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Abstract

Infarcted brain tissue resulting from acute stroke readily shows up as hyperintense regions
within diffusion-weighted magnetic resonance imaging (DWI). It has also been proposed
that computed tomography perfusion (CTP) could alternatively be used to triage stroke
patients, given improvements in speed and availability, as well as reduced cost. How-
ever, CTP has a lower signal to noise ratio compared to MR. In this work, we investigate
whether a conditional mapping can be learned by a generative adversarial network to map
CTP inputs to generated MR DWI that more clearly delineates hyperintense regions due
to ischemic stroke. We detail the architectures of the generator and discriminator and
describe the training process used to perform image-to-image translation from multi-modal
CT perfusion maps to diffusion weighted MR outputs. We evaluate the results both quali-
tatively by visual comparison of generated MR to ground truth, as well as quantitatively by
training fully convolutional neural networks that make use of generated MR data inputs to
perform ischemic stroke lesion segmentation. We show that segmentation networks trained
with generated CT-to-MR inputs are able to outperform networks that make use of only
CT perfusion input.

Keywords: Conditional adversarial networks, Image-to-Image translation, Ischemic stroke
lesion segmentation, CT perfusion

1. Introduction

Ischemic stroke is caused by partial or total restriction of blood supply to part of the brain.
During an acute stroke, prolonged ischemia results in irreversible tissue death. Decisions
about ischemic stroke therapy are highly time-sensitive and rely on distinguishing between
the infarcted core tissue and hypoperfused lesions, i.e. the penumbra. As such, automated
methods that can locate and segment ischemic stroke lesions can aid clinician decisions
about acute stroke treatment. Computed tomography perfusion (CTP) has been used to
triage stroke patients and has advantages in cost, speed and availability over diffusion-
weighted magnetic resonance imaging (DWI). CTP provides detailed information about
blood flow within the brain and can determine areas that are (in)adequately perfused with
blood. However, CTP has a lower signal to noise ratio compared to DWI where infarcted
core brain tissue readily shows up as hyperintense regions. In this work we train generative
adversarial networks to learn a conditional mapping that maps CTP infarcted core regions
to more clearly delineated hyperintense areas in generated MR scans. We utilize a dataset
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of 94 paired CT and MR scans (Cereda et al., 2016) made available as part of the ISLES
2018 Ischemic Stroke Lesion Segmentation Challenge (Maier et al., 2017; Winzeck et al.,
2018). Data was collected from 63 subjects from 4 hospital sites worldwide, whereby each
acute stroke patient underwent back-to-back CTP and MRI DWI imaging within 3h of each
other. Each CT scan was co-registered with its corresponding DWI. Perfusion maps were
derived from each CT scan including cerebral blood flow (CBF), cerebral blood volume
(CBV), mean transit time (MTT) and time to peak of the residue function (Tmax).

We employ the image-to-image translation framework introduced in (Isola et al., 2016)
and modify it to accept multi-modal CT perfusion maps as input. After training conditional
generative adversarial networks (CGANs) to reconstruct MR from CT perfusion maps,
we train fully convolutional neural networks (FCN) to performs semantic segmentation of
infarcted core tissue and compare whether performance can be improved by including the
generated MR as an extra channel of information to the network. We show that FCNs
trained with combined CTP and generated MR inputs are able to outperform networks
trained without extra derived MR information on a range of metrics.

