
Under review as a conference paper at ICLR 2019

INTEGRAL PRUNING ON ACTIVATIONS AND WEIGHTS
FOR EFFICIENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapidly scaling up of deep neural networks (DNNs), extensive research
studies on network model compression such as weight pruning have been per-
formed for efficient deployment. This work aims to advance the compression
beyond the weights to the activations of DNNs. We propose the Integral Prun-
ing (IP) technique which integrates the activation pruning with the weight prun-
ing. Through the learning on the different importance of neuron responses and
connections, the generated network, namely IPnet, balances the sparsity between
activations and weights and therefore further improves execution efficiency. The
feasibility and effectiveness of IPnet are thoroughly evaluated through various
network models with different activation functions and on different datasets. With
< 0.5% disturbance on the testing accuracy, IPnet saves 71.1% ∼ 96.35% of
computation cost, compared to the original dense models with up to 5.8× and
10× reductions in activation and weight numbers, respectively. The source codes
are available at (omitted for blind review).

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated significant advantages in many real-world appli-
cations, such as image classification, object detection and speech recognition (He et al., 2016; Red-
mon et al., 2016; Sainath & Parada, 2015). On the one hand, DNNs are developed for improving
performance in these applications, which leads to intensive demands in data storage, communication
and processing. On the other hand, the ubiquitous intelligence promotes the deployment of DNNs
in light-weight embedded systems that are equipped with only limited memory and computation
resource. To reduce the model size while ensuring the performance quality, DNN pruning is widely
explored. Redundant weight parameters are removed by zeroing-out those in small values (Han
et al., 2015; Park et al., 2016). Utilizing the zero-skipping technique (Han et al., 2016) on sparse
weight parameters can further save the computation cost. In addition, many specific DNN accelera-
tor designs (Albericio et al., 2016; Reagen et al., 2016) leveraged the intrinsic zero-activation pattern
of the rectified linear unit (ReLU) to realize the activation sparsity. The approach, however, cannot
be directly extended to other activation functions, e.g., leaky ReLU.

Although these techniques achieved tremendous success, pruning only the weights or activations
cannot lead to the best inference speed, which is a crucial metric in DNN deployment, for the
following reasons. First, the existing weight pruning methods mainly focus on the model size reduc-
tion. However, the most essential challenge of speeding up DNNs is to minimize the computation
cost, such as the intensive multiple-and-accumulate operations (MACs). Particularly, the convo-
lution (conv) layers account for most of the computation cost and dominate the inference time in
DNNs (Park et al., 2016). Because weights are shared in convolution, the execution speed of conv
layers is usually bounded by computation instead of memory accesses (Jouppi et al., 2017; Zhang
et al., 2015). Second, the activation in DNNs is not strictly limited with ReLU. The intrinsic zero-
activation patterns do not exist in non-ReLU activation functions, such as leaky ReLU and sigmoid.
Third, the weights and activations of a network together determine the network performance. Our
experiment shows that the zero-activation percentage obtained by ReLU decreases after applying
the weight pruning (Han et al., 2016). Such a deterioration in activation sparsity could potentially
eliminate the advantage of the aforementioned accelerator designs.

1

Under review as a conference paper at ICLR 2019

In this work, we propose the integral pruning (IP) technique to minimize the computation cost of
DNNs by pruning both weights and activations. As the pruning processes for weights and activations
are correlated, IP learns dynamic activation masks by attaching activation pruning to weight pruning
after static weight masks are well trained. Through the learning on the different importance of neu-
ron responses and connections, the generated network, namely IPnet, balances the sparsity between
activations and weights and therefore further improves execution efficiency. Moreover, our method
not only stretches the intrinsic activation sparsity of ReLU, but also targets as a general approach
for other activation functions, such as leaky ReLU. Our experiments on various network models
with different activation functions and on different datasets show substantial reduction in MACs by
the proposed IPnet. Compared to the original dense models, IPnet can obtain up to 5.8× activation
compression rate, 10× weight compression rate and eliminate 71.1% ∼ 96.35% of MACs. Com-
pared to state-of-the-art weight pruning technique (Han et al., 2015), IPnet can further reduce the
computation cost 1.2× ∼ 2.7×.

