
Under review as a conference paper at ICLR 2020

DIRICHLET WRAPPER TO QUANTIFY CLASSIFICATION
UNCERTAINTY IN BLACK-BOX SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Nowadays, machine learning models are becoming a utility in many sectors. AI
companies deliver pre-trained encapsulated models as application programming
interfaces (APIs) that developers can combine with third party components, their
models, and proprietary data, to create complex data products. This complexity
and the lack of control and knowledge of the internals of these external compo-
nents might cause unavoidable effects, such as lack of transparency, difficulty in
auditability, and the emergence of uncontrolled potential risks. These issues are
especially critical when practitioners use these components as black-boxes in new
datasets. In order to provide actionable insights in this type of scenarios, in this
work we propose the use of a wrapping deep learning model to enrich the output
of a classification black-box with a measure of uncertainty. Given a black-box
classifier, we propose a probabilistic neural network that works in parallel to the
black-box and uses a Dirichlet layer as the fusion layer with the black-box. This
Dirichlet layer yields a distribution on top of the multinomial output parameters
of the classifier and enables the estimation of aleatoric uncertainty for any data
sample. Based on the resulting uncertainty measure, we advocate for a rejection
system that selects the more confident predictions, discarding those more uncer-
tain, leading to an improvement in the trustability of the resulting system. We
showcase the proposed technique and methodology in two practical scenarios,
one for NLP and another for computer vision, where a simulated API based is
applied to different domains. Results demonstrate the effectiveness of the uncer-
tainty computed by the wrapper and its high correlation to wrong predictions and
misclassifications.

1 INTRODUCTION

The popularity of machine learning is giving birth to new business models based on the productiza-
tion and service of these models. In the market there are many application programming interfaces
(APIs) serving predictions in object recognition for images (Vision AI1), language detection or sen-
timent analysis in natural language processing (Cloud Natural Language API2), to mention just a
few. As this Machine Learning-as-a-Service model starts to grow, it becomes easier to find these
APIs as an integral component of more complex products.

The use of pre-trained models gives rise to two different problems. First, we do not know how
these models are going to operate in our intended application domain. In order to address this issue,
there is a vast literature on transfer learning that can be applied. However, when using third-party
proprietary software or APIs, we may not have access to the internals or the possibility of fine-
tuning the model to our domain. If we are to use the model as it is, one must at least understand
when the model is going to work and when it is not, to have some confidence metric that tells about
the expected performance of the methods when applied to our problem. However, this information
is not always provided, especially in deep learning models. This effect can be worsened when these
components are just one of the many different parts of a data product. This complexity leads us to
the second problem: when different models might interact in complex pipelines, the construction of
the appropriate confidence measures can be a challenging task.

1https://cloud.google.com/vision/
2https://cloud.google.com/natural-language/

1

https://cloud.google.com/vision/
https://cloud.google.com/natural-language/

Under review as a conference paper at ICLR 2020

In order to solve the previous issues, in this article, we propose a deep learning wrapper algorithm
that equips any black-box model with uncertainty prediction. Here a wrapper is understood as a
machine learning model that takes any other model and operates without accessing its internals.
Because it does not have access to the internal states, parameters, or architecture of the model it
is wrapping, the wrapper is model agnostic and can be used on top of any other algorithm as long
as it satisfies some desideratum. In this article, we only require the black-box model to produce as
output a distribution over the classes, a soft requirement as any model with a soft-max layer satisfies
it. More specifically, the proposed wrapper uses a deep learning model and introduces a Dirichlet
layer as the fusion layer with the black-box. This Dirichlet layer yields a distribution on top of the
multinomial output parameters. By sampling from this Dirichlet distribution, the wrapper enables
the estimation of aleatoric uncertainty.

Uncertainty has been an important topic in machine learning for many years (Koller & Friedman,
2009). With the emergence of deep learning, the reinterpretation of some existing mechanisms such
as dropout, or the proposal of stochastic mechanisms such as Montecarlo approaches, has broadened
the use of these techniques for accounting for uncertainty in deep models (Gal, 2016).

Uncertainty can be categorized into epistemic and aleatoric uncertainty. While the first accounts for
the uncertainty that is associated to model parameters, the second corresponds to the uncertainty
inherently present in the data3.

