
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Confidential Review Copy. DO NOT DISTRIBUTE.

Discrete Structural Planning for Neural Machine Translation

Anonymous EMNLP submission

Abstract
Structural planning is important for producing
long sentences, which is a missing part in cur-
rent language generation models. In this work,
we add a planning phase in neural machine
translation to control the coarse structure of
output sentences. The model first generates
some planner codes, then predicts real output
words conditioned on them. The codes are
learned to capture the coarse structure of the
target sentence. In order to learn the codes,
we design an end-to-end neural network with
a discretization bottleneck, which predicts the
simplified part-of-speech tags of target sen-
tences. Experiments show that the translation
performance are generally improved by plan-
ning ahead. We also find that translations with
different structures can be obtained by manip-
ulating the planner codes.

1 Introduction

When human speaks, it is difficult to ensure the
grammatical or logical correctness without any
form of planning. Linguists have found evidence
through speech errors or particular behaviors that
indicate speakers are planning ahead (Redford,
2015). Such planning can happen in discourse or
sentence level, and sometimes we may notice it
through inner speech.

In contrast to human, a neural machine trans-
lation (NMT) model does not have the planning
phase when it is asked to generate a sentence. Al-
though we can argue that the planning is done in
the hidden layers, however, such structural infor-
mation remains uncertain in the continuous vec-
tors until the concrete words are sampled. In tasks
such as machine translation, a source sentence can
have multiple valid translations with different syn-
tactic structures. As a consequence, in each step of
generation, the model is unaware of the “big pic-
ture” of the sentence to produce, resulting in un-
certainty of word prediction.

<c3> <c1> <eoc> he is hired by our company <eos>

nuestra compañía lo contrató

NMT Model

planners output words

Figure 1: Illustration of the proposed sentence gen-
eration framework. The model predicts the plan-
ner codes before generating real output words.

In this research, we try to let the model plan
the coarse structure of the output sentence before
decoding real words. As illustrated in Fig. 1, in
our proposed framework, we insert some planner
codes into the beginning of the output sentences.
The sentence structure of the translation is gov-
erned by the codes.

An NMT model takes an input sentence X and
produce a translation Y . Let SY denotes the syn-
tactic structure of the translation. Indeed, the input
sentence already provides rich information about
the target-side structure SY .

For example, given the Spanish sentence in
Fig. 1, we can easily know that the translation
will have a noun, a pronoun and a verb. Such
obvious structural information does not have un-
certainty, and thus does not require planning. In
this example, the uncertain part is the order of the
noun and the pronoun. Thus, we want to learn a
set of planner codes CY to disambiguate such un-
certain information about the sentence structure.
By conditioning on the codes, we can potentially
increase the effectiveness of beam search as the
search space is properly regulated.

In this work, we use simplified POS tags to
annotate the structure SY . We learn the planner
codes by putting a discretization bottleneck in an



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Confidential Review Copy. DO NOT DISTRIBUTE.

end-to-end network that reconstructs SY with both
X and CY . The codes are merged with the tar-
get sentences in the training data. Thus, no mod-
ification to the NMT model is required. Experi-
ments show the translation performance is gener-
ally improved with structural planning. More in-
terestingly, we can control the structure of output
sentences by manipulating the planner codes.

2 Learning Structural Planners

In this section, we first extract the structural anno-
tation SY by simplifying the POS tags. Then we
explain the code learning model for obtaining the
planner codes.

2.1 Structural Annotation with POS Tags

To reduce uncertainty in the decoding phase, we
want a structural annotation that describes the “big
picture” of the sentence. For instance, the annota-
tion can tell whether the sentence to generate is in
a “NP VP” order. The uncertainty of local struc-
tures can be efficiently solved by beam search or
the NMT model itself.

In this work, we extract such coarse structural
annotations SY through a simple two-step process
that simplifies the POS tags of the target sentence:

1. Remove all tags other than “N”, “V”, “PRP”,
“,” and “.”. Note that all tags begin with “N”
(e.g. NNS) are mapped to “N”, and tags begin
with “V” (e.g. VBD) are mapped to “V”.