2 RELATED WORKS

Weight Pruning: The weight pruning emerges as an effective compression technique in reducing
the model size and computation cost of neural networks. A common approach of pruning the redun-
dant weights in DNN training is to include an extra regularization term (e.g., the `1-normalization)
in the loss function (Liu et al., 2015; Park et al., 2016) to constrain the weight distribution. Then
the weights below a heuristic threshold will be pruned. Afterwards, a certain number of finetuning
epochs will be applied for recovering the accuracy loss due to the pruning. In practice, the direct-
pruning and finetuning stages can be carried out iteratively to gradually achieve the optimal trade-off
between the model compression rate and accuracy. Such a weight pruning approach demonstrated
very high effectiveness, especially for fully-connected (fc) layers (Han et al., 2015). For conv lay-
ers, removing the redundant weights in structured forms, e.g., the filters and filter channels, has
been widely investigated. For example, Wen et al. (2016) proposed to apply group Lasso regular-
ization on weight groups in a variety of self-defined sizes and shapes to remove redundant groups.
Molchanov et al. (2016) used the first-order Taylor series expansion of the loss function on feature
maps to determine the rankings of filters and those in low ranking will be removed. The filter rank-
ing can also be represented by the root mean square or the sum of absolute values of filter weights
(Mao et al., 2017; Yu et al., 2017).

Activation Sparsity: The activation sparsity has been widely utilized in various DNN accelerator
designs. Chen et al. (2016), Albericio et al. (2016) and Reagen et al. (2016) accelerated the DNN
inference with reduced off-chip memory access and computation cost benefiting from the sparse
activations originated from ReLU. A simple technique to improve activation sparsity by zeroing out
small activations was also explored (Albericio et al., 2016). However, the increment of activation
sparsity is still limited without accuracy loss. The biggest issue in the aforementioned works is
that they heavily relied on ReLU. However, zero activations do not exist in non-ReLU activation
function. To regulate and stretch the activation sparsity, many dropout-based methods are proposed.
Adaptive dropout (Ba & Frey, 2013), for instance, developed a binary belief network overlaid on
the original network. The neurons with larger activation magnitude incur higher probability to be
activated. Although this method achieved a better regularization on DNNs, the inclusion of be-
lief network complicated the training and had no help on inference speedup. The winners-take-all
(WTA) autoencoder was built with a regularization based on activation magnitude to learn deep
sparse representations from various datasets (Makhzani & Frey (2015)).

As can be seen that the model size compression is the main focus of weight pruning, while the use
of activation sparsification focuses more on the intrinsic activation sparsity by ReLU or exploring
the virtue of sparse activation in the DNN training for better model generalization. In contrast, our
proposed IP aims for reducing the DNN computation cost and therefore accelerating the inference
by integrating and optimizing both weight pruning and activation sparsification.

3 APPROACH

As depicted in Figure 1, the proposed IP consists of two steps by concatenating the activation prun-
ing to the weight pruning. Both stages seek for unimportant information (weights and activations,

2

Under review as a conference paper at ICLR 2019

respectively) and mask them off. We aim to keep only the important connections and activations
to minimize the computation cost. In this section, we will first explain the integration of the two
steps. The technical details in model quality (e.g., accuracy) control will then be introduced. The
prediction method for deriving activation masks is also proposed to speed up the inference of IPnets.
At last, the appropriate settings of dropout layers and training optimizers are discussed.

3.1 INTEGRATION OF WEIGHT PRUNING AND ACTIVATION PRUNING

Weight pruning. In the weight pruning stage, weight parameters with magnitude under a threshold
are masked out, and weight masks will be passed to the following finetuning process. After the
model is finetuned for certain epochs to recover accuracy loss, weight masks need to be updated for
the next finetuning round. There are two crucial techniques to help weight pruning. 1) The threshold
used to build weight masks are determined based on the weight distribution of each layer. Because of
different sensitivity for weight pruning, each layer owns a specific weight sparsity pattern. Basically,
the leading several conv layers are more vulnerable to weight pruning. 2) The whole weight pruning
stage needs multiple pruning-finetuning recursions to search an optimal weight sparsity. Weight
masks are progressively updated to increase pruning strength.