2. Related Work

Generative adversarial networks (Goodfellow et al., 2014) are increasingly being utilized
within medical image synthesis and analysis (Wolterink et al., 2017; Nie et al., 2017; Lau
et al., 2018; Wolterink et al., 2018). Typically, the high cost of acquiring ground truth labels
means that many medical imaging datasets are either not large enough or exhibit large class
imbalances between healthy and pathological cases. Generative models and GANs attempt
to circumvent this problem by generating synthesized data that can be used to augment
datasets during model training. One such approach is described in (Lau et al., 2018) for
simulating myocardial scar tissue in late-gadolinium enhancement cardiovascular magnetic
resonance (CMR) scans. The goal of ScarGAN is to perform dataset augmentation by
beginning with a healthy CMR scan and adding realistic scar tissue to it. The training task
is broken down into sub-tasks and avoids some of the difficulties associated with traditional
GAN training – such as mode collapse. In particular, their approach consists of training
two conditional adversarial networks. The first generates masks augmented with scar tissue
and the second refines intensity values that have been set using a domain-specific heuristic.
The authors of (Lau et al., 2018) make use of the pix2pix framework, as we do in this work,
and they produce simulated scar tissue that experienced physicians mistake as real.

(Wolterink et al., 2017) investigates the problem of CT generation from MR for radiation
therapy planning – a task that requires both MR and CT volumes. They synthesize CT
from MR scans using CycleGAN (Zhu et al., 2017), which employs a forward and backward
cycle-consistency loss. The CycleGAN framework allows processing of unpaired MR and
CT slices and does not rely on having co-registered images. In the forward cycle a first
network generates CT from MR inputs and a second network translates synthesized CT
images back to MR. A discriminator is trained to differentiate between real and synthesized
CT images. The loss is given by the difference between the original and reconstructed
image. A backward cycle also contributes to the overall cycle loss whereby the synthesis is
reversed from CT to MR. Interestingly, (Wolterink et al., 2017) shows that a model trained
using unpaired MR and CT data was able to outperform models that used paired data.
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3D Conditional GANs were also used in (Jin et al., 2018) to learn shape and appearance
information about pulmonary nodules in CT volumes. The authors generated synthetic
nodules by training a generator on pairs of nodule-masked 3D input patches together with
their corresponding ground truth. A multi-mask L1 loss function was used that considered
L1 loss only at the region of the nodule mask and surrounding border through the use of a
dilation operation. Heavier weighting of the L1 loss around the border avoided discontinuity
artifacts that can arise. As in our work, and others (Isola et al., 2016; Lau et al., 2018), the
overall loss function consisted of a combination of the L1 loss together with the conditional
GAN loss (see Equation 3). The generator network in (Jin et al., 2018) was employed to
augment a CT training set with nodules close to lung borders for the purpose of improving
CT lung segmentation.

In addition to the works mentioned above, adversarial networks have also been used for
tasks such as improving lung segmentation in chest radiographs (Dai et al., 2018), correcting
motion-related artifacts in cardiac magnetic resonance (Oksuz et al., 2018), as well as in
registering medical images (Mahapatra et al., 2018). The motivation for our work is to
explore whether hyperintensitities in MR scans can be emulated from CT perfusion inputs
with conditional adversarial networks to improve the performance of ischemic stroke lesion
segmentation.

3. Contributions

The contributions of this work are as follows:

1. Given a dataset of paired CTP and MR scans, we train a conditional generative
adversarial network to reconstruct MR from CT perfusion maps.

2. We combine the generated MR scans with CTP data and train fully convolutional
neural networks to perform semantic segmentation of ischemic core stroke lesions.

3. We show that the learned conditional mapping from CTP input results in more clearly
delineated hyperintense regions in generated MR and this leads to improved segmen-
tation of infarcted core areas.

4. CT-To-MR Conditional GAN Architecture

Generative adversarial networks (Goodfellow et al., 2014) work by training both a generator
and a discriminator network. The generator network, G(z), attempts to generate outputs
that resemble images, y, from a distribution of training data, where z is a random noise
vector, G : z → y. The discriminator network, D(·), is given either a real input, D(y),
or a generated one, D(G(z)), and attempts to distinguish whether the input is real (im-
ages resulting from the true underlying data distribution) or fake (images created by the
generator).