2. Remove duplicated consecutive tags.

The following list gives an example of the process:

Input: He found a fox behind the wall.
POS Tags: PRP VBD DT NN IN DT NN .

Step 1: PRP V N N .
Step 2: PRP V N .

Note that many other annotations can also be con-
sidered to represent the syntactic structure, which
is left for future work to explore.

2.2 Code Learning

Next, we learn the planner codes CY to remove
the uncertainty of the sentence structure SY when
producing a translation. For simplicity, we use the
notion S and C to replace SY and CY in this sec-
tion.

S1S2S3S4

C̃

h̄1

C

h0

S1 S2 S3 S4

S1 S2 S3<s>

X1X2X3

s1

+

Figure 2: Architecture of the code learning model.
The discretization bottleneck is shown as the
dashed lines.

We first compute the discrete codes C1, .., CN

based on simplified POS tags S1, ..., ST :

h̄t = LSTM(E(St), h̄t+1; θs) , (1)

[C̃1, ..., C̃N ] = fenc(h̄1; θenc) , (2)

Ci = GumbelSoftmax(C̃i) , (3)

where the tag sequence S1, ..., ST is firstly en-
coded using a backward LSTM (Hochreiter and
Schmidhuber, 1997). E(·) denotes the embed-
ding function. Then, we compute a set of vec-
tors C̃1, ..., C̃N , which are latterly discretized in
to approximated one-hot vectors C1, ..., CN using
Gumbel-Softmax trick (Jang et al., 2016; Maddi-
son et al., 2016).

We then combine the information from X and
C to initialize a decoder LSTM that sequentially
predicts S1, ..., ST :

st = LSTM(E(Xt), st+1; θx) , (4)

h0 = fdec([C1, ..., CN ]; θdec) + s1 , (5)

ht = LSTM(E(St−1), ht−1; θh) , (6)

where [C1, ..., CN ] denotes a concatenation of N
one-hot vectors. Note that only ht is computed
with a forward LSTM. Both fenc and fdec are
affine transformations. Finally, we predict the
probability of emitting each tag St with

P (St|S1:t−1, X,C) = softmax(fout(ht; θout)) .
(7)

The architecture of the code learning model is
depicted in Fig. 2, which can be seen as a sequence
auto-encoder with an extra context input X to the
decoder. The parameters are optimized with cross-
entropy loss.

Once the code learning model is trained, we can
obtain the planner codes C for all target sentences
in the training data using the encoder part.



3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Confidential Review Copy. DO NOT DISTRIBUTE.

3 NMT with Structural Planning

The training data of machine translation dataset
is composed of (X,Y ) sentence pairs. With the
planner codes CY we obtained, our training data
now becomes a list of (X,CY ;Y ) pairs. As shown
in Fig. 1, we connect the planner codes and target
sentence with a “〈eoc〉” token.

With the modified dataset, we train a regular
NMT model. We use beam search when decoding
sentences, thus the planner codes are searched be-
fore emitting real words. The codes are removed
from the translation results during evaluation.

4 Related Work

Recently, some methods are proposed to im-
prove the syntactic correctness of the translations.
Stahlberg et al. (2016) restricts the search space of
the NMT decoder using the lattice produced by a
Statistical Machine Translation system. Eriguchi
et al. (2017) takes a multi-task approach, letting
the NMT model to parse a dependency tree and
combine the parsing loss with the original loss.

Several works further incorporate the target-
side syntactic structures explicitly. Nadejde et al.
(2017) interleaves CCG supertags with normal
output words in the target side. Instead of pre-
dicting words, Aharoni and Goldberg (2017) trains
a NMT model to generate linearized constituent
parse trees. Wu et al. (2017) proposed a model to
generate words and parse actions simultaneously.
The word prediction and action prediction are con-
ditioned on each other. However, none of the these
methods plan the structure before translation.

Similar to our code learning approach, some
works also learn the discrete codes for differ-
ent purposes. Shu and Nakayama (2018) com-
presses the word embeddings by learning the con-
cept codes to represent each word. Kaiser et al.
(2018) breaks down the dependency among words
with shorter code sequences. The decoding can be
faster by predicting the shorter artificial codes.