Weight pruning

Finetuning
Activation

sensitivity analysis

Update
weight masks

F
in

et
u

n
e

ce
rt

ai
n

ep

o
ch

s

Activation pruning

& finetuning

Determine
winner rates

Activation pruning

L
ay

er
 i

L
ay

er
 i

+
1

Weight pruning

Figure 1: Working flow of integral pruning.

Activation pruning. While weak connections between layers are learned to be pruned, activaitons
with small magnitude are taken as unimportant and can be masked out to further minimize inter-
layer connections, and hence to reduce computation cost. Notice that, neurons in DNNs are trained
to be activated in various patterns according to different input classes, thus dynamic masks should
be learned in the activation pruning stage, which are different from the static masks in the weight
pruning stage. The selected activations by the dynamic mask are denoted as winners, and the winner
rate is defined as:

Winner rate =
Swinner

Stotal
, (1)

where Swinner and Stotal denote the number of winners and total activation number. The winner
rate per layer is determined by the analysis of activation pruning sensitivity layer-wise on the models
obtained after weight pruning. The winner activation after the pruning mask, Am, obeys the rule:

Am =

{
Aorig, if |Aorig| > θ

0, otherwise
(2)

where θ is the threshold derived at run-time from the activation winner rate for each layer, andAorig

is the result from original activation function. Same with weight pruning, the model with dynamic
activation masks is finetuned to recover accuracy drop. No iterative procedure of mask updating and
finetuning is required in our activaiton pruning method.

3.2 WINNER RATE SETTINGS

Not all layers share the same winner rate. Similar to the trend in weight pruning, deeper layers
tolerate larger activation pruning strength. To analyze the activation pruning sensitivity, the model
with activation masks is tested on a validation set sampled from the training images with the same
size as the testing set. Accuracy drops are taken as the indicator of pruning sensitivity for different
winner rate settings. Before finetuning, the activation winner rate per layer is set empirically to keep
accuracy drop less than 2%. For the circumstances that model accuracy is resistant to be tuned back,
winner rates in the leading several layers should be set smaller. Examples of sensitivity analysis will
be given and discussed in Section 5.

3

Under review as a conference paper at ICLR 2019

3.3 THRESHOLD PREDICTION IN ACTIVATION PRUNING

The dynamic activation pruning method increases the activation sparsity and maintains the model
accuracy as well. The solution of determining threshold θ in Equation (2) for activation masks is
actually a canonical argpartion problem to find top-k arguments in an array. According to the
Master Theorem (Bentley et al., 1980), argpartition can be fast solved in linear time O(N) through
recursive algorithms, where N is the number of elements to be partitioned. To further speed up,
threshold prediction can be applied on the down-sampled activation set. An alternate threshold θ′
is predicted by selecting top-αk elements from the down-sampled activation set comprising αN
elements with α as the down-sampling rate. θ′ is applied for the original activation set afterwards.

3.4 DROPOUT LAYER WITH ACTIVATION PRUNING

For DNN training, dropout layer is commonly added after large fc layers to avoid over-fitting prob-
lem. The neuron activations are randomly chosen in the feed-forward phase, and weights updates
will be only applied on the neurons associated with the selected activations in the back-propagation
phase. Thus, a random partition of weight parameters are updated in each training iteration. Al-
though the activation mask only selects a small portion of activated neurons, dropout layer is still
needed, for the selected neurons with winner activations are always kept and updated, which makes
over-fitting prone to happen. In fc layers, the remaining activated neurons are reduced to Swinner

from Stotal neurons as defined in Equation (1). The dropout layer connected after the activation
mask is suggested to be modified with the setting:

Dropout rate = 0.5

√
Swinner

Stotal
= 0.5

√
Winner rate, (3)

where 0.5 is the conventionally chosen dropout rate in the training process for original models, and
the activation winner rate is introduced to regulate the dropout strength for balancing over-fitting
and under-fitting. The dropout layers will be directly removed in the inference stage.