Uncertainty plays a key role when reporting a decision because it accounts for the reliability of the
prediction and can help to show the limitations of the applicability of a machine learning model.
In this respect, we advocate for the use of selective prediction (aka rejection techniques) when the
uncertainty metric is large in order to avoid potential harm or avoid risks. Selective prediction is a set
of techniques based on abstaining from deciding according to some metric threshold. As previously
commented, uncertainty is a good candidate for a rejection metric. In literature, we find examples
of different rejection functions (Geifman & El-Yaniv, 2019) (De Stefano et al., 2000) and some of
them use uncertainty measures (Geifman & El-Yaniv, 2017) for rejection.

In the proposed scenario, where we are trying to characterize the uncertainty of a black-box non-
mutable model, many of the state-of-the-art techniques are not applicable. For example, some re-
jectors have to be trained together with the classifier and need access to the internals of the model.
In the same line, current models for uncertainty in deep learning need to have access to its internal
states (Gal, 2016).

The contributions of this article can be summarized as follows:

• We propose a wrapper algorithm that equips any other classification model that outputs a
distribution over predicted classes with Bayesian treatment without having knowledge or
access to its internals.

• We use the wrapper to empirically estimate aleatoric uncertainty and show that the com-
puted uncertainty can identify prone to err samples.

• Finally, we show that the computed uncertainty can be used by rejection techniques to in-
crease the performance and robustness of the original black-box model in the target domain.
We show improvements in transfer problems in natural language processing and computer
vision problems.

In section 2, we introduce the method proposed for building an uncertainty wrapper around a black-
box model. In section 3, we describe how to obtain an uncertainty score from the wrapper output.
Section 4 introduces the concept of rejection and rejection performance metrics. In section 5, we
showcase the proposed method in four different scenarios for sentiment analysis in natural language
processing and one for computer vision. The results obtained corroborate the importance of the
rejection method and show the success of the proposed methodology. Finally, section 6 concludes
the article.

3Observe that in this application only aleatoric uncertainty matters since we are dealing with pre-trained,
non-mutable models. In this particular scenario, aleatoric uncertainty also serves as a measure of the fitness of
the model to the data.

2

Under review as a conference paper at ICLR 2020

2 BUILDING AN UNCERTAINTY WRAPPER

Our goal is to build a wrapper algorithm that takes another black-box model and operates on top of
it. As such, there are several constraints to observe. First, we need to exclusively operate on the
inputs and outputs of the black-box classifier. We are not allowed to use any intermediate or internal
value of the black-box model as we need to be agnostic to it. Second, the input of the wrapper has
to be compatible with the original distribution over the output classes.

In the literature, other proposals suggest a deep learning model for estimating uncertainty. The
problem with those approaches, like in (Kendall & Gal, 2017) where they use independent Gaussian
random variables to model the pre-activation value of the logits, is that they do not conform to the
constraints in our setting. First, having access to the logits before the softmax breaks the black-box
assumption; and, second, independent Gaussian distributions impose unnecessary assumptions and
need of additional normalization steps. A more natural approach is to consider the output distribution
coming from a Dirichlet probability distribution function.

2.1 DIRICHLET CONCENTRATION REPARAMETERIZATION

As commented, given a data set D composed of pairs (xi, yi), i = 1 . . . N , with yi ∈ RC , being C
the number of different classes, the wrapper output is assumed to come from a Dirichlet probability
density function:

p(yw|X,w∗) ∼ Dir(α), (1)

wherew∗ are the parameters of the wrapper. We propose to use a decomposition of the concentration
parameter in two terms to relate the output of the black-box classifier, ym, with the concentration
parameter, α, in the Dirichlet distribution of the wrapper. To that effect, we recall some basic
statistics of the Dirichlet distribution. Given a Dirichlet random variable x ∈ RC with concentration

parameter α ∈ RC , the expected value of the distribution is defined as E(x) = α/
C∑
i=1

αi.

Observe that the expected value has the same properties as a probability distribution and that the
output of the black-box ym ∈ RC is already a probability distribution. In this sense, we could
directly use the output of the black box as the concentration parameter. However, each term of the
concentration parameter is not necessarily constrained to the interval [0, 1]. Let us introduce a new
scalar parameter, β ∈ R that will model this difference, such that α = βym.

Observe that the value of β does not change the expected value of the output of the wrapper and
coincides with the output of the black-box model, i.e. E(yw) = ym.

