
Under review as a conference paper at ICLR 2019

BRIDGING HMMS AND RNNS THROUGH
ARCHITECTURAL TRANSFORMATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

A distinct commonality between HMMs and RNNs is that they both learn hidden
representations for sequential data. In addition, it has been noted that the backward
computation of the Baum-Welch algorithm for HMMs is a special case of the
back-propagation algorithm used for neural networks (Eisner (2016)). Do these
observations suggest that, despite their many apparent differences, HMMs are
a special case of RNNs? In this paper, we investigate a series of architectural
transformations between HMMs and RNNs, both through theoretical derivations
and empirical hybridization, to answer this question. In particular, we investigate
three key design factors—independence assumptions between the hidden states
and the observation, the placement of softmax, and the use of non-linearity—in
order to pin down their empirical effects. We present a comprehensive empirical
study to provide insights on the interplay between expressivity and interpretability
with respect to language modeling and parts-of-speech induction.

1 INTRODUCTION

Sequence is a common structure among many forms of naturally occurring data, including speech,
text, video, and DNA. As such, sequence modeling has long been a core research problem across
several fields of machine learning and AI. By far the most widely used approach for decades is the
Hidden Markov Models of Baum & Eagon (1967); Jelinek et al. (1975), which assumes a sequence
of discrete latent variables to generate a sequence of observed variables. When the latent variables
are unobserved, unsupervised training of HMMs can be performed via the Baum-Welch algorithm
(which, in turn, is based on the forward-backward algorithm), as a special case of Expectation-
Maximization (EM) (Dempster et al. (1977)). Importantly, the discrete nature of the latent variables
has the benefit of interpretability, as they recover contextual clustering of the output variables.

In contrast, Recurrent Neural Networks (RNNs), introduced later in the form of Jordan (1986) and
Elman (1990) networks, assume continuous latent representations. Notably, unlike the hidden states
of HMMs, there is no probabilistic interpretation of the hidden states of RNNs, regardless of their
many different architectural variants (e.g. LSTMs of Hochreiter & Schmidhuber (1997), GRUs of
Cho et al. (2014) and RANs of Lee et al. (2017)).

Despite their many apparent differences, both HMMs and RNNs model hidden representations for
sequential data. At the heart of both models are: a state at time t, a transition function f : ht−1 → ht
in latent space, and an emission function g : ht → xt. In addition, it has been noted that the
backward computation in the Baum-Welch algorithm is a special case of back-propagation for neural
networks (Eisner (2016)). Therefore, a natural question arises as to the fundamental relationship
between HMMs and RNNs. Might HMMs be a special case of RNNs?

In this paper, we investigate a series of architectural transformations between HMMs and RNNs—
both through theoretical derivations and empirical hybridization. In particular, we demonstrate that
the forward marginal inference for an HMM—accumulating forward probabilities to compute the
marginal emission and hidden state distributions at each time step—can be reformulated as equations
for computing an RNN cell. In addition, we investigate three key design factors—independence
assumptions between the hidden states and the observation, the placement of soft- max, and the use
of non-linearity—in order to pin down their empirical effects.

1

Under review as a conference paper at ICLR 2019

Figure 1: Above each of the models we indicate the type of transition and emission cells used. H
for HMM, R for RNN/Elman and F is a novel Fusion defined in §3.3. It is particularly important to
understanding this work to track when a vector is a distribution (resides in a simplex) versus in the
unit cube (e.g. after a sigmoid non-linearity). These cases are indicated by c4i and c�i, respectively.

Our work is supported by several earlier works such as Wessels & Omlin (2000) and Wu et al.
(2016) that have also noted the connection between RNNs and HMMs (see §7 for more detailed
discussion). Our contribution is to provide the first thorough theoretical investigation into the model
variants, carefully controlling for every design choices, along with comprehensive empirical analysis
over the spectrum of possible hybridization between HMMs and RNNs.