For the task of generating MR, conditioned on CT perfusion inputs, we adopt the Con-
ditional GAN formulation, introduced in (Mirza and Osindero, 2014) and further described
in the pix2pix framework (Isola et al., 2016). Conditional adversarial networks alter the
generator such that it is conditioned on an original input image, G : x, z → y, where x is
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Figure 1: Overview of CT-To-MR Conditional GAN architecture

the input image and z is once again a random noise vector. The discriminator function is
also updated to accept the conditional image as input, as well as the real, y, or fake input,
G(x, z), created by the generator. The full objective function for the conditional generator
is given in Eq (1).

LCGAN (G,D) = Ex,y∼pdata(x,y) [log(D(x, y)] + Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))] (1)

As in (Isola et al., 2016), z is introduced into the generator network in the form of
dropout at both train and test time. The final objective function for training the CT-
To-MR translation model combines both the global LCGAN (G,D) loss together with an
additional L1 loss term, Eq (2), that captures the local per-pixel reconstruction error. The
combined objective function is given in Eq (3), where λ is selected as a hyperparameter .

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1] (2)

G∗ = arg min
G

max
D

= LCGAN (G,D) + λLL1(G) (3)

4.1. Generator Architecture

A high level overview of the generator architecture, G, is shown in Fig 1. Generator inputs,
x, are 5-channel 256× 256 CT perfusion slices that contain the CT scan, stacked together
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with the CBF, CBV, MTT, and Tmax perfusion maps. First, three initial convolution
operations are applied. The size and number of convolutional kernels are shown in the
figure as: nxn@f , where n is the kernel size and f the number of kernels. Downsampling is
achieved via strided convolution. This is followed by 9 ResNet blocks, where a ResNet block
is a residual block that consists of the following operations: Conv-InstanceNorm-ReLU-
Dropout-Conv-InstanceNorm. Before each convolution operation (Conv) in the block, re-
flection padding with size 1 is added to each border of the input. The number of feature
maps stays constant at 256, throughout the 9 ResNet blocks, as does their spatial resolution.
Upsampling is achieved in the generator via fractionally strided convolutions (ConvT ), as
shown in Fig 1. The generator output is a 1× 256× 256 single channel derived MR slice.

4.2. Discriminator Architecture

As in (Isola et al., 2016), we utilize a convolutional PatchGAN discriminator that models
high frequency image structure in local patches and penalizes incorrectness at the N×N
patch-level. This is combined with the L1 loss term, LL1, that enforces low frequency
correctness. A high level overview of the discriminator, D, is depicted in Fig 1.

The conditional discriminator accepts either real, D(x, y), or generated, D(x,G(x, z)),
MR slices, together with the original CT data and perfusion maps, x ∈ R5×256×256. CTP
data and ‘real’ or ‘fake’ MR slices are stacked together in the channel dimension resulting in
6× 256× 256 inputs being processed by the PatchGAN discriminator. All convolutions use
a kernel size of 4× 4, with downsampling once again being handled via strided convolution.
Excluding the first and last convolution shown in Fig 1, each convolution is followed by an
instance normalization operation (Ulyanov et al., 2016) and LeakyReLU activation with a
negative slope coefficient of 0.2. The output of the network is a 30×30 map of discriminator
activations, where each activation captures a 70× 70 receptive field of overlapping patches
from input channels. The final discriminator output is given by an average of this activation
map.

4.3. CT-To-MR Conditional GAN Training

4.4. Data split

From the 94 available scans, a 5-fold split of the dataset was performed to create 5 ×
80%/20% splits. Splits were performed by subject to ensure that each fold of the data
consisted of scans from unique subjects. To ensure the CGAN model generated “MR slices”
only for scans it was not trained on, 5 CT-To-MR CGANs were created, where each model
was trained on 80% of the data and produced derived MR slices for the remaining 20% of
the data not seen during model training.

