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Abstract
Structural planning is important for producing
long sentences, which is a missing part in cur-
rent language generation models. In this work,
we add a planning phase in neural machine
translation to control the coarse structure of
output sentences. The model first generates
some planner codes, then predicts real output
words conditioned on them. The codes are
learned to capture the coarse structure of the
target sentence. In order to learn the codes,
we design an end-to-end neural network with
a discretization bottleneck, which predicts the
simplified part-of-speech tags of target sen-
tences. Experiments show that the translation
performance are generally improved by plan-
ning ahead. We also find that translations with
different structures can be obtained by manip-
ulating the planner codes.

1 Introduction

When human speaks, it is difficult to ensure the
grammatical or logical correctness without any
form of planning. Linguists have found evidence
through speech errors or particular behaviors that
indicate speakers are planning ahead (Redford,
2015). Such planning can happen in discourse or
sentence level, and sometimes we may notice it
through inner speech.

In contrast to human, a neural machine trans-
lation (NMT) model does not have the planning
phase when it is asked to generate a sentence. Al-
though we can argue that the planning is done in
the hidden layers, however, such structural infor-
mation remains uncertain in the continuous vec-
tors until the concrete words are sampled. In tasks
such as machine translation, a source sentence can
have multiple valid translations with different syn-
tactic structures. As a consequence, in each step of
generation, the model is unaware of the “big pic-
ture” of the sentence to produce, resulting in un-
certainty of word prediction.

<c3> <c1> <eoc> he is hired by our company <eos>

nuestra compañía lo contrató

NMT Model

planners output words

Figure 1: Illustration of the proposed sentence gen-
eration framework. The model predicts the plan-
ner codes before generating real output words.

In this research, we try to let the model plan
the coarse structure of the output sentence before
decoding real words. As illustrated in Fig. 1, in
our proposed framework, we insert some planner
codes into the beginning of the output sentences.
The sentence structure of the translation is gov-
erned by the codes.

An NMT model takes an input sentence X and
produce a translation Y . Let SY denotes the syn-
tactic structure of the translation. Indeed, the input
sentence already provides rich information about
the target-side structure SY .

For example, given the Spanish sentence in
Fig. 1, we can easily know that the translation
will have a noun, a pronoun and a verb. Such
obvious structural information does not have un-
certainty, and thus does not require planning. In
this example, the uncertain part is the order of the
noun and the pronoun. Thus, we want to learn a
set of planner codes CY to disambiguate such un-
certain information about the sentence structure.
By conditioning on the codes, we can potentially
increase the effectiveness of beam search as the
search space is properly regulated.

In this work, we use simplified POS tags to
annotate the structure SY . We learn the planner
codes by putting a discretization bottleneck in an



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Confidential Review Copy. DO NOT DISTRIBUTE.

end-to-end network that reconstructs SY with both
X and CY . The codes are merged with the tar-
get sentences in the training data. Thus, no mod-
ification to the NMT model is required. Experi-
ments show the translation performance is gener-
ally improved with structural planning. More in-
terestingly, we can control the structure of output
sentences by manipulating the planner codes.

2 Learning Structural Planners

In this section, we first extract the structural anno-
tation SY by simplifying the POS tags. Then we
explain the code learning model for obtaining the
planner codes.

2.1 Structural Annotation with POS Tags

To reduce uncertainty in the decoding phase, we
want a structural annotation that describes the “big
picture” of the sentence. For instance, the annota-
tion can tell whether the sentence to generate is in
a “NP VP” order. The uncertainty of local struc-
tures can be efficiently solved by beam search or
the NMT model itself.

In this work, we extract such coarse structural
annotations SY through a simple two-step process
that simplifies the POS tags of the target sentence:

1. Remove all tags other than “N”, “V”, “PRP”,
“,” and “.”. Note that all tags begin with “N”
(e.g. NNS) are mapped to “N”, and tags begin
with “V” (e.g. VBD) are mapped to “V”.

2. Remove duplicated consecutive tags.

The following list gives an example of the process:

Input: He found a fox behind the wall.
POS Tags: PRP VBD DT NN IN DT NN .

Step 1: PRP V N N .
Step 2: PRP V N .

Note that many other annotations can also be con-
sidered to represent the syntactic structure, which
is left for future work to explore.

2.2 Code Learning

Next, we learn the planner codes CY to remove
the uncertainty of the sentence structure SY when
producing a translation. For simplicity, we use the
notion S and C to replace SY and CY in this sec-
tion.

S1S2S3S4

C̃

h̄1

C

h0

S1 S2 S3 S4

S1 S2 S3<s>

X1X2X3

s1

+

Figure 2: Architecture of the code learning model.
The discretization bottleneck is shown as the
dashed lines.

