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ABSTRACT

In this paper, we propose an efficient framework to accelerate convolutional neural
networks. We utilize two types of acceleration methods: pruning and hints. Prun-
ing can reduce model size by removing channels of layers. Hints can improve
the performance of student model by transferring knowledge from teacher model.
We demonstrate that pruning and hints are complementary to each other. On one
hand, hints can benefit pruning by maintaining similar feature representations. On
the other hand, the model pruned from teacher networks is a good initialization
for student model, which increases the transferability between two networks. Our
approach performs pruning stage and hints stage iteratively to further improve the
performance. Furthermore, we propose an algorithm to reconstruct the parameters
of hints layer and make the pruned model more suitable for hints. Experiments
were conducted on various tasks including classification and pose estimation. Re-
sults on CIFAR-10, ImageNet and COCO demonstrate the generalization and su-
periority of our framework.

1 INTRODUCTION

In recent years, convolutional neural networks (CNN) have been applied in many computer vision
tasks, e.g. classification Krizhevsky & Hinton (2009); Deng et al. (2016), objects detection Ever-
ingham et al. (2010); Ren et al. (2015), and pose estimation Lin et al. (2014). The success of CNN
drives the development of computer vision. However, restricted by large model size as well as com-
putation complexity, many CNN models are difficult to be put into practical use directly. To solve
the problem, more and more researches have focused on accelerating models without degradation of
performance.

Pruning and knowledge distillation are two of mainstream methods in model acceleration. The goal
of pruning is to remove less important parameters while maintaining similar performance of the orig-
inal model. Despite pruning methods’ superiority, we notice that for many pruning methods with the
increase of pruned channel number, the performance of pruned model drops rapidlly. Knowledge
distillation describes teacher-student framework: use high-level representations from teacher model
to supervise student model. Hints method Romero et al. (2015) shares a similar idea of knowledge
distillation, where the feature map of teacher model is used as high-level representations. Accord-
ing to Yosinski et al. (2014), the student network can achieve better performance in knowledge
transfer if its initialization can produce similar features as the teacher model. Inspired by this work,
we propose that pruned model outputs similar features with original model’s and provide a good
initialization for student model, which does help distillation. And on the other hand, hints can help
reconstruct parameters and alleviate degradation of performance caused by pruning operation. Fig-
ure 1 illustrates the motivation of our framework. Based on this analysis, we propose an algorithm:
we do pruning and hints operation iteratively. And for each iteration, we conduct a reconstructing
step between pruning and hints operations. And we demonstrate that this reconstructing operation
can provide a better initialization for student model and promote hints step (See Figure 2). We name
our method as PWH Framework. To our best knowledge, we are the first to combine pruning and
hints together as a framework.

Our framework can be applied on different vision tasks. Experiments on CIFAR-10 Krizhevsky
& Hinton (2009) , ImageNet Deng et al. (2016) and COCO Lin et al. (2014) datasets show the
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Figure 1: Motivation of PWH Framework. The pruning and hints are complementary to each other.
Hints can help pruned model reconstruct parameters. And the network pruned from the teacher
model can provide a good initialization for student model in hints learning.

effectiveness of our framework. Furthermore, our method is a framework where different pruning
and hints methods can be included.

To summarize, the contributions of this paper are as follows: (1) We analyze the properties of
pruning and hints methods and show that these two model acceleration methods are complementary
to each other. (2) To our best knowledge, this is the first work that combines pruning and hints. Our
framework is easy to be extended to different pruning and hints methods. (3) Sufficient experiments
show the effectiveness of our framework on different datasets for different tasks.

2 RELATED WORK

Recently, model acceleration has received a great deal of attention. Quantization methods Rastegari
et al. (2016); Courbariaux et al. (2016; 2015); Juefei-Xu et al. (2017); Zhou et al. (2017)reduce
model size by quantizing float parameters to fixed-point parameters. And fixed-point networks can
be speeded up on special implementation. Group convolution based methods Howard et al. (2017);
Chollet (2017) separates a convolution operation into several groups, which can reduce computation
complexity. Several works exploit linear structure of parameters and approach parameters using low-
rank way to reduce computational parameters Denton et al. (2014); Jaderberg et al. (2014); Alvarez
& Petersson (2016); Zhang et al. (2016). In our experiments, we use two of current mainstream
model acceleration way: pruning and knowledge distillation.

