
(Levine et al., 2017; Azizzadenesheli et al., 2018; Riquelme
et al., 2018).
In addition, we aim to investigate other mechanisms for
action elimination, e.g., eliminating actions that result from
low Q-values (Even-Dar et al., 2003). Another direction is
to generate elimination signals in real-world domains. This
can be done by designing a rule-based system for actions
that should be eliminated, and then, training an AEN to
generalize these rules for states that were not included in
these rules. Finally, elimination signals may be provided
implicitly, e.g., by human demonstrations for actions that
should not be taken.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

References
Abbasi-Yadkori, Yasin, Pal, David, and Szepesvari, Csaba.

Improved algorithms for linear stochastic bandits. In
Advances in Neural Information Processing Systems, pp.
2312–2320, 2011.

Azizzadenesheli, Kamyar, Brunskill, Emma, and Anandku-
mar, Animashree. Efficient exploration through bayesian
deep q-networks. arXiv preprint arXiv:1802.04412, 2018.

Bertsekas, Dimitri P and Tsitsiklis, John N. Neuro-dynamic
programming: an overview. In Decision and Control,
1995., Proceedings of the 34th IEEE Conference on, pp.
560–564. IEEE, 1995.

Budzianowski, Pawel, Ultes, Stefan, Su, Pei-Hao, Mrk-
sic, Nikola, Wen, Tsung-Hsien, Casanueva, Inigo, Rojas-
Barahona, Lina, and Gasic, Milica. Sub-domain mod-
elling for dialogue management with hierarchical rein-
forcement learning. arXiv preprint arXiv:1706.06210,
2017.

Chu, Wei, Li, Lihong, Reyzin, Lev, and Schapire, Robert.
Contextual bandits with linear payoff functions. In Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pp. 208–214, 2011.

Dalal, Gal, Gilboa, Elad, and Mannor, Shie. Hierarchical de-
cision making in electricity grid management. In Interna-
tional Conference on Machine Learning, pp. 2197–2206,
2016.

Dhingra, Bhuwan, Li, Lihong, Li, Xiujun, Gao, Jianfeng,
Chen, Yun-Nung, Ahmed, Faisal, and Deng, Li. End-
to-end reinforcement learning of dialogue agents for in-
formation access. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics,
2016.

Dulac-Arnold, Gabriel, Denoyer, Ludovic, Preux, Philippe,
and Gallinari, Patrick. Fast reinforcement learning with
large action sets using error-correcting output codes for
mdp factorization. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases,
pp. 180–194. Springer, 2012.

Dulac-Arnold, Gabriel, Evans, Richard, van Hasselt, Hado,
Sunehag, Peter, Lillicrap, Timothy, Hunt, Jonathan,
Mann, Timothy, Weber, Theophane, Degris, Thomas,
and Coppin, Ben. Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679,
2015.

Even-Dar, Eyal, Mannor, Shie, and Mansour, Yishay. Action
elimination and stopping conditions for reinforcement
learning. In Proceedings of the 20th International Con-
ference on Machine Learning (ICML-03), pp. 162–169,
2003.

Fulda, Nancy, Ricks, Daniel, Murdoch, Ben, and Wingate,
David. What can you do with a rock? affor-
dance extraction via word embeddings. arXiv preprint
arXiv:1703.03429, 2017.

Glavic, Mevludin, Fonteneau, Raphael, and Ernst, Damien.
Reinforcement learning for electric power system deci-
sion and control: Past considerations and perspectives.
IFAC-PapersOnLine, pp. 6918–6927, 2017.

He, Ji, Chen, Jianshu, He, Xiaodong, Gao, Jianfeng, Li,
Lihong, Deng, Li, and Ostendorf, Mari. Deep reinforce-
ment learning with an unbounded action space. CoRR,
abs/1511.04636, 2015. URL http://arxiv.org/
abs/1511.04636.