(a) β = 20 (b) β = 20 (c) β = 20

Figure 1: Dirichlet distribution in 3 dimensions for different β values given a prediction of
[0.25, 0.25, 0.50]

This decomposition has a simple interpretation: While the output of the black-box classifier stands
for the mean, parameter β accounts for the spread of the distribution. The same or similar decompo-
sition can be found in other works in a different context(Malinin & Gales, 2018)(Chen et al., 2018)4.
An example of the effect of varying this parameter in a three dimensional Dirichlet distribution is
shown in Figures (1a) to (1c). Observe that the higher the value of β, the more pointy the distribution
is.

4It is worth noting that in the context of those works, there is a degradation in performance when using
Dirichlet. This does not happen in our case since the black-box model is non-mutable.

3

Under review as a conference paper at ICLR 2020

Figure 2: Model used to estimate the aleatoric uncertainty from the original black-box model

This decoupling allows to effectively isolate the contribution of the black-box and the contribution
that remains to be computed, i.e. the value of parameter β. Figure 2 shows the integration of
the wrapper (in light orange colour) with the black-box classifier (in light blue colour). Observe
that the wrapper consists of two blocks: the Dirichlet reparameterization layer of the wrapper that
decouples the influence of the black-box model from the rest (see the dashed line), and a deep
learning architecture which aims to compute the scalar value of β5.

2.2 INFERENCE IN THE DIRICHLET SETTING

SImilarly to (Kendall & Gal, 2017), we approximate the expected value of the classification prob-
abilities using Monte Carlo sampling from the learned Dirichlet distribution for each sample,
ŷ.,i ∼ Dir(αi) as E[ŷi] = 1

M

∑M
m=1 ŷm,i.

This distribution is used to define the loss function for our learning stage. Given a set of N training
samples, we will use a regularized version of the cross-entropy loss function as follows:

L(W) = − 1

N

N∑
i=1

1

C

C∑
c=1

yi,c logE[ŷi]c + λ‖β‖2 = − 1

N

1

C

N∑
i=1

C∑
c=1

yi,c log
(1

M

M∑
m=1

ŷm,i,c

)
+ λ‖β‖2.

Observe that we introduce the norm of the β value in the minimization function. This term is
required since the unregularized cross-entropy forces the value of β to grow unbounded. By adding
this term, we control its growth and govern the trade-off with a scalarization parameter λ.

3 OBTAINING AN UNCERTAINTY SCORE FROM THE WRAPPER

The described Dirichlet layer effectively allows studying the variability of the parameters of the
black-box output. This variability can be used to approximate a value for the heteroscedastic
aleatoric uncertainty. In this work, we use Monte Carlo simulation sampling from the obtained
Dirichlet function in order to characterize the uncertainty (Gal, 2016).

Standard techniques for measuring uncertainty includes variation ratios or predictive entropy. Vari-
ation ratios measures the variability of the predictions obtained from the sampling (Freeman, 1965)
by computing the fraction of samples with the correct output. Alternatively, predictive entropy
considers the average amount of information contained in the predictive distribution. Those re-
sults with low entropy values correspond to confident predictions, whereas high entropy leads to
large uncertainty. Since the output of the black-box model ym already describes a probability dis-
tribution, one could compute its predictive entropy and obtain a measure of its uncertainty with
H = −

∑
c y

m
c log ymc

5The architecture used in this figure corresponds to the one used in the experimental section.

4

Under review as a conference paper at ICLR 2020

However, as the wrapper allows us to model the variability of the parameters of the black-box output
distribution, we can compute a predictive entropy that takes into account the variability of the pre-
dicted value. In this case, the sampled predictive entropy is defined as H = −

∑
c E[ŷ]c logE[ŷ]c.

As we show in the experimental section, this latter approach captures better the uncertainty com-
pared to the predictive entropy of the original model.

4 USING UNCERTAINTY FOR REJECTION

Rejection is a mechanism that, given a particular metric related to the confidence in the decision,
allows discarding a prediction if the metric value is below some threshold. In our proposal, we
use the wrapper computed uncertainty as this rejection metric. In the context of our use cases, the
hypothesis is that texts or images with high uncertainty are prone to be misclassified by the black-
box model.