2.1 PRUNING

Network pruning has been proposed for a long time, such as Hanson & Pratt (1989); Hassibi et al.
(1993); LeCun et al. (1990). Recent pruning methods can be roughly adopted in two levels, i.e.
channel-wise Molchanov et al. (2017); He et al. (2017); Sajid Anwar (2015); Hu et al. (2017) and
parameter-wise Han et al. (2016; 2015); Yang et al. (2017); Li et al. (2017a); Wen et al. (2015); Luo
et al. (2017).In this paper, we use channel-wise approach as our pruning method. There are many
methods in channel-wise family. He et al. He et al. (2017) prune channels in LASSO regression way
from sample feature map. Proposed in Liu et al. (2017), the scale parameters in Batch Normalization
layers are used to evaluate the importance of different channels. Molchanov et al. Molchanov et al.
(2017) use taylor formula to analyze each channel’s contribution to the loss and prune the lowest
contribution channel. We utilize this method in our framework. Despite the superiority of pruning
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methods, we find that the effectiveness of them will observably decrease with the increase of pruned
channel numbers.

2.2 DISTILLATION

Knowledge distillation (KD) Hinton et al. (2015) is the pioneering work of this field. Hinton
et al. Hinton et al. (2015) define soft targets and use it to supervise student networks. Beyond
soft targets, hints are introduced in Fitnets Romero et al. (2015), which can be explained as whole
feature map mimic learning. Several researches have focused on hints. Zagoruyko et al. Zagoruyko
& Komodakis (2017) propose atloss to mimic combined output of an ensemble of large networks
using student networks. Furthermore, Li et al. Li et al. (2017b) demonstrate a mimic learning
strategy based on region of interests to improve small networks’ performance for object detection.
However, most of these works train student model from scratch and ignore the significance of student
networks’ initialization.

3 OUR APPROACH

In this section, we will describe our method in details. First we show hints and pruning methods
which have been used in our framework. Then we introduce reconstructing operation and analyze
its effectiveness. Finally, combining hints, pruning and reconstructing operation, we propose PWH
Framework.

3.1 PRUNING STEP

The pruning method we use in this paper is based on Molchanov et al. (2017). The algorithm can be
described as a combinatorial optimization problem:

min
W ′

∣∣∣∣C(D|W ′)− C(D|W )

∣∣∣∣ st ||W ′||0 ≤ B, (1)

Where C(·) is the cost function of the task, D is the training samples, W and W ′ are the parameters
of original and pruning networks. In the optimization problem, ||W ′||0 bounds the number of non-
zero parameters in W ′. The parameter Wi whether to be pruned completely depends on its outputs
hi. And the problem can be redescribed as minimizing

∣∣∆C(hi)
∣∣ =

∣∣C(D,hi = 0) − C(D,hi)
∣∣.

However, it’s hard to find global optimal solution of the problem. Using taylor expansion can get
approximate formula of the objective function:

C(D,hi = 0) ≈ C(D,hi)−
δC

δhi
hi∣∣∆C(hi)

∣∣ ≈ ∣∣C(D,hi)−
δC

δhi
hi − C(D,hi)

∣∣ =

∣∣∣∣ δCδhihi
∣∣∣∣. (2)

During backpropagation, we can get gradient δC
δhi

and activation hi. So this criteria can be easily
implemented for channel pruning.

3.2 HINTS STEP

Hints can provide an extra supervision for student network, and it usually combines with task loss.
The whole loss function of hints learning is represented as follows:

L = Lt + λLh (3)

Where Lt is the task loss (e.g. classification loss) and Lh is the hints loss. λ is hints loss weight
which determines the intensity of hints supervision. There are many types of hints methods. Dif-
ferent hints methods are suitable for different tasks and network architectures. To demonstrate the
superiority and generalization of our framework, we try three kinds of hints methods in our experi-
ments: L2 hints, normalization hints and adaption hints. We introduce L2 hints, normalization hints
in appendix.
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Figure 2: The pipeline of PWH Framework. The whole framework is composed of three steps.
First we slim the original network with reducing certain number of channels. Then we reconstruct
the hints layer of the pruned model to minimize the difference of feature map between teacher and
student. Finally, we start hints step to advance the performance of pruned model.
Adaption Hints Chen et al. (2017) demonstrates that it’s necessary to add an adaption layer
between student and teacher networks. The adaption layer can help transfer student layer feature
space to teacher layer feature space, which will promote hints learning. The expression of adaption
hints is described in equation 4.