3.5 OPTIMIZER AND LEARNING RATE

We find different optimizer requirements for weight pruning and activation pruning. In the weight
pruning stage, it’s recommended to adopt the same optimizer used for training the original model.
The learning rate should be properly reduced to 0.1× ∼ 0.01× of the original learning rate. In
the activation pruning stage, our experiments show that Adadelta (Zeiler, 2012) usually brings the
best performance. Adadelta adapts the learning rate for each individual weight parameter. Smaller
updates are performed on neurons associated with more frequently occurring activations, whereas
larger updates will be applied for infrequent activated neurons. Hence, Adadelta is beneficial for
sparse weight updates, which is exactly the common situation in our activation pruning. During
finetuning, only a small portion of weight parameters are updated because of the combination of
sparse patterns in weights and activations. The learning rate for Adadelta is also reduced 0.1× ∼
0.01× compared to that used in training the original model.

4 EXPERIMENTS

All of our models and evaluations are implemented in TensorFlow. IPnets are verified on various
models ranging from simple multi-layer perceptron (MLP) to deep convolution neural networks
(CNNs) on three datasets, MNIST, CIFAR-10 and ImageNet as in Table 1. For AlexNet (Krizhevsky
et al., 2012) and ResNet-32 (Zagoruyko & Komodakis, 2016), we focus on conv layers because conv
layers account for more than 90% computation cost in these two models.

The compression results of IPnets on activations, weights and MACs are summarized in Table 1
compared to the original dense models. IPnets achieve a 2.3× ∼ 5.8× activation compression rate
and a 2.5× ∼ 10× weight compression rate. Benefiting from sparse weights and activations, IPnets
only need 3.65% ∼ 28.9% of MACs required in dense models. The accuracy drop is kept less than
0.5%, and for some cases, e.g., MLP-3 and AlexNet in Table 1, the IPnets achieve a better accuracy.

Table 1 shows that our method can learn both sparser activations and sparse weights and thus save
computation. More importantly, in Figure 2, we will show that our approach is superior to ap-

4

Under review as a conference paper at ICLR 2019

proaches which explore intrinsic sparse ReLU activations and state-of-the-art weight pruning. The
ReLU function brings intrinsic zero activations for MLP-3, ConvNet-5 and AlexNet in our exper-
iments. However, the non-zero activation percentage increases in weight-pruned (WP) models as
depicted in Figure 2 (a). The increment of non-zero activations undermines the effort from weight
pruning. The activation pruning can remedy the activation sparsity loss and prune 7.7% - 18.5%
more activations even compared to the original dense models. The largest gain from IP exits in
ResNet-32 which uses leaky ReLU as activation function. Leaky ReLU generates dense activations
in the original and WP models. The IPnet for ResNet-32 realizes a 61.4% activation reduction. At
last, IPnets reduce 4.4% ∼ 22.7% more MACs compared to WP models as depicted in Figure 2 (b),
which means a 1.2× ∼ 2.7× improvement. More details on model configuration and analysis are
discussed as follows.

Table 1: Summary of IPnets

Network MLP-3 ConvNet-5 AlexNet ResNet-32
Dataset MNIST CIFAR-10 ImageNet CIFAR-10

Orig Acti Function ReLU ReLU ReLU Leaky ReLU
Accuracy Baseline 98.41% 86% 57.22% 95.01%

Accuracy IP 98.42% 85.94% 57.26% 94.58%
Activation % 17.1% 43.6% 44.2% 38.6%

Weight % 10% 40.4% 38.8% 32.4%
MAC % 3.65% 27.7% 28.9% 13.7%

MLP-3 ConvNet-5 Alexnet ResNet-32

20%

40%

60%

80%

100%

Ac
tiv

at
ion

 %

Dense WP IP

(a) Comparison of non-zero activation percentage.
MLP-3 ConvNet-5 Alexnet ResNet-32

10%

20%

30%

MA
C

%

WP IP

(b) Comparison of MAC #.

Figure 2: Comparison between WP models and IPnets.

4.1 MLP-3 ON MNIST

The MLP-3 on MNIST has two hidden layers with 300 and 100 neurons respectively, and the model
configuration details are summarized in Table 2. The amount of MACs is calculated with batch
size as 1, and the non-zero activation percentage at the output per layer is averaged from random
1000 samples from the training dataset. The following discussions on other models obey the same
statistics setting. The model size of MLP-3 is firstly compressed 10× through weight pruning.
IP further reduces the total number of MACs to 3.65% by keeping only 17.1% activations. The
accuracy of the priginal dense model is 98.41% on MNIST, and the aggressive reduction of MACs
(27.4×) doesn’t decrease the accuracy.