In order to use the uncertainty score for evaluating the performance of the black-box in a new
dataset, we first proceed to obtain the predictions applying the original model. Then for each pair
of data and prediction, we obtain the associated uncertainty score using the wrapper. Next, we sort
the predictions based on the uncertainty score, from more uncertain to more confident. From that
ordering, we set the rejection threshold that marks where to start trusting the classification model.

Figure 3: Rejection performance metrics as proposed in (Condessa et al., 2015)

In order to evaluate the rejection metric, we split the dataset using two criteria: whether the method
Rejects the data point or Not; and whether the point is Accurately classified, or Misclassified named
as R, N, A or M respectively. Using this terminology, we follow the guidelines in (Condessa et al.,
2015) for rejection quality metrics. We have three quality metrics, illustrated in 3:

• Non-rejected Accuracy measures the ability of the classifier to classify non-rejected sam-
ples accurately: NRA = |A

⋂
N |

|N |

• Classification Quality measures the ability of the classifier with rejection to classify non-
rejected samples accurately and to reject misclassified samples: CQ = |A

⋂
N |+|M

⋂
R|

|N |+|R|

• Rejection Quality measures the ability to concentrate all misclassified samples onto the
set of rejected samples:RQ = |M

⋂
R||A|

|A
⋂

R||M |

A good rejection point will show a trade-off between the three metrics, being able to divide the
misclassified predictions from the right ones and preserve only those points that provide useful
information. The higher the value displayed, the better that metric performs for rejection.

5 EXPERIMENTS AND RESULTS

This section describes the experiments run for validating the wrapper proposal and results obtained.
The experiments include two different scenarios: a use case for sentiment analysis using natural
language processing and, another, for image classification.

5

Under review as a conference paper at ICLR 2020

5.1 A NATURAL LANGUAGE PROCESSING SCENARIO

In order to validate the proposal, we use an NLP-based sentiment analysis system applied to product
reviews. The goal of the system is to classify each review on whether it is positive or negative. The
goal of the experiment is two-fold. First, we want to show how to apply the wrapper for a given
NLP task. Second, we demonstrate how the proposed method additionally captures the uncertainty
caused by the change in domains. To this end, we include different combinations of training and
prediction domains in the experiment. The details on the datasets used are the following:

• Stanford Sentiment Treebank (Socher et al., 2013), SST-2, binary version where the task
is to classify a movie review in positive or negative. The dataset is split in 65,538 test
samples, 872 for validation and 1,821 for testing.

• Yelp challenge 20136, the goal is to classify reviews about Yelp venues where their users
rated them using 1 to 5 stars. To be able to reuse a classifier trained with the SST-2 problem,
we transform the Yelp dataset from a multiclass set to a binary problem, grouping the
ratings below three as a negative review, and as positive otherwise. The dataset is split in
186,189 test samples, 20,691 for validation and 22,991 for testing.

• Amazon Multi-Domain Sentiment dataset contains product reviews taken from Ama-
zon.com from many product types (domains) (Blitzer et al., 2007). As in Yelp, the dataset
consists on ratings from 1 to 5 stars that we label as positive for those with values greater
or equal to 3, and negative otherwise, split into training, validation and test datasets. We
use two of the domains available: music (109,733/12,193/52,254 examples) and electronics
(14,495/1,611/6,903 examples).

5.2 AN IMAGE CLASSIFICATION SCENARIO

In addition to the NLP use case presented above, we include here a use case for image classification.
The task, in this case, is to classify images in one of the categories defined in the dataset. As in NLP,
an image classifier trained using a source dataset, acting as the original API, is then applied to a new
set of images belonging to a different dataset. Both datasets share almost the same output classes
except for one. By predicting the uncertainty of the different class, we will show how the predicted
uncertainty can also be used to detect out of sample images. The details on the datasets used for the
vision use case are the following:

• STL-10 (Coates et al., 2011), The STL-10 dataset is an image recognition dataset for de-
veloping unsupervised feature learning, deep learning, self-taught learning algorithms. It
is inspired by the CIFAR-10 dataset but with some modifications. It includes 500 training
images, 800 test images per class, belonging to 10 classes: airplane, bird, car, cat, deer,
dog, horse, monkey, ship, truck.

• CIFAR10 (Krizhevsky, 2009), The CIFAR-10 dataset consists of 60000 32x32 colour im-
ages in 10 classes(airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck),
with 6000 images per class. There are 50000 training images and 10000 test images.