We first compute the discrete codes C1, .., CN

based on simplified POS tags S1, ..., ST :

h̄t = LSTM(E(St), h̄t+1; θs) , (1)

[C̃1, ..., C̃N ] = fenc(h̄1; θenc) , (2)

Ci = GumbelSoftmax(C̃i) , (3)

where the tag sequence S1, ..., ST is firstly en-
coded using a backward LSTM (Hochreiter and
Schmidhuber, 1997). E(·) denotes the embed-
ding function. Then, we compute a set of vec-
tors C̃1, ..., C̃N , which are latterly discretized in
to approximated one-hot vectors C1, ..., CN using
Gumbel-Softmax trick (Jang et al., 2016; Maddi-
son et al., 2016).

We then combine the information from X and
C to initialize a decoder LSTM that sequentially
predicts S1, ..., ST :

st = LSTM(E(Xt), st+1; θx) , (4)

h0 = fdec([C1, ..., CN ]; θdec) + s1 , (5)

ht = LSTM(E(St−1), ht−1; θh) , (6)

where [C1, ..., CN ] denotes a concatenation of N
one-hot vectors. Note that only ht is computed
with a forward LSTM. Both fenc and fdec are
affine transformations. Finally, we predict the
probability of emitting each tag St with

P (St|S1:t−1, X,C) = softmax(fout(ht; θout)) .
(7)

The architecture of the code learning model is
depicted in Fig. 2, which can be seen as a sequence
auto-encoder with an extra context input X to the
decoder. The parameters are optimized with cross-
entropy loss.

Once the code learning model is trained, we can
obtain the planner codes C for all target sentences
in the training data using the encoder part.
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3 NMT with Structural Planning

The training data of machine translation dataset
is composed of (X,Y ) sentence pairs. With the
planner codes CY we obtained, our training data
now becomes a list of (X,CY ;Y ) pairs. As shown
in Fig. 1, we connect the planner codes and target
sentence with a “〈eoc〉” token.

With the modified dataset, we train a regular
NMT model. We use beam search when decoding
sentences, thus the planner codes are searched be-
fore emitting real words. The codes are removed
from the translation results during evaluation.

4 Related Work

Recently, some methods are proposed to im-
prove the syntactic correctness of the translations.
Stahlberg et al. (2016) restricts the search space of
the NMT decoder using the lattice produced by a
Statistical Machine Translation system. Eriguchi
et al. (2017) takes a multi-task approach, letting
the NMT model to parse a dependency tree and
combine the parsing loss with the original loss.

Several works further incorporate the target-
side syntactic structures explicitly. Nadejde et al.
(2017) interleaves CCG supertags with normal
output words in the target side. Instead of pre-
dicting words, Aharoni and Goldberg (2017) trains
a NMT model to generate linearized constituent
parse trees. Wu et al. (2017) proposed a model to
generate words and parse actions simultaneously.
The word prediction and action prediction are con-
ditioned on each other. However, none of the these
methods plan the structure before translation.

Similar to our code learning approach, some
works also learn the discrete codes for differ-
ent purposes. Shu and Nakayama (2018) com-
presses the word embeddings by learning the con-
cept codes to represent each word. Kaiser et al.
(2018) breaks down the dependency among words
with shorter code sequences. The decoding can be
faster by predicting the shorter artificial codes.

5 Experiments

We evaluate our models on IWSLT 2014 German-
to-English task (Cettolo et al., 2014) and ASPEC
Japanese-to-English task (Nakazawa et al., 2016),
containing 178K and 3M bilingual pairs respec-
tively. We use Kytea (Neubig et al., 2011) to to-
kenize Japanese texts and moses toolkit (Koehn
et al., 2007) for other languages. Using byte-
pair encoding (Sennrich et al., 2016), we force the

Code Setting Capacity SY acc. CY acc.
N=1, K=4 2 bits 27% 63%
N=2, K=2 2 bits 23% 67%
N=2, K=4 4 bits 35% 41%
N=4, K=2 4 bits 22% 44%
N=4, K=4 8 bits 44% 27%

Table 1: A comparison of different code settings
on IWSLT 2014 dataset. The accuracy of recon-
structing SY in the code model, and the accuracy
of predict CY in the NMT model are reported.

vocabulary size of each language to be 20K for
IWSLT dataset and 40K for ASPEC dataset.

For IWSLT 2014 dataset, we concatenate all
five TED/TEDx development and test corpus to
form a test set containing 6750 pairs. For evalu-
ation, we report tokenized BLEU with moses tool.

5.1 Evaluation of Planner Codes
In the code learning model, all hidden layers have
256 hidden units. The model is trained using
Nesterov’s accelerated gradient (NAG) (Nesterov,
1983) for maximum 50 epochs with a learning rate
of 0.25. We test different settings of code length
N and the number of code types K. The informa-
tion capacity of the codes will be N logK bits. In
Table 1, we evaluate the learned codes for differ-
ent settings. Sy accuracy evaluates the accuracy
of correctly reconstructing Sy with the source sen-
tence X and the code Cy. Cy accuracy reflects the
chance of guessing the correct code Cy given X .