Table 2: MLP-3 on MNIST

Layer Shape Weight # MAC # Acti % Weight % MAC %
fc1 784×300 235.2K 235.2K 12% 10% 3.77%
fc2 300×100 30K 30K 24% 10% 2.62%
fc3 100×10 1K 1K 100% 20% 6.81%

Total 266.2K 266.2K 17.1% 10% 3.65%

5

Under review as a conference paper at ICLR 2019

4.2 CONVNET-5 ON CIFAR-10

For digit images in MNIST dataset have specific sparse features, the results on small-footprint MLP-
3 are very promising. IP is further applied for a 5-layers CNN, ConvNet-5, on a more complicated
dataset, CIFAR-10. With two conv layers and three fc layers, the original model has an 86% ac-
curacy. As shown in Table 3, the IPnet for ConvNet-5 only needs 27.7% of total MACs compared
to the dense model through pruning 59.6% of weights and 56.4% of activations at the same time.
The accuracy only has a marginal 0.06% drop. The dominant computation cost is from conv layers
accounting for more than 4/5 of total MACs for inference. Although fc layers can generally be
pruned in larger strength than conv layers, the computation cost reduction of IPnet is dominated by
the pruning results in conv layers.

Table 3: ConvNet-5 on CIFAR-10

Layer Shape Weight # MAC # Acti % Weight % MAC %
conv1 5×5, 64 4.8K 0.69M 50.6% 70% 70%
conv2 5×5, 64 102.4K 3.68M 17.3% 50% 25.3%

fc1 2304×384 884.7K 884.7K 9.9% 40% 6.92%
fc2 384×192 73.7K 73.7K 44.8% 30% 3%
fc3 192×10 1.92K 1.92K 100% 50% 22.4%

Total 1.07M 5.34M 43.6% 40.4% 27.7%

4.3 ALEXNET ON IMAGENET

We push IP onto AlexNet for ImageNet ILSVRC-2012 dataset which consists of about 1.2M train-
ing images and 50K validating images. The ALexNet comprises 5 conv layers and 3 fc layers and
achieves 57.22% top-1 accuracy on the validation set. Similar to ConvNet-5, the computation bottle-
neck of AlexNet exits in conv layers by consuming more than 9/10 of total MACs. We focus on conv
layers here. As shown in Table 4, deeper layers have larger pruning strength on weights and activa-
tions because of the sparse high-level feature abstraction of input images. For example, the MACs
of layer conv5 can be reduced 10×, while only a 1.2× reduction rate is realized in layer conv1. In
total, the needed MACs are reduced 3.5× using IP with 38.8% weights and 44.2% activations.

Table 4: AlexNet on ImageNet

Layer Shape Weight # MAC # Acti % Weight % MAC %
conv1 11×11, 96 34.85K 112.2M 68.7% 85% 85%
conv2 5×5, 256 307.2K 240.8M 35.8% 40% 27.5%
conv3 3×3, 384 884.7K 149.5M 25% 35% 12.6%
conv4 3×3, 384 663.5K 112.1M 25% 40% 10%
conv5 3×3, 256 442.4K 74.8M 27.7% 40% 10%

Total 2.33M 689.5M 44.2% 38.8% 28.9%

4.4 GOING DEEPER

CNN models are getting deeper with tens to hundreds of conv layers. We verify the IP method on
ResNet-32 as shown in Table 5. The ResNet-32 consists of 1 conv layer, 3 stacked residual units and
1 fc layer. Each residual unit contains 5 consecutive residual blocks. The filter numbers in residual
units increase rapidly, and same for weight amount. An average pooling layer is connected before the
last fc layer to reduce feature dimension. Compared to conv layers, the last fc layer can be neglected
in terms of weight volume and computation cost. The original model has a 95.01% accuracy on
CIFAR-10 dataset with 7.34G MACs per image. Weight and activation pruning strength is designed
unit-wise to reduce the exploration space of hyperparameters, i.e., threshold settings. Notice that
leaky ReLU is used as the activation function, thus zero activations are extremely hard to occur in
the original and WP model. Only with IP, the activation percentage can be reduced down to 38.6%.
As shown in Table 5, the model size is compressed 3.1×, and the final gain is that 86.3% of MACs
can be avoided while keeping the accuracy drop less than 0.5%.