5 Experiments

We evaluate our models on IWSLT 2014 German-
to-English task (Cettolo et al., 2014) and ASPEC
Japanese-to-English task (Nakazawa et al., 2016),
containing 178K and 3M bilingual pairs respec-
tively. We use Kytea (Neubig et al., 2011) to to-
kenize Japanese texts and moses toolkit (Koehn
et al., 2007) for other languages. Using byte-
pair encoding (Sennrich et al., 2016), we force the

Code Setting Capacity SY acc. CY acc.
N=1, K=4 2 bits 27% 63%
N=2, K=2 2 bits 23% 67%
N=2, K=4 4 bits 35% 41%
N=4, K=2 4 bits 22% 44%
N=4, K=4 8 bits 44% 27%

Table 1: A comparison of different code settings
on IWSLT 2014 dataset. The accuracy of recon-
structing SY in the code model, and the accuracy
of predict CY in the NMT model are reported.

vocabulary size of each language to be 20K for
IWSLT dataset and 40K for ASPEC dataset.

For IWSLT 2014 dataset, we concatenate all
five TED/TEDx development and test corpus to
form a test set containing 6750 pairs. For evalu-
ation, we report tokenized BLEU with moses tool.

5.1 Evaluation of Planner Codes
In the code learning model, all hidden layers have
256 hidden units. The model is trained using
Nesterov’s accelerated gradient (NAG) (Nesterov,
1983) for maximum 50 epochs with a learning rate
of 0.25. We test different settings of code length
N and the number of code types K. The informa-
tion capacity of the codes will be N logK bits. In
Table 1, we evaluate the learned codes for differ-
ent settings. Sy accuracy evaluates the accuracy
of correctly reconstructing Sy with the source sen-
tence X and the code Cy. Cy accuracy reflects the
chance of guessing the correct code Cy given X .

We can see a clear trade-off between SY accu-
racy and CY accuracy. When the code has more
capacity, it can recover SY more accurately, how-
ever, resulting in a lower probability for the NMT
model to guess the correct code. We found the set-
ting of N = 2,K = 4 has a balanced trade-off.

5.2 Evaluation of NMT Models
To make a strong baseline, we use 2 layers of bi-
directional LSTM encoders with 2 layers of LSTM
decoders in the NMT model. The hidden layers
have 256 units for IWSLT De-En task and 1000
units for ASPEC Ja-En task. We apply Key-Value
Attention (Miller et al., 2016) in the first decoder
layer. Residual connection (He et al., 2016) is used
to combine the hidden states in two decoder lay-
ers. Dropout is applied everywhere outside of the
recurrent function with a drop rate of 0.2 . To train
the NMT models, we also use the NAG optimizer



4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Dataset Model BLEU(%)
BS=1 BS=3 BS=5

De-En baseline 27.90 29.26 29.52
plan (N=2, K=4) 28.35 29.59 29.78

Ja-En baseline 23.92 25.08 25.26
plan (N=2, K=4) 22.79 25.53 25.69

Table 2: A comparison of translation performance
with different beam sizes (BS).

with a learning rate of 0.25, which is annealed by
a factor of 10 if no improvement of loss value is
observed in 20K iterations. Best parameters are
chosen on a validation set.

As shown in Table 2, by conditioning the
word prediction on the generated planner codes,
the translation performance is generally improved
over a strong baseline. The improvement may be
the result of properly regulating the search space.

However, when we apply greedy search on Ja-
En dataset, the BLEU score is much lower com-
pared to the baseline. We also tried to beam search
the planner codes then switch to greedy search,
but the results are not significantly changed. We
hypothesize that it is important to simultaneously
explore multiple candidates with drastically differ-
ent structures on Ja-En task. By planning ahead,
more diverse candidates can be explored, which
improves beam search but not greedy search. If
so, the results are in line with a recent study (Li
et al., 2016) that shows the performance of beam
search depends on the diversity of candidates.

5.3 Qualitative Analysis

Instead of letting the beam search to decide the
planner codes, we can also choose the codes man-
ually. Table 3 gives an example of the candidate
translations produced by the model when condi-
tioning on different planner codes.

input AP no katei ni tsuite nobeta. (Japanese)

code 1 <c4> <c1> <eoc>
the process of AP is described .

code 2 <c1> <c1> <eoc>
this paper describes the process
of AP .

code 3 <c3> <c1> <eoc>
here was described on process of
AP .

code 4 <c2> <c1> <eoc>
they described the process of AP
.