5.3 EXPERIMENT SET UP

On every experiment, we use two datasets: (i) a source dataset for training a model, that will be
considered the black-box model from that moment on and (ii) a target dataset that corresponds to
the domain we want to apply the black-box model and where to measure the uncertainty using the
proposed wrapper . Specifically, the steps followed on each case are:

• Train the black-box. First, we train a classifier with the source dataset. In real scenarios,
this step would not be necessary as we would be using a pre-trained model or third-party
API.

• Apply the black-box to the target domain. In this step, we use the black-box to obtain
the predictions and evaluate the accuracy of the target dataset, and we can compute the
predictive entropy based on the prediction outputs.

6https://www.yelp.com/dataset/challenge

6

https://www.yelp.com/dataset/challenge

Under review as a conference paper at ICLR 2020

• Compute the uncertainty for the target domain using the wrapper model. Once we have
the predictions for the target domain, we proceed to train the uncertainty wrapper to ap-
proximate the Dirichlet pdf for each input. By sampling the pdf, we compute the sampling
predictive entropy of the average of the outputs to get the uncertainty score for each element
in the target dataset.

• Apply the rejection mechanism. Finally, we use the uncertainty score to sort the predictions
from more to less uncertain, and we search for a rejection point that maximizes the three
performance measures: non-rejected accuracy, and classification and rejection quality.

We run five different scenarios, including the training the black-box with the Yelp dataset and apply-
ing it to SST-2 and vice-versa, training the black-box with the Amazon electronic products reviews
dataset and applying it to Amazon music products reviews, and vice-versa, and training with STL-10
and applying the black-box to CIFAR10. For each scenario, a selection of optimal training param-
eters was carried out, including learning rates, batch sizes, number of units and number of epochs.
Details on the architectures used for the black-box are given in the Appendix A.

5.4 RESULTS

In order to show the effect of the application of the uncertainty wrapper on each of the target do-
mains, we compute the uncertainty score using the three different metrics described in section 4: the
predictive entropy of the black-box output (baseline), the predictive entropy obtained after training
the aleatoric wrapper (pred. entropy), and the variation ratios (var. ratios). Figures 4 to 8 show
the results obtained on each combination for the rejection performance metrics for the three uncer-
tainty scores analysed. From left to right, we find the values for non-rejected accuracy, classification
quality and rejection quality. The higher the value in the plot, the better the result.

According to the results obtained, the proposed method shows better behaviour in all scenarios and
metrics. As we remove more samples according to the uncertainty, the proposed method displays
much better accuracy and quality than its counterparts. These results validate the hypothesis that the
heteroscedastic aleatoric uncertainty computed by the wrapper effectively captures the confidence in
the prediction and the samples prone to error. On the contrary, variation ratios are the worst perfor-
mant method. Note that, although our proposal performs much better, its absolute gain depends on
the scenario. In those domains where the black-box model performs worse, there is more to gain by
using the wrapper. If we observe the classification quality (plot at the center of each figure) and the
rejection quality, we can see that the proposed metric is also excellent at rejecting the misclassified
points. A detailed table with numerical results for the same experiments is included in Appendix B.

Results demonstrate how the usage of the uncertainty for rejecting uncertain predictions helps with
the adaptation of a pre-trained model to new domains of application. In some cases, the results
obtained for the test dataset of the target domain by rejecting 10% of the less certain points overtake
those obtained by the source dataset used for training the original model. As a curiosity, the use case
where we trained a black-box model using the reviews of Amazon’s electronics products achieves
better results when applied to the test target dataset than to the original test dataset. Even in this case,
where the applied classifier reaches an accuracy of more than 90 %, the proposed method increases
it in almost 5 points. In Appendix C, we analyse how, for the case of images, the proposed method
can detect out-of-sample images that belong to an unseen category.

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduced a deep learning wrapper technique that can endow any black-box model
with uncertainty features. The wrapper uses a reparameterization trick on the Dirichlet distribution,
and it can capture the distribution on the multinomial parameters of the output of the black-box
classifier.