We find that the key elements to better performance of the HMMs are the use of a sigmoid instead of
softmax linearity in the recurrent cell, and the use of an unnormalized output distribution matrix in
the emission computation. On the other hand, multiplicative integration of the previous hidden state
and input embedding, and intermediate normalizations in the cell computation are less consequen-
tial. We also find that HMM outperforms other RNNs variants for unsupervised prediction of the
next POS tag, demonstrating the advantages of discrete bottlenecks for increased interpretability.

The rest of the paper is structured as follows. First, we present in §2 the derivation of HMM marginal
inference as a special case of RNN computation. Next in §3, we explore a gradual transformation
of HMMs into RNNs. In §4, we present the reverse transformation of Elman RNNs back to HMMs.
Finally, building on these continua, we provide empirical analysis in §5 and §6 to pin point the
empirical effects of varying design choices over the possible hybridization between HMMs and
RNNs. We discuss related work in §7 and conclude in §8.

2 FORMULATING HMMS AS RECURRENT NEURAL NETWORKS

We start by defining HMMs as sequence models, together with the forward-backward algorithm
which is used for inference. Then we show that, by rewriting the forward algorithm, the computation
can be viewed as updating a hidden state at each time step by feeding the previous word prediction,
and then computing the next word distribution, similar to the way RNNs are structured. The resulting
architecture corresponds to the first cell in Figure 1.

2.1 MODEL DEFINITION

Let x(1:n) = {x(1), . . . , x(n)} be a sequence of random variables, where each x is drawn from a
vocabulary V of size v, and an instance x is represented as an integer w or a one-hot vector e(w),
where w corresponds to an index in V. 1 We also define a corresponding sequence of hidden
variables h(1:n) = {h(1), . . . , h(n)}, where h ∈ {1, 2, . . .m}. The distribution P (x) is defined by

1We use the recommended notation following Goodfellow et al. (2016). Sequences are notated as x or w.

2

Under review as a conference paper at ICLR 2019

marginalizing over h, and factorizes as follows:

P (x) =
∑
h

P (x,h) =
∑
h

P (h(1))p(x(1)|h(1))
n∏

i=2

P (h(i)|h(i−1))P (x(i)|h(i)) (1)

We define the hidden state distribution, referred to as the transition distribution, as

P (h(i)|h(i−1) = l) = softmax(Wl,: + b),W ∈ Rm×m, b ∈ Rm (2)

P (h(1)) = softmax(
∑
l

W>
l,: + b), (3)

and the emission (output) distribution as

p(x(i)|h(i) = k) = softmax(Ek,: + d),E ∈ Rm×v,d ∈ Rv. (4)

2.2 INFERENCE

Inference for HMMs (marginalizing over the hidden states to compute the observed sequence prob-
abilities) is performed with the forward-backward algorithm. The backward algorithm is equivalent
to automatically differentiating the forward algorithm Eisner (2016). Therefore, while traditional
HMM implementations had to implement both the forward and backward algorithm, and train the
model with the EM algorithm, we only implement the forward algorithm in standard deep learning
software, and perform end-to-end minibatched SGD training, efficiently parallelized on the GPU.

Let w = {w(1), . . . , w(n)} be the observed sequence, and w(i) the one-hot representation of w(i).
The forward probabilities a are defined recurrently (i.e., sequentially recursively) as

a
(i)
k = P (h(i) = k,x(1:i) = w(1:i)), (5)

= P (x(i) = w(i)|h(i) = k)

m∑
l=1

a
(i−1)
l P (h(i) = k|h(i−1) = l). (6)

This can be rewritten by defining

c(i) = P (h(i)|x(1:i−1) = w(1:i−1)), (7)

s(i) = P (h(i)|x(1:i) = w(1:i)), (8)

x(i) = P (x(i) = w(i)|x(1:i−1) = w(1:i)), (9)

and substituting a, so that equation 6 is rewritten as (left below) or if expressed directly in terms of
the parameters used to define the distributions with vectorized computations (right below):

c
(i)
k =

m∑
l=1

s
(i−1)
l P (h(i) = k|h(i−1) = l), c(i) = softmaxrows(W)>s(i−1), (10)

e(i) = softmaxrows(E)w(i), (11)

x(i) =

m∑
k=1

P (x(i) = w(i)|h(i) = k)c
(i)
k , x(i) = e(i)