Hester, Todd, Vecerik, Matej, Pietquin, Olivier, Lanctot,
Marc, Schaul, Tom, Piot, Bilal, Sendonaris, Andrew,
Dulac-Arnold, Gabriel, Osband, Ian, Agapiou, John, et al.
Learning from demonstrations for real world reinforce-
ment learning. AAAI, 2018.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Jaderberg, Max, Mnih, Volodymyr, Czarnecki, Woj-
ciech Marian, Schaul, Tom, Leibo, Joel Z, Silver,
David, and Kavukcuoglu, Koray. Reinforcement learn-
ing with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016.

Kakade, Sham Machandranath et al. On the sample com-
plexity of reinforcement learning. PhD thesis, University
of London London, England, 2003.

Kim, Yoon. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882, 2014.

Kostka, Bartosz, Kwiecieli, Jaroslaw, Kowalski, Jakub,
and Rychlikowski, Pawel. Text-based adventures of the
golovin ai agent. In Computational Intelligence and
Games (CIG), 2017 IEEE Conference on, pp. 181–188.
IEEE, 2017.

Lagoudakis, Michail G and Parr, Ronald. Reinforcement
learning as classification: Leveraging modern classifiers.
In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 424–431, 2003.

Lattimore, Tor and Hutter, Marcus. Pac bounds for dis-
counted mdps. In International Conference on Algorith-
mic Learning Theory, pp. 320–334. Springer, 2012.

Levine, Nir, Zahavy, Tom, Mankowitz, Daniel J, Tamar,
Aviv, and Mannor, Shie. Shallow updates for deep rein-
forcement learning. In Advances in Neural Information
Processing Systems, pp. 3138–3148, 2017.

Li, Jiwei, Monroe, Will, Ritter, Alan, Galley, Michel,
Gao, Jianfeng, and Jurafsky, Dan. Deep reinforce-
ment learning for dialogue generation. arXiv preprint
arXiv:1606.01541, 2016.

Li, Xuijun, Chen, Yun-Nung, Li, Lihong, and Gao, Jian-
feng. End-to-end task-completion neural dialogue sys-
tems. arXiv preprint arXiv:1703.01008, 2017.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

Lin, Long-Ji. Self-improving reactive agents based on re-
inforcement learning, planning and teaching. Machine
learning, 8(3-4):293–321, 1992.

Lipton, Zachary C, Gao, Jianfeng, Li, Lihong, Chen, Jian-
shu, and Deng, Li. Combating reinforcement learn-
ing’s sisyphean curse with intrinsic fear. arXiv preprint
arXiv:1611.01211, 2016a.

Lipton, Zachary C, Gao, Jianfeng, Li, Lihong, Li, Xiujun,
Ahmed, Faisal, and Deng, Li. Efficient exploration for
dialogue policy learning with bbq networks and replay
buffer spiking. arXiv preprint arXiv:1608.05081, 2016b.

Liu, Bing, Tur, Gokhan, Hakkani-Tur, Dilek, Shah, Pararth,
and Heck, Larry. End-to-end optimization of task-
oriented dialogue model with deep reinforcement learn-
ing. arXiv preprint arXiv:1711.10712, 2017.

Machado, Marlos C, Bellemare, Marc G, Talvitie, Erik, Ve-
ness, Joel, Hausknecht, Matthew, and Bowling, Michael.
Revisiting the arcade learning environment: Evaluation
protocols and open problems for general agents. arXiv
preprint arXiv:1709.06009, 2017.

Mannion, Patrick, Duggan, Jim, and Howley, Enda. An
experimental review of reinforcement learning algorithms
for adaptive traffic signal control. In Autonomic Road
Transport Support Systems, pp. 47–66. Springer, 2016.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed representations of
words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pp.
3111–3119, 2013.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G, Graves,
Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostro-
vski, Georg, et al. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529–533, 2015.

Narasimhan, Karthik, Kulkarni, Tejas D., and Barzi-
lay, Regina. Language understanding for text-based
games using deep reinforcement learning. CoRR,
abs/1506.08941, 2015. URL http://arxiv.org/
abs/1506.08941.

Pazis, Jason and Parr, Ron. Generalized value functions for
large action sets. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pp. 1185–
1192, 2011.

Peng, Baolin, Li, Xiujun, Li, Lihong, Gao, Jianfeng, Ce-
likyilmaz, Asli, Lee, Sungjin, and Wong, Kam-Fai. Com-
posite task-completion dialogue system via hierarchical
deep reinforcement learning. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing, 2017.