4.5. CGAN Implementation details

Training of the CT-To-MR CGAN took place by alternating one gradient descent step of
the discriminator, followed by one gradient descent step for the generator. A batch size of
1 was used for training all networks. A dropout rate of 0.5 was applied within each ResNet
block in the generator (see Fig 1). Within the final loss function, G∗, a value of λ = 100
was used to weight the combination of both L1 loss and that supplied from LCGAN . Adam
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optimization used for training both the generator and discriminator with learning rates set
to 2e−4 and momentum parameters β1 = 0.5, β2 = 0.999. Affine data transformations
consisting of translation, rotation and scaling were used for augmentation. Each network
was trained for a total of 200 epochs using PyTorch on a single Nvidia P100 GPU.

5. Ischemic Core Segmentation FCN Model

The final ischemic core segmentation network is based on the network architecture defined
in (Abulnaga and Rubin, 2018). The model employs a fully convolutional neural network
and utilizes pyramid pooling (Zhao et al., 2017) for capturing global and local context. The
FCN component of the architecture relies on residual connections (He et al., 2016) to aid
information flow during training and dilated convolution (Yu and Koltun, 2015) to cover
larger receptive field sizes from the network inputs. Focal loss (Lin et al., 2018) is used as
the loss function to attempt to learn the varying shapes of the lesion masks and effectively
deal with the class imbalance between ischemic core and non-infarct areas.

The network is trained using transfer learning, beginning with weights that have been
trained on natural images from the Pascal Visual Object Classes Challenge (Everingham
et al., 2010). During training, data augmentations are created using standard affine trans-
formations including rotation [−10◦, 10◦], translation [−10%, 10%] and scaling [0.9, 1.1].

Two FCNs were trained to perform the final ischemic core segmentation. The network
architecture and training details remained the same and the only difference between the
networks were the inputs that were fed to them. Inputs to the first network (FCN) consisted
of 5-channel 2D slices containing the CT image, together with its corresponding CBF, CBV,
TTP and MTT perfusion maps. Inputs to the second network (FCN-GAN) were augmented
with an extra channel of information that contained the derived MR slice – generated by
the CT-to-MR GAN, conditioned on the 5-channel CTP input.

6. Results

We present qualitative results produced by the CT-To-MR CGAN and quantitative results
of training FCN models with and without derived MR inputs. Fig 2 shows a subset of results
created by the CT-To-MR CGAN model. Five MR slices are shown that were generated
by conditioning on CTP input from a 20% test-set. The top row shows the ground truth
MR slice and the bottom row shows the corresponding slice that was created by the CT-
To-MR generator. While only a qualitative assessment can be made, it can be seen that
hyperintense regions within the ground truth DWI image are approximately replicated by
the conditional generator.

For quantitative analysis, Table 1 compares the 5-fold cross validation results of two
ischemic core segmentation models. The first baseline model, FCN, shows the results for
a FCN trained only on the 5 original CTP input modalities. FCN-CGAN refers to the
same network architecture, but trained by including the generated MR slice as one of the
input modalities. Dice coefficient, Hausdorff distance, average distance, precision, recall and
absolute volume difference metrics are provided. It can be seen that including derived MR
slices from the CT-To-MR CGAN model leads to improvements in all evaluation metrics.
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Figure 2: Examples of real and derived MR slices. The top row shows real images and the
bottom row shows slices generated from the CT-To-MR Conditional GAN model

Table 1: Ischemic stroke lesion segmentation results using a FCN baseline model compared
to FCN-CGAN that incorporates CT-To-MR input information learned via a con-
ditional adversarial network. Arrows in the columns indicate whether lower or
higher values are better. For all evaluation metrics, the FCN-CGAN improves
upon the FCN baseline.

