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Abstract

We outline new approaches to incorporate ideas from deep learning into wave-based
least-squares imaging. The aim, and main contribution of this work, is the combina-
tion of handcrafted constraints with deep convolutional neural networks, as a way
to harness their remarkable ease of generating natural images. The mathematical
basis underlying our method is the expectation-maximization framework, where
data are divided in batches and coupled to additional “latent” unknowns. These
unknowns are pairs of elements from the original unknown space (but now coupled
to a specific data batch) and network inputs. In this setting, the neural network
controls the similarity between these additional parameters, acting as a “center”
variable. The resulting problem amounts to a maximum-likelihood estimation of
the network parameters when the augmented data model is marginalized over the
latent variables.

1 The seismic imaging problem

In least-squares imaging, we are interested in inverting the following inconsistent ill-conditioned
linear inverse problem:

minimize
x

1
2

N∑
i=1
‖yi −Aix‖2

2. (1)

In this expression, the unknown vector x represents the image, yi, i = 1, . . . , N the observed data
from N source experiments and Ai the discretized linearized forward operator for the ith source
experiment. Despite being overdetermined, the above least-squares imaging problem is challenging.
The linear systems Ai are large, expensive to evaluate, and inconsistent because of noise and/or
linearization errors.

As in many inverse problems, solutions of problem 1 benefit from adding prior information in the
form of penalties or preferentially in the form of constraints, yielding

minimize
x

1
2

N∑
i=1
‖yi −Aix‖2

2 subject to x ∈ C (2)

with C representing a single or multiple (convex) constraint set(s). This approach offers the flexibility
to include multiple handcrafted constraints. Several key issues remain, namely; (i) we can not
afford to work with all N experiments when computing gradients for the above data-misfit objective;
(ii) constrained optimization problems converge slowly; (iii) handcrafted priors may not capture
complexities of natural images; (iv) it is non-trivial to obtain uncertainty quantification information.
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2 Stochastic linearized Bregman

To meet the computational challenges that come with solving problem 2 for non-differentiable
structure promoting constraints, such as the `1-norm, we solve problem 2 with Bregman iterations for
a batch size of one. The kth iteration reads

x̃ ← x̃− tkA>k (Akx− yk)
x ← PC(x̃) (3)

with A>k the adjoint of Ak , where Ak ∈ {Ai}N
i=1, and

PC(x̃) = argmin
x

1
2‖x− x̃‖

2
2 subject to x ∈ C (4)

being the projection onto the (convex) set and tk = ‖Akx− yk‖2
2/‖A>k (Akx− yk)‖2

2 the dynamic
steplength. Contrary to the Iterative Shrinkage Thresholding Algorithm (ISTA), we iterate on the
dual variable x̃. Moreover, to handle more general situations and to ensure we are for every iteration
feasible (= in the constraint set) we replace sparsity-promoting thresholding with projections that
ensure that each model iterate remains in the constraint set. As reported in Witte et al. [1], iterations 3
are known to converge fast for pairs {yk, Ak} that are randomly drawn, with replacement, from
iteration to iteration. As such, Equation 3 can be interpreted as stochastic gradient descent on the
dual variable.

3 Deep prior with constraints

Handcrafted priors, encoded in the constraint set C, in combination with stochastic optimization,
where we randomly draw a different source experiment for each iteration of Equation 3, allow us to
create high-fidelity images by only working with random subsets of the data. While encouraging, this
approach relies on handcrafted priors encoded in the constraint set C. Motivated by recent successes
in machine learning and deep convolutional networks (CNNs) in particular, we follow Van Veen et al.
[2], Dittmer et al. [3] and Wu and McMechan [4] and propose to incorporate CNNs as deep priors on
the model. Compared to handcrafted priors, deep priors defined by CNNs are less biased since they
only require the model to be in the range of the CNN, which includes natural images and excludes
images with unnatural noise. In its most basic form, this involves solving problems of the following
type [2]:

minimize
w

1
2‖y −Ag(z, w)‖2

2. (5)

In this expression, g(z, w) is a deep CNN parameterized by unknown weights w and z ∼ N(0, 1)
is a fixed random vector in the latent space. In this formulation, we replaced the unknown model
by a neural net. This makes this formulation suitable for situations where we do not have access to
data-image training pairs but where we are looking for natural images that are in the range of the
CNN. In recent work by Van Veen et al. [2], it is shown that solving problem 5 can lead to good
estimates for x via the CNN g(z, ŵ) where ŵ is the minimizer of problem 5 highly suitable for
situations where we only have access to data. In this approach, the parameterization of the network
by w for a fixed z plays the role of a non-linear redundant transform.