Riquelme, Carlos, Tucker, George, and Snoek, Jasper. Deep
bayesian bandits showdown. International Conference
on Learning Representations (ICLR), 2018.

Serban, Iulian V, Sankar, Chinnadhurai, Germain, Mathieu,
Zhang, Saizheng, Lin, Zhouhan, Subramanian, Sandeep,
Kim, Taesup, Pieper, Michael, Chandar, Sarath, Ke,
Nan Rosemary, et al. A deep reinforcement learning
chatbot. arXiv preprint arXiv:1709.02349, 2017.

Su, Pei-Hao, Gasic, Milica, Mrksic, Nikola, Rojas-
Barahona, Lina, Ultes, Stefan, Vandyke, David, Wen,
Tsung-Hsien, and Young, Steve. Continuously learn-
ing neural dialogue management. arXiv preprint
arXiv:1606.02689, 2016.

Sutton, Richard S and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press Cambridge, 1998.

Tesauro, Gerald. Temporal difference learning and TD-
Gammon. Communications of the ACM, pp. 58–68, 1995.

Thrun, Sebastian and Schwartz, Anton. Issues in using
function approximation for reinforcement learning. In
Proceedings of the 1993 Connectionist Models Summer
School Hillsdale, NJ. Lawrence Erlbaum, 1993.

Van der Pol, Elise and Oliehoek, Frans A. Coordinated
deep reinforcement learners for traffic light control. In In
proceedings of NIPS, volume 16, 2016.

Van Hasselt, Hado and Wiering, Marco A. Using continu-
ous action spaces to solve discrete problems. In Neural
Networks, 2009. IJCNN 2009. International Joint Confer-
ence on, pp. 1149–1156. IEEE, 2009.

Watkins, Christopher JCH and Dayan, Peter. Q-learning.
Machine learning, 8(3-4):279–292, 1992.

Wen, Zheng, O’Neill, Daniel, and Maei, Hamid. Optimal
demand response using device-based reinforcement learn-
ing. IEEE Transactions on Smart Grid, pp. 2312–2324,
2015.

Wu, Yonghui, Schuster, Mike, Chen, Zhifeng, Le, Quoc V,
Norouzi, Mohammad, Macherey, Wolfgang, Krikun,
Maxim, Cao, Yuan, Gao, Qin, Macherey, Klaus, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

Zahavy, Tom, Magnani, Alessandro, Krishnan, Abhinandan,
and Mannor, Shie. Is a picture worth a thousand words?
a deep multi-modal fusion architecture for product clas-
sification in e-commerce. The Thirtieth Conference on
Innovative Applications of Artificial Intelligence (IAAI),
2018.

Zelinka, Mikulas. Using reinforcement learning to
learn how to play text-based games. arXiv preprint
arXiv:1801.01999, 2018.

Zhao, Tiancheng and Eskenazi, Maxine. Towards end-
to-end learning for dialog state tracking and manage-
ment using deep reinforcement learning. arXiv preprint
arXiv:1606.02560, 2016.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

A. Proof of Proposition 1
Proposition 1. Assume that all state action pairs (s, a) are visited infinitely often, unless eliminated according to

θ̂Tt−1,ax(s) −
√
βt−1(δ̃)x(s)T V̄ −1

t−1,ax(s) > `. Then, with probability of at least 1 − δ, action elimination Q-learning
converges to the optimal Q-function for any valid state-action pairs. In addition, actions which should be eliminated are
visited at most Ts,a(t) ≤ 4 βt

(u−`)2 + 1 times.