We can see a clear trade-off between SY accu-
racy and CY accuracy. When the code has more
capacity, it can recover SY more accurately, how-
ever, resulting in a lower probability for the NMT
model to guess the correct code. We found the set-
ting of N = 2,K = 4 has a balanced trade-off.

5.2 Evaluation of NMT Models
To make a strong baseline, we use 2 layers of bi-
directional LSTM encoders with 2 layers of LSTM
decoders in the NMT model. The hidden layers
have 256 units for IWSLT De-En task and 1000
units for ASPEC Ja-En task. We apply Key-Value
Attention (Miller et al., 2016) in the first decoder
layer. Residual connection (He et al., 2016) is used
to combine the hidden states in two decoder lay-
ers. Dropout is applied everywhere outside of the
recurrent function with a drop rate of 0.2 . To train
the NMT models, we also use the NAG optimizer
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Dataset Model BLEU(%)
BS=1 BS=3 BS=5

De-En baseline 27.90 29.26 29.52
plan (N=2, K=4) 28.35 29.59 29.78

Ja-En baseline 23.92 25.08 25.26
plan (N=2, K=4) 22.79 25.53 25.69

Table 2: A comparison of translation performance
with different beam sizes (BS).

with a learning rate of 0.25, which is annealed by
a factor of 10 if no improvement of loss value is
observed in 20K iterations. Best parameters are
chosen on a validation set.

As shown in Table 2, by conditioning the
word prediction on the generated planner codes,
the translation performance is generally improved
over a strong baseline. The improvement may be
the result of properly regulating the search space.

However, when we apply greedy search on Ja-
En dataset, the BLEU score is much lower com-
pared to the baseline. We also tried to beam search
the planner codes then switch to greedy search,
but the results are not significantly changed. We
hypothesize that it is important to simultaneously
explore multiple candidates with drastically differ-
ent structures on Ja-En task. By planning ahead,
more diverse candidates can be explored, which
improves beam search but not greedy search. If
so, the results are in line with a recent study (Li
et al., 2016) that shows the performance of beam
search depends on the diversity of candidates.

5.3 Qualitative Analysis

Instead of letting the beam search to decide the
planner codes, we can also choose the codes man-
ually. Table 3 gives an example of the candidate
translations produced by the model when condi-
tioning on different planner codes.

input AP no katei ni tsuite nobeta. (Japanese)

code 1 <c4> <c1> <eoc>
the process of AP is described .

code 2 <c1> <c1> <eoc>
this paper describes the process
of AP .

code 3 <c3> <c1> <eoc>
here was described on process of
AP .

code 4 <c2> <c1> <eoc>
they described the process of AP
.

Table 3: Example of translation results conditioned
on different planner codes in Ja-En task

<c1> <c1> <c1> <c2> <c1> <c3> <c1> <c4>

<c2> <c1> <c2> <c2> <c2> <c3> <c2> <c4>

<c3> <c1> <c3> <c2> <c3> <c3> <c3> <c4>

<c4> <c1> <c4> <c2> <c4> <c3> <c4> <c4> 4%

8%

12%

16%

Figure 3: Distribution of assigned planner codes
for English sentences in ASPEC Ja-En dataset

As shown in Table 3, we can obtain translations
with drastically different structures by manipulat-
ing the codes. The results show that the proposed
method can be useful for sampling paraphrased
translations with high diversity.

The distribution of the codes learned for 3M En-
glish sentences in ASPEC Ja-En dataset is shown
in Fig. 3. We found the code “<c1> <c1>” is
assigned to 20% of the sentences, whereas “<c4>
<c3>” is not assigned to any sentence. The
skewed distribution may indicate that the capacity
of the codes is not fully exploited, and thus leaves
room for further improvement.

6 Discussion

Instead of learning discrete codes, we can also di-
rectly predict the structural annotations (e.g. POS
tags), then translate based on the predicted struc-
ture. However, as the simplified POS tags are also
long sequences, the error of predicting the tags
will be propagated to word generation. In our ex-
periments, doing so degrades the performance by
around 8 BLEU points on IWSLT dataset.

7 Conclusion

In this paper, we add a planning phase in neural
machine translation, which generates some plan-
ner codes to control the structure of the output sen-
tence. To learn the codes, we design an end-to-end
neural network with a discretization bottleneck to
predict the simplified POS tags of target sentences.
Experiments show that the proposed method gen-
erally improves the translation performance. We
also confirm the effect of the planner codes, by
being able to sample translations with drastically
different structures using different planner codes.

The planning phase helps the decoding algo-
rithm by removing the uncertainty of the sentence
structure. The framework described in this paper
can be extended to plan other latent factors, such
as the sentiment or topic of the sentence.
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