We use the predicted uncertainty to fuel a rejection method and show how this helps in assessing the
fitness of a model to a new domain or data set. By measuring the sampling uncertainty and using it
for rejection, we can improve the accuracy results by 4%-8% by rejecting just 10% of the samples.
Additionally, the method displays a significant value on rejection quality. These results tell us that

7

Under review as a conference paper at ICLR 2020

Figure 4: Apply Yelp BB to SST-2

Figure 5: Apply SST-2 BB to Yelp

Figure 6: Apply electronics BB to Music

Figure 7: Apply music BB to electronics

Figure 8: Apply STL-10 BB to CIFAR10

the predicted uncertainty focuses on intricate, ambiguous, or prone to error cases. We show results
in NLP and computer vision domains with successful and encouraging results.

As future work, we are planning to keep exploring different architectures and strategies for the
wrapper implementation and focus on other usual cases found in real-life implementations, such as
how to deal with high dimensional and categorical outputs.

8

Under review as a conference paper at ICLR 2020

REFERENCES

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, Bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pp. 440–447, Prague, Czech Republic,
June 2007. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/P07-1056.

Wenhu Chen, Yilin Shen, Xin Wang, and William Wang. Enhancing the robustness of prior network
in out-of-distribution detection. CoRR, abs/1811.07308, 2018. URL http://arxiv.org/
abs/1811.07308.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudk (eds.), Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pp. 215–223, Fort Lauderdale, FL, USA, 11–13 Apr
2011. PMLR. URL http://proceedings.mlr.press/v15/coates11a.html.

Filipe Condessa, Jelena Kovacevic, and José M. Bioucas-Dias. Performance measures for classifica-
tion systems with rejection. CoRR, abs/1504.02763, 2015. URL http://arxiv.org/abs/
1504.02763.

C. De Stefano, C. Sansone, and M. Vento. To reject or not to reject: That is the question-an answer in
case of neural classifiers. Trans. Sys. Man Cyber Part C, 30(1):84–94, February 2000. ISSN 1094-
6977. doi: 10.1109/5326.827457. URL http://dx.doi.org/10.1109/5326.827457.

L.C. Freeman. Elementary applied statistics: for students in behavioral science. Wiley, 1965. URL
https://books.google.es/books?id=r4VRAAAAMAAJ.

Yarin Gal. Uncertainty in deep learning. PhD thesis, PhD thesis, University of Cambridge, 2016.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp.
4878–4887. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7073-selective-classification-for-deep-neural-networks.pdf.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated re-
ject option. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, pp. 2151–2159, 2019. URL http:
//proceedings.mlr.press/v97/geifman19a.html.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pp. 5574–5584, 2017.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior net-
works. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp.
7047–7058. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7936-predictive-uncertainty-estimation-via-prior-networks.pdf.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and seg-
mentation. CoRR, abs/1801.04381, 2018. URL http://arxiv.org/abs/1801.04381.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

9

https://www.aclweb.org/anthology/P07-1056
https://www.aclweb.org/anthology/P07-1056
http://arxiv.org/abs/1811.07308
http://arxiv.org/abs/1811.07308
http://proceedings.mlr.press/v15/coates11a.html
http://arxiv.org/abs/1504.02763
http://arxiv.org/abs/1504.02763
http://dx.doi.org/10.1109/5326.827457
https://books.google.es/books?id=r4VRAAAAMAAJ
http://papers.nips.cc/paper/7073-selective-classification-for-deep-neural-networks.pdf
http://papers.nips.cc/paper/7073-selective-classification-for-deep-neural-networks.pdf
http://proceedings.mlr.press/v97/geifman19a.html
http://proceedings.mlr.press/v97/geifman19a.html
http://papers.nips.cc/paper/7936-predictive-uncertainty-estimation-via-prior-networks.pdf
http://papers.nips.cc/paper/7936-predictive-uncertainty-estimation-via-prior-networks.pdf
http://arxiv.org/abs/1801.04381

Under review as a conference paper at ICLR 2020

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015. URL
http://arxiv.org/abs/1512.00567.

A APPENDIX A

For the sake of reproducibility, this Appendix details the architectures used for training the black-
box systems. Figure 9 describes the model used for training the black-box models in the two use

Figure 9: Models used to train the black-boxes: a) is the one used for text and b) describes that used
for images

cases. As stated before, the only purpose of this model is to obtain a black-box classifier for a given
source domain. The goal, in this case, is not to obtain the best classifier but to obtain a model which
is easy to train and offers good performance.