By randomly selecting 500 images from the training images, the activation distribution of the first
residual block in baseline model is depicted in Figure 3 (a). Activations gather near zero with

6

Under review as a conference paper at ICLR 2019

Table 5: ResNet-32 on CIFAR-10

Layer Shape Weight # MAC # Acti % Weight % MAC %
conv1 3×3, 16 0.43K 0.44M 40% 40% 40%

unit2 { 3×3, 160
3×3, 160 } × 5 2.1M 2.15G 40% 40% 16%

unit3 { 3×3, 320
3×3, 320 } × 5 8.76M 2.6G 40% 40% 16%

unit4 { 3×3, 640
3×3, 640 } × 5 35.02M 2.6G 30% 30% 9.5%

Total 45.87M 7.34G 38.6% 32.4% 13.7%

long tails towards both positive and negative directions. The activation distribution after IP are
shown in Figure 3 (b). Activations near zero are pruned out, and the major contribution comes from
removing small negative values. In addition, the kept activations are trained to be stronger with
larger magnitude, which is consistent with the phenomenon that the non-zero activation percentage
increases after weight pruning when using ReLU as illustrated in Figure 2 (a).

1 0 1 2 3
0

2

4

6

1e6

(a) Original.
1 0 1 2 3

0.00

0.25

0.50

0.75

1e6

(b) After IP.

Figure 3: Activation distribution of ResNet-32 (500 image samples).

5 DISCUSSION

The static activation pruning approach has been widely adopted in efficient DNN accelerator designs
(Albericio et al., 2016; Reagen et al., 2016). By selecting a proper static threshold θ in Equation (2),
more activations can be pruned with little impact on model accuracy. For the activation pruning in IP,
the threshold is dynamically set according to the winner rate and activation distribution layer-wise.
The comparison between static and dynamic pruning is conducted on ResNet-32 for CIFAR-10
dataset. For the static pruning setup, the θ for leaky ReLU is assigned in the range of [0.07, 0.14],
which brings different activation sparsity patterns.

35% 40% 45% 50% 55% 60% 65%
Non-zero activation percentage

15

10

5

0

Ac
cu

ra
cy

 d
ro

p
(

 %
)

Leaky ReLU with static threshold
Dynamic acti pruning w/o finetuning
Dynamic acti pruning w/ finetuning

Figure 4: Comparison to static activation pruning.

As the result of leaky ReLU with static threshold shown in Figure 4, the accuracy starts to drop
rapidly when non-zero activation percentage is less than 58.6% (θ = 0.08). Using dynamic threshold
settings according to winner rates, a better accuracy can be obtained under the same activation
sparsity constraint. Finetuning the model using dynamic activation masks will dramatically recover

7

Under review as a conference paper at ICLR 2019

the accuracy loss. As our experiment in Section 4.4, the IPnet for ResNet-32 can be finetuned to
eliminate the 10.4% accuracy drop caused by the static activation pruning.

0.5 0.4 0.3 0.2 0.1 0.0
Winner rate

20

10

0

Ac
cu

ra
cy

 d
ro

p
(

 %
)

conv1
conv2
conv3
conv4
conv5

(a) AlexNet on ImageNet.

0.5 0.4 0.3 0.2 0.1
Winner rate

60

40

20

0

Ac
cu

ra
cy

 D
ro

p
(

 %
)

conv1
unit2
unit3
unit4

(b) ResNet-32 on CIFAR-10.

Figure 5: Activation pruning sensitivity.