>
c(i), (12)

s
(i)
k =

1

x(i)
P (x(i) = w(i)|h(i) = k)c

(i)
k . s(i) =

1

x(i)
e(i) ◦ c(i). (13)

Here w(i) used as a one-hot vector, and the bias vectors b and d are omitted for clarity. Note that
the computation of s(i) can be delayed until time step i+ 1. The computation step can therefore be

3

Under review as a conference paper at ICLR 2019

rewritten to let c be the recurrent vector (equivalent logspace formulations presented on the right): 2

e(i−1) = softmaxrows(E)w(i−1), = logsoftmaxrows(E)w(i−1),

s(i−1) = normalize(e(i−1) ◦ c(i−1)), = softmax(e(i−1) + c(i−1)),

c(i) = softmaxrows(W)>s(i−1), = log(softmaxrows(W)>s(i−1)),

e(i) = softmaxrows(E)w(i), = logsoftmaxrows(E)w(i),

x(i) = e(i)
>
c(i), = logsumexp(e(i) + c(i)).

(14)

(15)

(16)

(17)

(18)

This can be viewed as a step of a recurrent neural network with tied input and output embeddings:
Equation 14 embeds the previous prediction, equations 15 and 16, the transition step, updates the
hidden state c, corresponding to the cell of a RNN, and equations 17 and 18, the emission step,
computes the output next word probability.

We can now compare this formulation against the definition of a Elman RNN with tied embeddings
and a sigmoid non-linearity. These equations correspond to the first and last cells in Figure 1. The
Elman RNN has the same parameters, except for an additional input matrix U ∈ Rm×m.

e(i−1) = Ew(i−1),

c(i) = σ(Wc(i−1) +Ue(i−1)),

x(i) = softmax(Ec(i))w(i).

(19)

(20)

(21)

3 TRANSFORMING AN HMM TOWARDS AN RNN

Having established the relation between HMMs and RNNs, we propose a number of models that we
hypothesize have intermediate expressiveness between HMMs and RNNs. The architecture transfor-
mations can be seen in the first 3 cells in Figure 1. We will evaluate these model variants empirically,
and also investigate their interpretability.

3.1 CONDITIONING TRANSITION PROBABILITY ON PREVIOUS WORD

By relaxing the independence assumption of the HMM transition probability distribution we can
increase the expressiveness of the HMM “cell” by modelling more complex interactions between
the fed word and the hidden state.

Tensor-based feeding:
Following Tran et al. (2016) we define the transition distribution as

P (h(i)|h(i−1) = l, x(i−1) = w) = softmax(Wl,:e
(i−1) +Bl,:), (22)

where W ∈ Rm×m×m,B ∈ Rm×m.

Addition-based feeding:
As the tensor-based methods increases the number of parameters considerably, we also propose an
additive version:

P (h(i)|h(i−1) = l, x(i−1) = w) = softmax(Wl,: +Ue(i−1) + b), (23)
where W ∈ Rm×m,U ∈ Rm×m, b ∈ Rm.

Gating-based feeding:
Finally we propose a more expressive model where interaction is controlled via a gating mechanism
and the feeding step uses unnormalized embeddings (this does not violate the HMM factorization):

e
′(i−1) = Ew(i−1), (24)

f i = σ(Ue
′(i−1) + b), (25)

P (h(i)|h(i−1) = l, x(i−1) = w) = softmax(Wl,: ◦ f (i)), (26)
2where normalize(y) = y∑

i yi
.

4

Under review as a conference paper at ICLR 2019

where U ∈ Rm×m, b ∈ Rm,W ∈ Rm×m.