Lm =
1

N
‖ft − r(fs)‖22 (4)

Where r(·) is adaption layer. And for convolutional neural networks, adaption layer is 1× 1 convo-
lution layer.

3.3 RECONSTRUCTING STEP

The objective function of reconstructing step is:

min
W
‖Y −WX‖22 (5)

Where Y is the feature map of original (teacher) model, X is the input of hints layer and W is
the parameter of hints layer. The optimization problem has close-form solution using least square
method: W = (XTX)−1XTY . However, because some datasets (e.g. ImageNet Deng et al.
(2016)) have numerous images, X will be high-dimension matrix. And it’s impossible to solve the
problem which involves such huge matrix in one time. So we randomly sample images in dataset
and compute X according to these images. Due to the randomness, the reconstructed weights may
be worse than original weights. Thus, we finally use a switch to select better weights (See equation
6).

Wf = arg min
W
‖Y0 −WX0‖22 W ∈ {Wo,Wr} (6)

Where Wf , Wo and Wr are the final weights, original weights and reconstructed weights of hints
layer. Y0 and X0 are computed from the whole dataset. The objective function of Normalized L2
loss (See equation 16) is different from L2 loss, but we explain that the reconstruction step is also
effective for normalized L2 loss. The details of proof is available in supplementary material.

3.4 PWH FRAMEWORK

Combining pruning step, reconstructing step and hints step, we propose our PWH Framework. The
framework iteratively conducts three steps. For pruning, we reduce the model size by certain num-
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bers of channels. Then the parameters of hints layer will be reconstructed to minimize the difference
of feature map between pruned model’s and teacher model’s. Finally we use pruned model as stu-
dent, original model as teacher and conduct hints learning. And in the next iteration, the original
model will be substituted by the student model in this iteration. After training, the student model
becomes the teacher model for the next iteration. And another hints step is implemented at the end-
ing of the framework where the teacher model will be set as the original model at the beginning of
training (the teacher model in the first iteration). The pseudocode of our approach is provided in
appendix.

We demonstrate that compared with the original model in the first iteration, the student model in
the current iteration is a better candidate for the teacher model in next hints step. The reason is that
the model before pruned and after pruned have more similar feature map and parameters, which can
promote and speed up hints step. At the end of the whole framework, we do another hints step.
Different from preceding hints step, the teacher model is selected as the original model in the first
iteration. We demonstrate that the final hints step is like the finetune step in pruning methods, which
may need long-time training and improves the performance of compressed model. And original
model in the first iteration will be the better teacher. Figure 2 shows the pipeline of our framework.

3.5 ANALYSIS

The hints and pruning in PWH Framework are complementary to each other. On one hand, pruned
model is a good initialization to student model in hints step. We propose that the feature map of
pruned model is similar to original model’s compared with random initialization model’s. In this
way, proposed in Yosinski et al. (2014), the transferability between student and teacher network will
increase, which is beneficial for hints learning. Experiments in §4.4 demonstrate that the difference
between original model’s and pruned model’s feature map is much smaller than random initialized
model’s. On the other hand, hints helps pruning reconstruct parameters. We demonstrate that when
pruned channels number is large, pruning method is inefficient. The pruning operation will bring
large degradation of performance in this case. We find that pruning numerous channels will de-
stroy the main structure of networks(See 3). And hints can alleviate this trend and help recover the
structure and reconstruct parameters in model(See 4).

The motivation of reconstruct step is the generalization of our method. Our approach is a framework
and it should be available for different pruning methods. However, the criteria of some pruning
methods are not based on minimizing the reconstructing error of feature map . In other words,
there is still room to improve the similarity between feature map of original (teacher) and pruned
(student) networks, which is beneficial for hints learning. We only conduct reconstructing operation
on hints layer because it can not only reduce the difference of feature map used for hints but also
maintain the main structure of the pruned model (See experiments in 4.3.3). Moreover, for adaption
hints methods, it need to initialize adaption layer(hint layer). Compared with random initialization,
reconstruction operation can help to construct this layer and provide more similar features with
teacher models’.