In weight pruning, the applicable pruning strength is different per layer (Han et al., 2015; Molchanov
et al., 2016). Similarly, the pruning sensitivity analysis is required to determine the proper activation
pruning strength layer-wise, i.e., the activation winner rate per layer. Figure 5 shows two examples
on WP models from AlexNet and ResNet-32. For AlexNet in Figure 5 (a), the accuracy drops
sharply when the activation winner rate of layer conv1 is less than 0.3. Meanwhile, the winner rate
of layer conv5 can be set under 0.1 without hurting accuracy. Deeper conv layers can support sparser
activations. The ResNet-32 in Figure 5 (b) has a similar trend of activation pruning sensitivity. Layer
conv1 is most susceptible to the activation pruning. Verified by thorough experiments in Section 4,
the accuracy loss can be well recovered by finetuning with proper activation winner rates.

As discussed in Section 3.3, the process to select activation winners can be accelerated by threshold
prediction on down-sampled activation set. We apply different down-sampling rates on the IPnet
for AlexNet. As can be seen in Figure 6, layer conv1 is most vulnerable to threshold prediction.
From the overall results, it’s practical to down-sample 10% (α = 0.1) of activations by keeping the
accuracy drop less than 0.5%.

conv1 conv2 conv3 conv4 conv5 overall
52

53

54

55

56

57

To
p-

1
ac

cu
ra

cy
 (%

) w/o sampling
sampling rate:0.2
sampling rate:0.1
sampling rate:0.05
sampling rate:0.02
sampling rate:0.01

Figure 6: The effects of threshold prediction.

6 CONCLUSION

To minimize the computation cost in DNNs, IP combining weight pruning and activation pruning is
proposed in this paper. The experiment results on various models for MNIST, CIFAR-10 and Ima-
geNet datasets have demonstrated considerable computation cost reduction. In total, a 2.3× - 5.8×
activation compression rate and a 2.5× - 10× weight compression rate are obtained. Only 3.65%
- 28.9% of MACs are left with marginal effects on model accuracy, which outperforms the weight
pruning by 1.2× - 2.7×. The IPnets are targeted for the dedicated DNN accelerator designs with ef-
ficient sparse matrix storage and computation units on chip. The IPnets featuring compressed model
size and reduced computation cost will meet the constraints from memory space and computing
resource in embedded systems.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and Andreas
Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network computing. In ACM SIGARCH
Computer Architecture News, volume 44, pp. 1–13. IEEE Press, 2016.

Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In Advances in
Neural Information Processing Systems, pp. 3084–3092, 2013.

Jon Louis Bentley, Dorothea Haken, and James B Saxe. A general method for solving divide-and-
conquer recurrences. ACM SIGACT News, 12(3):36–44, 1980.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. In ACM SIGARCH Computer Architecture News,
volume 44, pp. 367–379. IEEE Press, 2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: efficient inference engine on compressed deep neural network. In Computer Archi-
tecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on, pp. 243–254. IEEE,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis
of a tensor processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual
International Symposium on, pp. 1–12. IEEE, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 806–814, 2015.

Alireza Makhzani and Brendan J Frey. Winner-take-all autoencoders. In Advances in Neural Infor-
mation Processing Systems, pp. 2791–2799, 2015.

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally. Exploring
the granularity of sparsity in convolutional neural networks. IEEE CVPRW, 17, 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey.
Faster cnns with direct sparse convolutions and guided pruning. arXiv preprint arXiv:1608.01409,
2016.

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee,
José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks. Minerva: Enabling low-power,
highly-accurate deep neural network accelerators. In ACM SIGARCH Computer Architecture
News, volume 44, pp. 267–278. IEEE Press, 2016.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

9

Under review as a conference paper at ICLR 2019

Tara N Sainath and Carolina Parada. Convolutional neural networks for small-footprint keyword
spotting. In Sixteenth Annual Conference of the International Speech Communication Associa-
tion, 2015.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott Mahlke.
Scalpel: Customizing dnn pruning to the underlying hardware parallelism. In ACM SIGARCH
Computer Architecture News, volume 45, pp. 548–560. ACM, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing fpga-
based accelerator design for deep convolutional neural networks. In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161–170. ACM,
2015.

10

	Introduction
	Related Works
	Approach
	Integration of weight pruning and activation pruning
	Winner rate settings
	Threshold prediction in activation pruning
	Dropout layer with activation pruning
	Optimizer and learning rate

	Experiments
	MLP-3 on MNIST
	ConvNet-5 on CIFAR-10
	AlexNet on ImageNet
	Going deeper

	Discussion
	Conclusion