3.2 DELAYED SOFTMAXES

Another way to make HMMs more expressive is to relax their independence assumptions through
delaying when vectors are normalized to probability distributions by applying the softmax function.

Delayed transition softmax
The computation of the recurrent vector c(i) = P (h(i)|x(1:i−1)) is replaced with

c(i) = softmax(Ws(i−1)). (27)

Both c and s are still valid probability distributions, but the independence assumption in the distri-
bution over h(i) no longer holds.

Delayed emission softmax
A further transformation is to delay the emission softmax until after multiplication with the hidden
vector. This effectively replaces the HMM’s emission computation with that of the RNN:

x(i) = softmax(Ec(i))w(i). (28)

This formulation breaks the independence assumption that the output distribution is only condi-
tioned on the hidden state assignment. Instead it can be viewed as taking the expectation over the
(unnormalized) embeddings with respect to the state distribution c, then softmaxed (H R in Fig 1).

3.3 SIGMOID NON-LINEARITY

We can go further towards RNNs and replace the softmax in the transition by a sigmoid non-linearity.
The sigmoid is placed in the same position as the delayed softmax. The recurrent state c is no longer
a distribution so the output has to be renormalized so the emission still computes a distribution:

c(i) = sigmoid(Ws(i−1)), (29)

x(i) = e(i)
>
normalize(c(i)). (30)

This model could also be combined with a delayed emission softmax - which we’ll see makes it
closer to an Elman RNN. This model is indicated as F for fusion in Figure 1

4 TRANSFORMING AN RNN TOWARDS AN HMM

Analogously to making the HMM more similar to Elman RNNs, we can make Elman networks more
similar to HMMs. Examples of these transformations can be seen in the last 2 cells in Figure 1.

4.1 HMM EMISSION

First, we use the Elman cell with an HMM emission. This requires the hidden state be a distribution,
thus we consider two options. One is to replace the sigmoid non-linearity with the softmax function:

c(i) = softmax(Wc(i−1) +Ue(i−1)) (31)

x(i) = (softmax(E)w(i))>c(i). (32)

This model is depicted as R H in Figure 1. The second formulation is to keep the sigmoid non-
linearity, but normalize the hidden state output in the emission computation:

c(i) = σ(Wc(i−1) +Ue(i−1)) (33)

x(i) = (softmax(E)w(i))>normalize(c(i)). (34)

5

Under review as a conference paper at ICLR 2019

4.2 MULTIPLICATIVE INTEGRATION

In the HMM cell, the integration of the previous recurrent state and the input embedding is modelled
through an element-wise product instead of adding affine transformations of the two vectors. We
can modify the Elman cell to do a similar multiplicative integration:3

c(i) = σ((Wc(i−1)) ◦ (Ue(i−1)))) (35)

Or, using a single transformation matrix:

c(i) = σ(W (c(i−1) ◦ e(i−1))) (36)

4.3 SOFTMAX NON-LINEARITY

Finally, and most extreme, we experiment with replacing the sigmoid non-linearity with a softmax:

c(i) = softmax(Wc(i−1) +Ue(i−1)) (37)

And a more flexible variant, where the softmax is applied only to compute the emission distribution,
while the sigmoid non-linearity is still applied to recurrent state:

c(i) = (Wσ(c(i−1)) +Ue(i−1)) (38)

x(i) = softmax(Esoftmax(c(i))w(i)). (39)

5 LANGUAGE MODELING EXPERIMENTS

Our formulations investigate a series of small architectural changes to HMMs and Elman cells. In
particular, these changes raise questions about the expressivity and importance of (1) normalization
within the recurrence and (2) independence assumptions during emission. In this section, we analyze
the effects of these changes quantitatively via a standard language modeling benchmark.