4 EXPERIMENTS

We conduct experiments on CIFAR-10 Krizhevsky & Hinton (2009) , ImageNet Deng et al. (2016)
and COCO Lin et al. (2014) for classfication and pose estimation tasks to demonstrate the superiority
of PWH Framework. In this section, we first introduce implementation details in different experi-
ments on different datasets. Then we compare our method with pruning methods and hint methods.
Furthermore, in §4.3 we do ablation study to further analyze the framework. Finally we analyze the
effectiveness of our approach in §4.4 and show hints and pruning methods are complementary to
each other.

4.1 IMPLEMENTATION DETAILS

We train networks using PyTorch deep learning framework. Pruning-only refers to a classical itera-
tive pruning and finetuning operation. And for hints-only methods, we set original model as teacher
model and use the compressed random initialized model as student model. For fair comparison, the
student model in hints-only shares the same network structure with student model in PHW Frame-
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Table 1: The main results for PWH Framework. ’baseline’ means the performance of the original
model. ’50% pruned’ in column-4 denotes that compressed model’s channel number is 50% less than
original’s. Results on different network architectures for different tasks demonstrate the superiority
of PWH Framework. Our approach outperforms hints-only and pruning-only for a large margin.

Dataset Model Baseline Pruned Pruning-only Hints-only PWH
Framework

ImageNet ResNet18 69.76 30% 66.01 64.98 67.35
CIFAR-10 VGG16BN 92.72 60% 91.67 90.71 92.5

COCO ResNet18
FPN 68.4 30% 66.3 60.9 67.4
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Figure 3: The relationship between the per-
formance of pruned model and the number of
pruned channels
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Figure 4: The comparison for different selec-
tions of teacher model in PWH Framework. The
teacher model in this experiment is set as the
original model at the beginning of training or
the pruned model in the previous iteration.

work. We use the standard SGD with momentum set to 0.9. The standard weight decay is set to
1e-4. VGG-16 Simonyan & Zisserman (2015) network with BatchNorm Ioffe & Szegedy (2015),
ResNet18 He et al. (2016) and ResNet18 with FPN Chen et al. (2018) are used for CIFAR-10,
ImageNet and COCO respectively.

4.2 MAIN RESULTS

Table 1 illustrates results. We can find that PWH Framework outperforms pruning-only method
and hints-only method for a large margin on all datasets for different tasks, which verify the ef-
fectiveness of our framework and also shows that hints and pruning can be combined to improve
the performance. Results on different tasks and models show that PWH Framework can be imple-
mented without the restriction of tasks and network architectures. Moreover, illustrated in table 1,
our framework can be applied for different pruning ratios, which means that we can adjust pruning
ratio in the framework for different tasks to achieve different acceleration ratios.

4.3 ABLATION STUDY

To further analyze PWH Framework, we do several ablation studies. All experimetns are conducted
on CIFAR-10 dataset using VGG16BN. The feature map proposed in this section refers to the output
of last convolution layer, which is also the feature map used for hints learning. And in this section,
we do ablation study for three different aspects. First, we do experiments to show iterative operation
is an important component of PWH Framework. Then we study on the selection of teacher model
in hints step. Finally, we validate on the effects of reconstructing step.

4.3.1 THE IMPORTANCE OF ITERATION

In PWH Framework, we implement three steps iteratively. And in this section we will show the
importance and necessity of iterative operation. We conduct an experiment to compare the effects
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Table 2: The comparison of the reconstructing
feature map error between pruned model and
random initial model.

Pruned NumberPruned ModelRandom Model
256 1.84 60.93
512 4.97 65.15
768 9.02 64.45
1024 13.58 62.2

Table 3: The effects of iterative operation. ’70%
pruned’ in column-4 denotes that compressed
model’s channel number is 70% less than origi-
nal’s.

Dataset Model PrunedMethodAccuracy

CIFAR-10VGG16BN 70% once 89.4
iterative 90.16
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Figure 5: The experiment on verifying the ef-
fectiveness of reconstructing step. The Figure
shows comparison of using and without using
reconstructing step for accuracy.

0 2 4 6 8 10 12 14

iteration

82

84

86

88

90

92

94

a
c
c
u

ra
c
y

pruning&hints

pruning

Figure 6: The relationship between the perfor-
mance of network and the number of pruned
channels using different methods. We conduct
experiment iteratively and for each iteration we
prune 256 channels.

of doing pruning and hints only once (i.e. First do pruning and then do hints. Both operations are
conducted only once.) and doing pruning and hints iteratively. Table 2 shows results.