Metric FCN FCN-CGAN

↑ Dice 0.53 ± 0.25 0.54 ± 0.23
↓ Hausdorff Distance 27.94 ± 20.27 27.88 ± 21.00
↓ Average Distance 4.73 ± 9.88 4.37 ± 9.35
↑ Precision 0.56 ± 0.27 0.56 ± 0.25
↑ Recall 0.62 ± 0.27 0.63 ± 0.25
↓ Absolute Volume Difference 11.53 ± 13.11 10.20 ± 13.10

Figure 3 shows a sample of segmentation results produced by the FCN and FCN-CGAN
approaches. The bottom row shows ischemic core segmentation masks produced by the
FCN baseline model in green. Ground truth segmentations are shown in red. The top
row compares segmentation results from the FCN-CGAN model in blue to ground truth,
once again shown in red. The results show that, in general, the FCN-CGAN model results
in predictions that cover more of the ischemic core region compared to predictions from
the baseline FCN. It can also be seen in some cases (e.g. the 4th case from the right in
Figure 3) that the FCN-CGAN model was able to correct for islands of false positives that
were predicted by the FCN baseline. In addition to the mask predictions, also displayed in
Figure 3 are the overall dice coefficient values for the corresponding scan from which the
slice was taken. It can be seen in some cases (e.g. the 2nd case from the right: FCN: 0.087
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vs FCN-CGAN: 0.390) that substantial improvements in dice values can be observed with
the FCN-CGAN model.

Figure 3: Comparison of segmentation results. Ground truth is shown in red. The bottom
row shows results produced by the FCN baseline in green and the top row shows
results produced by the FCN-CGAN in blue. Also shown are the dice coefficient
values for each approach. Note: the dice score is per scan from which each slice
was taken from.

7. Conclusions & Future Work

We have presented an approach that utilized conditional generative adversarial networks
to improve the performance of fully convolutional stroke lesion segmentation networks.
Diffusion-weighted magnetic resonance imaging is considered most accurate for early detec-
tion of acute stroke (Biesbroek et al., 2013; Gillebert et al., 2014), as infarcted brain tissue
can be recognized as hyperintense regions of the DWI map compared to surrounding brain
tissue. Hence, the motivation for this work was to emulate a DWI map, conditioned on a
given CT perfusion input. By generating corresponding DWI maps and including them as
inputs to a FCN, it was hoped to ease the learning process. Our qualitative results show that
CGANs do a reasonable job of mapping infarcted core regions to hyperintensities that align
with corresponding areas in ground truth MR. We also show quantitative improvements
in segmentation performance, as measured by dice coefficient, Hausdorff distance, average
distance, precision, recall and absolute volume difference, when including generated MR
images as input to the training of segmentation networks.

In the present work, we incorporated CGAN models that act as a 1:1 mapping from CT
perfusion input to corresponding generated MR. However, related works (Lau et al., 2018;
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Jin et al., 2018) have utilized generative models to synthesize further training examples to
better capture the wide range of shapes, locations and appearances of pathological tissue
and disease that show up in medical imaging modalities. Given the small dataset used in this
work, consisting of 94 scans in total, it is possible that further improvements in segmentation
performance could be possible by employing CGANs rather than as 1:1 mappings from
CTP to MR, but to synthesize novel examples of ischemic core lesions in generated scans
to artificially bolster the training set size.
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van den Berg, and Ivana Išgum. Deep mr to ct synthesis using unpaired data. In Interna-
tional Workshop on Simulation and Synthesis in Medical Imaging, pages 14–23. Springer,
2017.

10



CT-To-MR Conditional Generative Adversarial Networks

Jelmer M Wolterink, Tim Leiner, and Ivana Isgum. Blood vessel geometry synthesis using
generative adversarial networks. arXiv preprint arXiv:1804.04381, 2018.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122, 2015.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid
scene parsing network. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 2881–2890, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Computer Vision (ICCV),
2017 IEEE International Conference on, 2017.

11


	Introduction
	Related Work
	Contributions
	CT-To-MR Conditional GAN Architecture
	Generator Architecture
	Discriminator Architecture
	CT-To-MR Conditional GAN Training
	Data split
	CGAN Implementation details

	Ischemic Core Segmentation FCN Model
	Results
	Conclusions & Future Work