5.1 SETUP

We follow the standard PTB language modeling setup Chelba & Jelinek (1998); Mikolov et al.
(2011). We work with one-layer models to enable a direct comparison between RNNs and HMMs
and a budget of 10 million parameters (typically corresponding to hidden state sizes of around 900).
Models are trained with batched backpropagation through time (35 steps). Input and output embed-
dings are tied in all models.

Models are optimized with a grid search over optimizer parameters for two strategies: SGD4 and
AMSProp. AMSProp is based on the optimization setup proposed by Melis et al. (2017).5

5.2 RESULTS

We see from the results in Table 1 (also depicted in Figure 2) that the HMM models perform signif-
icantly worse than the Elman network, as expected. Interestingly, many of the HMM variants that

3This is related to the architecture proposed by Wu et al. (2016), which shows that models with multiplica-
tive integration can obtain competitive performance.

4Choose a learning rate from {5, 10, 20} and decayed by 4.0 after each epoch where validation did not
improve. Batch size was 20, and embedding parameters are initialized from the uniform distribution in the
range (−0.1, 0.1). These mostly follow the settings of https://github.com/pytorch/examples/
tree/master/word_language_model.

5 We use AMSGrad Reddi et al. (2018) (instead of Adam Kingma & Ba (2014)) with β1 = 0, making it
more similar to RMSProp. We pick an initial learning rate from {0.001, 0.002}, and a l2 weight decay rate
from {0, 1e − 4, 1e − 5, 1e − 6, 1e − 7}. Batch size is 32, embedding parameters are initialized from the
uniform distribution in the range (−0, 8, 0.8).

6

 https://github.com/pytorch/examples/tree/master/word_language_model
 https://github.com/pytorch/examples/tree/master/word_language_model

Under review as a conference paper at ICLR 2019

Model dev ppl Model dev ppl

HMM Elman
– 284.59 – softmax, HMM emission 313.84
– Tensor feeding 288.15 – HMM emission 312.63
– Addition feeding 288.62 – softmax non-linearity 207.95
– Gated feeding 243.51 – normalize before emit 225.36
– Delayed transition softmax 284.59 – multiplicative (single matrix) 107.45
– Delayed emission softmax 287.00 – multiplicative 100.71
– Delayed transition and emission softmax 293.72 – 87.27
– Sigmoid non-linearity 240.91
– Sigmoid non-linearity, delayed emission softmax 142.31 LSTM 80.61

Table 1: Language Modeling Perplexity for our baseline and transformed models.

HMM
+ …

RNN
…

1 1 284.59 80.61

3 2 288.62 87.27

4 3 243.51 100.71

5 4 284.59 225.36

6 5 287 207.95

7 6 293.72 297.61

8 7 240.91 312.63

9 8 142.31 313.84

Pe
rp

le
xi

ty

50

125

200

275

350

HMM
RNN

HMM + Additio
n  

 F
ee

ding

+ G
ati

ng

+ Dela
ye

d 

 t
ran

sit
ion

+ Dela
ye

d 

 e
miss

ion

+ Dela
ye

d 

 t
ran

s &
 em

it

+ si
gmoid

+ si
gmoid  

 & RNN Emit

LSTM
Elman

+ Multiplicative

+ normalize  

 before emit

+ softmax 

 non-lin

+ delayed 

 softmax

+ HMM Emit

+ softmax 

 non-line &  

 HMM Emit

Pe
rp

le
xi

ty

50

125

200

275

350

HMM
RNN

Table 2

Perplexity PTB UPOS

284.59 52.36 68.23

288.15 45.16 61.66

243.51 44.62 59.64

142.31 42.09 52.41

240.91 31.82 44.13

207.95 36.68 48.54

87.27 44.97 54.59

80.61 45.75 55.08

25

40

55

70

50 125 200 275 350

PTB UPOSTable 2-1

Perplexity PTB UPOS

284.59 52.36 68.23

288.15 45.16 61.66

243.51 44.62 59.64

142.31 42.09 52.41

240.91 31.82 44.13

313.84 30.86 45.85

207.95 36.68 48.54

87.27 44.97 54.59

80.61 45.75 55.08

25

40

55

70

50 125 200 275 350

PTB UPOS

�1

Figure 2: This plot shows how perplexities change under our transformations, and which lead the
models to converge and pass each other.