Proof. We start by proving the convergence of the algorithm and then prove the bound on the number of visits of invalid
actions.
Denote the MDP as M . According to Equation 1, with probability of at least 1 − δ, elimination by Equation 2 never
eliminates a valid action, and thus all of these actions are visited infinitely often. If all of the state-action pairs are visited
infinitely often even after the elimination, the Q-learning will converge at all state-action pairs. Otherwise, there are some
invalid actions, which are strictly suboptimal, and are visited a finite number of times. In this case, there exists some time
T < ∞ such that all of these actions are never played for any t > T . Define a new MDP M̃ , as M without any of the
eliminated actions. As these actions are strictly suboptimal, the value of M̃ will be identical to the value of M at all states,
and so are the Q-values for any action that survived the elimination. Furthermore, M̃ contains all of the valid states, and
their Q-values will be identical those of M , as they only depend on the reward in the valid state-action pairs and the value in
the next state, both which exist in M̃ . For any t > T , M is equivalent to M̃ , and all of its state-actions are visited infinitely
often. Therefore, the Q-function will converge to the optimal Q-function with probability 1 in all of M̃ ’s state-action pairs.
Specifically, it will converge in all of valid state-action pairs (s, a), which concludes the first part of the proof.
We’ll now prove the sample complexity of any invalid actions. First, note that the confidence bound is strongly related to the
number of visits in a state-action pair:

x(st)
T V̄ −1

t−1,ax(st) = x(st)
T

λI + Ts,a(t− 1)x(st)x(st)
T +

∑
s′ 6=st

Ts′,a(t− 1)x(s′)x(s′)T

−1

x(st)

(1)

≤ x(st)
T
{
λI + Ts,a(t− 1)x(st)x(st)

T
}−1

x(st)
(2)
=

‖x(st)‖2

λ
−

Ts,a(t− 1)‖x(st)‖4
λ2

1 + Ts,a(t− 1)‖x(st)‖2
λ

=
‖x(st)‖2

λ+ Ts,a(t− 1)‖x(st)‖2
≤ 1

Ts,a(t− 1)

(1) is correct due to the fact that for any positive definite A and positive semidefinite B, the difference A−1 − (A+B)−1 is
positive semidefinite. (2) is correct due to the Sherman–Morrison formula. We note that this bound is not tight because
it does not use the correlations between different contexts. In fact, the same bound can be achieved by placing a regular
bandit algorithm in each state. Deriving a tighter bound that utilizes the correlation between contexts is hard, as it is possible
to observe a state that its context is not correlated with other states’ contexts. Nevertheless, the confidence bounds for
contextual bandits can be used in the non tabular case, in contrast to a MAB formulation.
This implies that a satisfactory condition for correct elimination is

x(st)
T θ̂t−1,a −

√
βt−1(δ̃)x(st)T V̄

−1
t−1,ax(st)

(1)

≥ u− 2
√
βt−1(δ̃)x(st)T V̄

−1
t−1,ax(st)

(2)

≥ u− 2

√
βt−1(δ̃)

Ts,a(t− 1)
> `

where (1) is correct due to Equation 2 with E[e(st, a)] = θ∗a
Tx(st) ≥ u, with probability 1− δ, and (2) is correct due to

Equation ??. Therefore, if Ts,a(t) ≥ 4 βt
(u−`)2 then action a in state s is correctly eliminated. We emphasize that the bound

does not depend on the algorithm that chooses state-actions, except for the dependency of βt, through V̄t,a, in the history.
Using the fact that βt is monotonically increasing with t, with probability 1− δ, all of the invalid actions are sampled no
more than

Ts,a(t) ≤
t∑

τ=1

1

{
Ts,a(τ) ≤ 4

βτ

(u− `)2

}
≤

t∑
τ=1

1

{
Ts,a(τ) ≤ 4

βt

(u− `)2

}
≤ 4

βt

(u− `)2 + 1

If the sub-gaussianity parameter is R = 0, we have βt = λS2 <∞, and therefore an arm will be sampled at most a finite
number of times T0 = 4 λS2

(u−`)2 + 1 <∞. Otherwise, if the state representations are bounded, i.e. ∀s, ‖x(s)‖2 ≤ L, then,

using the simpler form of βt, the bound can be written as limt→∞
Ts,a(t)

log(tδ)
≤ 4R2d

(u−`)2 , which means an invalid action is

sampled a logarithmic number of times.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

B. Maps of Zork

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

Figure 5. The world of Zork

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning

Figure 6. Subdomains of Zork; the Troll (green) and Egg (blue) Quests. Credit: S. Meretzky, The Strong National Museum of Play.