The main difference between the model for NLP and Image classification comes from the embedding
component. In the case of NLP, we opted for representing a sentence as the average value of the
embedding of each word using pre-trained word2vec embeddings. In the case of images, we trained
a MobileNET v2 model (Sandler et al., 2018), initialized with imagenet weights, using as input the
STL-10 images, resized to 32x32x3 to accommodate them to the CIFAR10 dataset.7

B APPENDIX B

Table 1 shows a detail of the numerical results obtained during the experiments for the four com-
binations tested. The first column, black-box source acc, describes the accuracy obtained for the
source dataset after training the original classifier. Next, column black-box target acc describes the
accuracy obtained when applying the black-box to the target dataset. The rest of the columns show
the non-rejected accuracy and the classification and rejection quality after rejecting 10, 20 an 30%
of the points, using the proposed predictive entropy as a rejector.

7we tried other embeddings such as ELMO, and Seq2seq for text, or VGG-16 (Simonyan & Zisserman,
2015) and ResNET50 (Szegedy et al., 2015) for images, but we stick to word2vec and MobileNet due to
limitations on the computing resources.

10

https://www.aclweb.org/anthology/D13-1170
http://arxiv.org/abs/1512.00567

Under review as a conference paper at ICLR 2020

Table 1: Accuracy obtained by training an standalone classifier, applying the API and the proposed
wrapper for each domain

BB source
acc.

BB target
acc.

Non-reject.
acc.

(10/20/30%)

Class.
quality

(10/20/30%)

Reject.
quality

(10/20/30%)

Apply Yelp BB to SST-2 89.18±0.08% 77.13±0.52%
81.38±0.72%
85.83±0.88%
90.08±0.94%

78.82±0.91%
79.66±1.15%
78.46±1.31%

4.66±0.63
4.33±0.44
3.69±0.31

Apply SST-2 BB to Yelp 83.306±0.18% 82.106±0.88%
86,34±0.18%
89.44±0.38%
92.08±0.33%

83.27±0.88%
80.95±0.38%
76.77±0.46%

5.98±1.63
4.10±0.27
3.21±0.10

Apply Electronics BB to Music 86.39±0.22% 90.38±0.13%
95.04±0.43%
96.45±0.35%
97.26±0.31%

90.67±0.88%
83.93±0.67%
75.77±0.54%

10.7±1.65
4.82±0.35
3.25±0.14

Apply Music BB to Electronics 93.10±0.02% 83.06±0.0%
91.79±0.31%
94.90±0.85%
96.00±0.83%

90.27±0.54%
86.22±1.33%
79.91±0.98%

19.19±2.9
6.60±0.84
4.02±0.25

Apply STL-10 to CIFAR10 53.53±0.12% 39.29±0.08%
42.53±0.04%
45.33±0.04%
47.78±0.05%

46.22±0.06%
52.18±0.06%
56.55±0.08%

2.56±0.05
2.62±0.02
2.25±0.01

C APPENDIX C

This Appendix shows detailed results on the image case. Although the resulting quality obtained
for the rejection mechanism in the case of images is not as large as in texts, when comparing to the
predictive entropy of the original classifier, we observe that the proposed measure is still excellent for
detecting out of sample images. The main difference between STL-10 and CIFAR10 is a variation
on one of the classes. Where in STL-10 class 6 held monkeys, in CIFAR10 it corresponds to frogs.
As one can expect, the black-box model trained with STL-10 will struggle on detecting frogs.

Figure 10: Distribution of the predicted entropies for two of the CIFAR10 classes.

Figure 11: Entropies for frogs Figure 12: Entropies for trucks

In figure 11 and 12, we can see the distributions of the images that belong to the frogs class and
images that belong to the trucks class. For the frogs class, we see that the values of uncertainty are
concentrated in the higher band of the diagram, whereas in the case of trucks, we find many with
lower uncertainty. This detail shows that the metric assigns significant uncertainty to out-of-sample
class points.

11

	Introduction
	Building an uncertainty wrapper
	Dirichlet concentration reparameterization
	Inference in the Dirichlet setting

	Obtaining an uncertainty score from the wrapper
	Using uncertainty for rejection
	Experiments and results
	A natural language processing scenario
	An image classification scenario
	Experiment Set up
	Results

	Conclusions and Future Work
	Appendix A
	Appendix B
	Appendix C