in principle have more expressivity or weaker independence assumptions do not perform better than
the vanilla HMM. This includes delaying the transition or emission softmax, and most of the feed-
ing models. The exception is the gated feeding model, which does substantially better, showing that
gating is an effective way of incorporating more context into the transition matrix. Using a sigmoid
non-linearity before the output of the HMM cell (instead of a softmax) does improve performance
(by 44 ppl), and combining that with delaying the emission softmax gives a substantial improvement
(almost another 100 ppl), making it much closer to some of the RNN variants.

We also evaluate variants of Elman RNNs: Just replacing the sigmoid non-linearity with the softmax
function leads to a substantial drop in performance (120 ppl), although it still performs better than
the HMM variants where the recurrent state is a distribution. Another way to investigate the effect of
the softmax is to normalize the hidden state output just before applying the emission function, while
keeping the sigmoid non-linearity: This performs somewhat worse than the softmax non-linearity,
which indicates that it is significant whether the input to the emission function is normalized or soft-
maxed before multiplying with the (emission) embedding matrix. As a comparison for how much
the softmax non-linearity acts as a bottleneck, a neural bigram model outperforms these approaches,
obtaining 177 validation perplexity on this same setup.

Replacing the RNN emission function with that of an HMM leads to even worse performance than
the HMM: Using a softmax non-linearity or a sigmoid followed by normalization does not make a
significant difference. Using multiplicative integration leads to only a small drop in performance
compared to a vanilla Elman RNN, and doing so with a single transformation matrix (making it
comparable to what an RNN is doing) leads to only a small further drop. In contrast, preliminary ex-
periments showed that the second transformation matrix is crucial in the performance of the vanilla
Elman network.

In our experimental setup an LSTM performs only slightly better than the Elman network (80 vs 87
perplexity). While more extensive hyperparameter tuning Melis et al. (2017) or more sophisticated
optimization and regularization techniques Merity et al. (2017) would likely improve performance,
that is not the goal of this evaluation.

7

Under review as a conference paper at ICLR 2019

Figure 3: Tagging accuracies (right) are
plotted against perplexities from Table 1.
We see a somewhat quadratic relationship.

Model PTB UPOS

HMM
– 52.36 68.23
– Tensor feeding 45.16 61.66
– Gated feeding 44.62 59.64
– Sigmoid non-linearity 31.82 44.13
– Sigmoid non-linearity with

delayed emission softmax 42.09 52.41

Elman
– softmax, HMM emission 30.86 45.85
– softmax non-linearity 36.68 48.54
– 44.97 54.59

LSTM 45.75 55.08

Table 2: Tagging accuracies for several representative
models. Accuracy is calculated by converting p(w) to
p(t) according to WSJ tag distributions.

6 SYNTACTIC EVALUATION

A strength of HMM bottlenecks is forcing the model to produce an interpretable hidden representa-
tion. A classic example of this property is part-of-speech tag induction. It is therefore natural to ask
whether changes in the architecture of our models correlate with their ability to discover syntactic
properties. We evaluate this by analyzing the models implicitly predicted tag distribution at each
time step. Specifically, while no model is likely to predict the correct next word, we assume the
HMMs errors will preserve basic tag-tag patterns of the language, and that this may not be true for
RNNs. We test this by computing the accuracy of predicting the tag of the word in the sequence out
of the next word distribution. None of the models were trained to perform this task.

First, we compute a tag distribution p(t|w) for every word in the training portion of the Penn Tree-
bank. Next, we multiply this value by the model’s p(w) = x4i, and sum across the vocabulary. This
provides us the model’s distribution over tags at the given time p(t)i. We compare the most likely
marginal tag against the ground truth to compute a tagging accuracy. This evaluation rewards models
which place their emission probability mass predominantly on words of the correct part-of-speech.
We compute this metric across both the full PTB tagset and the universal tags of Petrov et al. (2012).