Table 3: Example of translation results conditioned
on different planner codes in Ja-En task

<c1> <c1> <c1> <c2> <c1> <c3> <c1> <c4>

<c2> <c1> <c2> <c2> <c2> <c3> <c2> <c4>

<c3> <c1> <c3> <c2> <c3> <c3> <c3> <c4>

<c4> <c1> <c4> <c2> <c4> <c3> <c4> <c4> 4%

8%

12%

16%

Figure 3: Distribution of assigned planner codes
for English sentences in ASPEC Ja-En dataset

As shown in Table 3, we can obtain translations
with drastically different structures by manipulat-
ing the codes. The results show that the proposed
method can be useful for sampling paraphrased
translations with high diversity.

The distribution of the codes learned for 3M En-
glish sentences in ASPEC Ja-En dataset is shown
in Fig. 3. We found the code “<c1> <c1>” is
assigned to 20% of the sentences, whereas “<c4>
<c3>” is not assigned to any sentence. The
skewed distribution may indicate that the capacity
of the codes is not fully exploited, and thus leaves
room for further improvement.

6 Discussion

Instead of learning discrete codes, we can also di-
rectly predict the structural annotations (e.g. POS
tags), then translate based on the predicted struc-
ture. However, as the simplified POS tags are also
long sequences, the error of predicting the tags
will be propagated to word generation. In our ex-
periments, doing so degrades the performance by
around 8 BLEU points on IWSLT dataset.

7 Conclusion

In this paper, we add a planning phase in neural
machine translation, which generates some plan-
ner codes to control the structure of the output sen-
tence. To learn the codes, we design an end-to-end
neural network with a discretization bottleneck to
predict the simplified POS tags of target sentences.
Experiments show that the proposed method gen-
erally improves the translation performance. We
also confirm the effect of the planner codes, by
being able to sample translations with drastically
different structures using different planner codes.

The planning phase helps the decoding algo-
rithm by removing the uncertainty of the sentence
structure. The framework described in this paper
can be extended to plan other latent factors, such
as the sentiment or topic of the sentence.



5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Confidential Review Copy. DO NOT DISTRIBUTE.

References
Roee Aharoni and Yoav Goldberg. 2017. Towards

string-to-tree neural machine translation. In ACL.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th iwslt evaluation campaign, iwslt 2014. In
Proceedings of the International Workshop on Spo-
ken Language Translation, Hanoi, Vietnam.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. In ACL.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with gumbel-softmax.
CoRR, abs/1611.01144.

Lukasz Kaiser, Aurko Roy, Ashish Vaswani, Niki
Parmar, Samy Bengio, Jakob Uszkoreit, and
Noam Shazeer. 2018. Fast decoding in sequence
models using discrete latent variables. CoRR,
abs/1803.03382.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL.

Jiwei Li, Will Monroe, and Daniel Jurafsky. 2016. A
simple, fast diverse decoding algorithm for neural
generation. CoRR, abs/1611.08562.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous
relaxation of discrete random variables. CoRR,
abs/1611.00712.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In EMNLP.

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn,
and Alexandra Birch. 2017. Predicting target lan-
guage ccg supertags improves neural machine trans-
lation. In WMT.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. Aspec: Asian
scientific paper excerpt corpus. In LREC.

Yurii Nesterov. 1983. A method for unconstrained con-
vex minimization problem with the rate of conver-
gence o (1/k2). In Doklady an SSSR, volume 269,
pages 543–547.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
japanese morphological analysis. In ACL, pages
529–533.

Melissa A Redford. 2015. The handbook of speech
production. pages 420–423.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Raphael Shu and Hideki Nakayama. 2018. Compress-
ing word embeddings via deep compositional code
learning. In ICLR.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically guided neural machine
translation. CoRR, abs/1605.04569.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li,
and Ming Zhou. 2017. Sequence-to-dependency
neural machine translation. In ACL.