While using neural nets as strong constraints may offer certain advantages, there are no guarantees that
the model iterates remain physically feasible, which is a prerequisite if we want to solve non-linear
imaging problems that include physical parameters [5, 6]. Unless we pre-train the network, early
iterations while solving problem 5 will be unfeasible. Moreover, as mentioned by Van Veen et al.
[2], results from solving inverse problems with deep priors may benefit from additional types of
regularization. We accomplish this by combining hard handcrafted constraints with a weak constraint
for the deep prior resulting in a reformulation of the problem 5 into

minimize
x∈C, w

1
2‖y −Ax‖

2
2 + λ2

2 ‖x− g(z, w)‖2
2. (6)

In this expression, the deep prior appears as a penalty term weighted by the trade-off parameter λ > 0.
In this weak formulation, x is a slack variable, which by virtue of the hard constraint will be feasible
throughout the iterations.

The above formulation offers flexibility to impose constraints on the model that can be relaxed during
the iterations as the network is gradually “trained”. We can do this by either relaxing the constraint
set (eg. by increasing the size of the TV-norm ball) or by increasing the trade-off parameter λ.
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4 Learned imaging via expectation maximization

So far, we used the neural network to regularize inverse problems deterministically by selecting a
single latent variable z and optimizing over the network weights initialized by white noise. While
this approach may remove bias related to handcrafted priors, it does not fully exploit documented
capabilities of generative neural nets, which are capable of generating realizations from a learned
distribution. Herein lies both an opportunity and a challenge when inverse problems are concerned
where the objects of interest are generally not known a priori. Basically, this leaves us with two options.
Either we assume to have access to an oracle, which in reality means that we have a training set of
images obtained from some (expensive) often unknown imaging procedure, or we make necessary
assumptions on the statistics of real images. In both cases, the learned priors and inferred posteriors
will be biased by our (limited) understanding of the inversion process, including its regularization,
or by our (limited) understanding of statistical properties of the unknown e.g. geostatistics [7]. The
latter may lead to perhaps unreasonable simplifications of the geology while the former may suffer
from remnant imprint of the nullspace of the forward operator and/or poor choices for the handcrafted
and deep priors.

4.1 Training phase

Contrary to approaches that have appeared in the literature, where the authors assume to have access
to a geological oracle [7] to train a GAN as a prior, we opt to learn the posterior through inversion
deriving from the above combination of hard handcrafted constraints and weak deep priors with the
purpose to train a network to generate realizations from the posterior. Our approach is motivated by
Han et al. [8] who use the Expectation Maximization (EM) technique to train a generative model on
sample images. We propose to do the same but now for seismic data collected from one and the same
Earth model.

To arrive at this formulation, we consider each of the N source experiments with data yk as separate
datasets from which images xk can in principle be inverted. In other words, contrary to problem 1,
we make no assumptions that the yk come from one and the same x but rather we consider n� N
different batches each with their own xk. Using the these yk, we solve an unsupervised training
problem during which

• n minibatches of observed data, latent, and slack variables are paired into tuples
{yi, xi, zi}n

i=1 with the latent variables zi’s initialized as zero-centered white Gaussian
noise, zi ∼ N(0, I). The slack variables xi’s are computed by the numerically expensive
Bregman iterations, which during each iteration work on the randomized source experiment
of each minibatch.

• latent variables zi’s are sampled from p(zi|xi, w) by running l iterations of Stochastic
Gradient Langevin Dynamics (SGLD, Welling and Teh [9]) (Equation 7), where w is
the current estimate of network weights, and xi’s are computed with Bregman iterations
(Equation 8). These iterations for the latent variables are warm-started while keeping the
network weights w fixed. This corresponds to an unsupervised inference step where training
pairs {xi, zi}n

i=1 are created. Uncertainly in the zi’s is accounted for by SGLD iterations
[7, 8].

• the network weights are updated using {xi, zi}n
i=1 with a supervised learning procedure.

During this learning step, the network weights are updated by sample averaging the gradients
w.r.t. w for all zi’s. As stated by Han et al. [8], we actually compute a Monte Carlo average
from these samples.