The HMM allows for Viterbi decoding which allows us to compute p(t|maxdim(ci)). The more
distributed the models’ representations are, the more the tag distribution given the max dimension
will differ from the complete marginal. For HMMs with distributional hidden states the maximum
dimension provided the best performance. In contrast, Elman models perform best when conditioned
on the full hidden state. Results are shown in Table 2 and plotted against perplexity in Figure 3.6

7 RELATED WORK

Recently, a number of recent papers have identified variants of gated RNNs which are simpler than
LSTMs but perform competitively or satisfy properties that LSTMs lack. Foerster et al. (2017)
proposed RNNs without recurrent non-linearities to improve interpretability. Balduzzi & Ghifary
(2016) proposed gated RNN variants with type constraints. Peng et al. (2018) identified a class of
RNNs called rational recurrences, in which the hidden states can be computed by WFSAs.

Another strand of recent work proposed neural models that learn discrete, interpretable structure:
Yang et al. (2017) introduced a mixture of softmax model where the output distribution is condi-
tioned on discrete latent variable. Shen et al. (2017) proposed a language model that jointly learns
unsupervised syntactic (tree) structure, while Tran et al. (2016) used neural hidden Markov mod-
els for Part-of-Speech induction. Wiseman et al. (2018) and Wang et al. (2017) proposed models
for segmental structure over sequences, while neural transduction models with discrete latent align-
ments have also been proposed Yu et al. (2016).

6For simplicity, our trend-lines ignore the Elman + softmax, HMM Emission as an outlier (bottom right).

8

Under review as a conference paper at ICLR 2019

8 CONCLUSION

In this work, we presented a theoretical and empirical investigation into the model variants over
the spectrum of possible hybridization between HMMs and RNNs. By carefully controlling for
every design choices, we provide new insights into several factors including independence assump-
tions, the placement of softmax, and the use of nonliniarity and how these choices influence the
interplay between expressiveness and interpretability. Comprehensive empirical results demonstrate
that the key elements to better performance of the HMM are the use of a sigmoid instead of soft-
max linearity in the recurrent cell, and the use of an unnormalized output distribution matrix in the
emission computation. Multiplicative integration of the previous hidden state and input embedding,
and intermediate normalizations in the cell computation are less consequential. We also find that
HMM outperforms other RNNs variants in a next POS tag prediction task, which demonstrates the
advantages of models with discrete bottlenecks in increased interpretability.

REFERENCES

David Balduzzi and Muhammad Ghifary. Strongly-typed recurrent neural networks. CoRR,
abs/1602.02218, 2016. URL http://arxiv.org/abs/1602.02218.

Leonard E. Baum and J. A. Eagon. An inequality with applications to statistical estimation for
probabilistic functions of markov processes and to a model for ecology. Bulletin of the American
Mathematical Society, 73(3):360 – 363, 1967.

Ciprian Chelba and Frederick Jelinek. Exploiting syntactic structure for language modeling. In
Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Volume 1, pp. 225–231, Montreal,
Quebec, Canada, August 1998. Association for Computational Linguistics. doi: 10.3115/980845.
980882. URL http://www.aclweb.org/anthology/P98-1035.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Associ-
ation for Computational Linguistics.

A Dempster, N Laird, and D Rubin. Maximum likelihood from incomplete data via the em algo-
rithm. 01 1977.

Jason Eisner. Inside-outside and forward-backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured Prediction for NLP, pp. 1–17, Austin, TX,
November 2016. Association for Computational Linguistics. URL http://aclweb.org/
anthology/W16-5901.

J Elman. Finding structure in time. 14(2):179–211, 06 1990.