By following this semi-supervised learning procedure, we expose the generative model to uncertainties
in the latent variables by drawing samples from the posterior via Langevin dynamics that involve the
following iterations for the pairs {xi, zi}n

i=1

zi ← zi −
ε

2∇z

(
λ2‖xi − g(zi, w))‖2

2 + ‖zi‖2
2

)
+N (0, εI) (7)

with ε the steplength. Compared to ordinary gradient descent, 7 contains an additional noise term
that under certain conditions allows us to sample from the posterior distribution, p(zi|xi, w). The
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training samples xi came from the following Bregman iterations in the outer loop

x̃i ← x̃i − tk
(
A>k (Akxi − yk) + λ2(xi − g(zi, w))

)
xi ← PC(x̃i).

(8)

After sampling the latent variables, we update the network weights via for the zi’s fixed

w ← w − η∇w

n∑
i=1
‖xi − g(zi, w)‖2

2 (9)

with η steplength for network weights.

Conceptually, the above training procedure corresponds to carrying out n different inversions for each
data set yi separately. We train the weights of the network as we converge to the different solutions
of the Bregman iterations for each dataset. As during Elastic-Averaging Stochastic Gradient Descent
[10, Chaudhari et al. [11]], xi’s have room to deviate from each other when λ is not too large. Our
approach differs in the sense that we replaced the center variable by a generative network.

5 Example

We numerically conduct a survey where the source experiments contain severe incoherent noise and
coherent linearization errors: e = (Fk(m + δm) − Fk(m) − ∇Fk(m)δm), where Ak = ∇Fk is
the Jacobian and Fk(m) is the nonlinear forward operator with m the known smooth background
model and δm the unknown perturbation (image). The signal-to-noise ratio of the observed data
is −11.37 dB. The results of this experiment are included in Figure 1 from which we make the
following observations. First, as expected the models generated from g(z, ŵ) are smoother than the
primal Bregman variable. Second, there are clearly variations amongst the different g(z, ŵ)’s and
these variations average out in the mean, which has fewer imaging artifacts.

Because we were able to train the g(z, w) as a “byproduct” of the inversion, we are able to compute
statistical information from the trained generative model that may give us information about the
“uncertainty”. In Figure 2, we included a plot of the pointwise standard deviation , computed with
3200 random realizations of g(z, w), z ∼ pz(z), and two examples of sample “prior” (before training)
and “posterior” distribution. As expected, the pointwise standard deviations shows a reasonable
sharpening of the probabilities before and after training through inversion. We also argue that the
areas of high pointwise standard deviation coincide with regions that are difficult to image because of
the linearization error and noise.

6 Discussion and Conclusions

In this work, we tested an inverse problem framework which includes hard constraints and deep priors.
Hard constraints are necessary in many problems, such as seismic imaging, where the unknowns
must belong to a feasible set in order to ensure the numerical stability of the forward problem. Deep
priors, enforced through adherence to the range of a neural network, provide an additional, implicit
type of regularization, as demonstrated by recent work [2, Dittmer et al. [3]], and corroborated by our
numerical results. The resulting algorithm can be mathematically interpreted in light of expectation
maximization methods. Furthermore, connections to elastic averaging SGD [10] highlight potential
computational benefits of a parallel (synchronous or asynchronous) implementation.

On a speculative note, we argue that the presented method, which combines stochastic optimization
on the dual variable with on-the-fly estimation of the generative model’s weights using Langevin
dynamics, reaps information on the “posterior” distribution leveraging multiplicity in the data and
the fact that the data is acquired over one and the same Earth model. Our preliminary results seem
consistent with a behavior to be expected from a “posterior” distribution.
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(c) (d)

(e) (f)

Figure 1: Imaging according to the proposed method. a) a Bregman primal variable x∗i obtained after
350 Bregman iterations. b) the mean of g(z, ŵ) obtained by generating 3200 random realizations
of z ∼ pz(z) and averaging the corresponding g(z, ŵ)’s. c,d) two examples of generated images
from g(z, ŵ) for different z’s. e,f) the differences between images in the middle row with another
realization of the network.

(a)

(b) (c)

Figure 2: Statistics of imaging according to the proposed method. a) the pointwise standard deviation
among samples generated by evaluating g(z, ŵ) over 3200 random realizations of g(z, w), z ∼ pz(z).
b,c) sample “prior” (before training) and “posterior” distribution functions for two points in the
model.
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