Jakob N Foerster, Justin Gilmer, Jascha Sohl-Dickstein, Jan Chorowski, and David Sussillo. In-
put switched affine networks: An rnn architecture designed for interpretability. In International
Conference on Machine Learning, pp. 1136–1145, 2017.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Frederick Jelinek, Lalit R. Bahl, and Robert L Mercer. Design of a linguistic statistical decoder for
the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3):250–256,
May 1975.

Michael I Jordan. Serial order: A parallel distributed processsing approach. Technical report,
University of California, San Diego, 1986.

9

http://arxiv.org/abs/1602.02218
http://www.aclweb.org/anthology/P98-1035
http://aclweb.org/anthology/W16-5901
http://aclweb.org/anthology/W16-5901

Under review as a conference paper at ICLR 2019

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kenton Lee, Omer Levy, and Luke S Zettlemoyer. Recurrent additive networks. arXiv preprint
arXiv:1705.07393, 05 2017.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. CoRR, abs/1708.02182, 2017. URL http://arxiv.org/abs/1708.
02182.

Tomáš Mikolov, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan Černockỳ. Empirical
evaluation and combination of advanced language modeling techniques. In Twelfth Annual Con-
ference of the International Speech Communication Association, 2011.

Hao Peng, Roy Schwartz, Sam Thomson, and Noah A. Smith. Rational recurrences. In Proc. of
EMNLP, 2018.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. In Proceedings
of the Eighth International Conference on Language Resources and Evaluation (LREC-2012), pp.
2089–2096, Istanbul, Turkey, 05 2012.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. 2018.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and Aaron C. Courville. Neural language modeling
by jointly learning syntax and lexicon. CoRR, abs/1711.02013, 2017. URL http://arxiv.
org/abs/1711.02013.

Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. Unsupervised neural
hidden markov models. In Proceedings of the Workshop on Structured Prediction for NLP, pp.
63–71, Austin, TX, November 2016. Association for Computational Linguistics. URL http:
//aclweb.org/anthology/W16-5907.

Chong Wang, Yining Wang, Po-Sen Huang, Abdelrahman Mohamed, Dengyong Zhou, and Li Deng.
Sequence modeling via segmentations. arXiv preprint arXiv:1702.07463, 2017.

T Wessels and Christian W Omlin. Refining hidden markov models with recurrent neural networks.
In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks,
volume 2, pp. 271–276. IEEE, 2000.

Sam Wiseman, Stuart M Schieber, and Alexander M Rush. Learning neural templates for text
generation. arXiv preprint arXiv:1808.10122, 08 2018.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R Salakhutdinov. On
multiplicative integration with recurrent neural networks. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29,
pp. 2856–2864. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6215-on-multiplicative-integration-with-recurrent-neural-networks.
pdf.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the softmax
bottleneck: A high-rank rnn language model. arXiv preprint arXiv:1711.03953, 2017.

Lei Yu, Jan Buys, and Phil Blunsom. Online segment to segment neural transduction. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1307–1316,
Austin, Texas, November 2016. Association for Computational Linguistics. URL https://
aclweb.org/anthology/D16-1138.

10

http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1711.02013
http://arxiv.org/abs/1711.02013
http://aclweb.org/anthology/W16-5907
http://aclweb.org/anthology/W16-5907
http://papers.nips.cc/paper/6215-on-multiplicative-integration-with-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6215-on-multiplicative-integration-with-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6215-on-multiplicative-integration-with-recurrent-neural-networks.pdf
https://aclweb.org/anthology/D16-1138
https://aclweb.org/anthology/D16-1138

	Introduction
	Formulating HMMs as Recurrent Neural Networks
	Model definition
	Inference

	Transforming an HMM towards an RNN
	Conditioning transition probability on previous word
	Delayed softmaxes
	Sigmoid non-linearity

	Transforming an RNN towards an HMM
	HMM emission
	Multiplicative integration
	Softmax non-linearity

	Language Modeling Experiments
	Setup
	Results

	Syntactic Evaluation
	Related Work
	Conclusion