We can see that iterative operation can improve the performance of model dramatically. To further
explain this result, we do another experiment: we analyze the relationship between the performance
of pruned model and the number of pruned channels. Results in Figure 3 illustrate that when the
number of pruned channels is large, the performance of pruned model will drop rapidlly. Thus, if
we only do pruning and hints once, pruning will bring large degradation of performance and pruned
model cannot output the similar feature to original model’s. And in this way, pruned model is not a
more resonable initialization to student model. Pruning step is useless to hints step in this situation.

4.3.2 THE SELECTION OF TEACHER MODEL

The teacher model is the pruned model from previous iteration in PWH Framework. Original model
at the beginning of training can be another choice for teacher model in each iteration. We do an
experiment to compare these two set-up for teacher model. And in this experiment, we prune 256
channels in each iteration. Figure 4 shows results.

We observe that when iteration is small, using original model in the first iteration as teacher model
has a comparable performance with using the pruned model in the previous iteration. However, with
the increase of iterations, we can find that superiority of using the pruned model in the previous
iteration increases. The reason is that the original model in the first iteration has higher accuracy so
it performs well when iteration is small. But when iteration becomes large, pruned model’s feature
map will have large difference with original model’s feature map. And in this situation, there is a
gap between pruned model and teacher model in hints step. On the other hand, using the pruned
model in the previous iteration will increase the similarity of feature map between student model’s
and teacher model’s, which will help distillation in hints step.
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4.3.3 THE EFFECTIVENESS OF RECONSTRUCTING STEP

Proposed in §3.3, reconstructing step is used to further refine pruned model’s feature and make it
more similar to teacher’s. We conduct the experiment to validate the effectiveness of reconstructing
step. To fairly compare, we implement PWH Framework with and without reconstructing step.
In each iteration, we prune 256 channels. We study on the accuracy of compressed model using
two different methods. Furthermore, we also analyze L2 loss between pruned model’s and original
model’s feature map in each iteration. Figure 5 shows experiment results. We find that the method
with reconstructing step performs better. We want our framework to be adaptive to different pruning
methods but some of the pruning methods’ criteria are not minimizing the reconstructing feature
map’s error. Reconstructing step can be used to solve this problem and increase the similarity of
feature maps between two models.

4.4 ANALYSIS OF PWH FRAMEWORK

To further analyze the properties of PWH Framework, we conduct further experiments on our ap-
proach. The experiments results verify our assumptions: pruning and hints are complementary to
each other. All experiments are conducted on CIFAR-10 dataset using VGG16 as the original model.

4.4.1 PRUNING HELPS HINTS

We conduct experiment to compare the reconstructing feature map error between pruned model and
random initial model. We use the pruning method in §3.1 to prune certain number of channels from
original network and we calculate L2 loss between pruned model’s feature map and original model’s
feature map. Similarly, we randomly initialize a model whose size is same to the pruned model
and calculate L2 loss of feature map between this model and original model. Then we increase
pruned channel number and record these two errors accordingly. In Table 2, we notice that in a
large range (0-1024 pruned channels) pruned model’s feature map is much more similar to original
model’s. And this demonstrate that the transferability between pruned model and original model is
larger. And student model, initialized with the weights of pruned model, can perform better in hints
learning.

4.4.2 HINTS HELP PRUNING

To demonstrate hints method is beneficial to pruning, we first compare experiments between
pruning-only with pruning and hints. Different from PWH Framework, pruning and hints method
used in this section doesn’t have reconstructing step. This is because we want to show the effec-
tiveness of hints and reconstructing step is an extraneous variable. In contrast experiments, we iter-
atively implement pruning and hints operations . To fairly compare, in pruning and hints method,
we substitute finetune operation for hints operation to get pruning-only method. In Figure 6, we
observe that pruning and hints method has comparable performance with pruning-only method on
small amount of iteration. However, the margin of two methods becomes larger and larger with the
increase of iterations (pruned channels number). This phenomenon caused by the huge performance
degradation in pruning operation when the original model is small. The small model doesn’t have
many redundant neurons and the main structure will be broken in pruning. And hints can alleviate
this trend and help reconstruct parameters in pruned model.

5 CONCLUSION

In this paper, we propose PWH Framework, an iterative framework for model acceleration. Our
framework takes the advantage of both pruning and hints methods. To our best knowledge, this is
the first work that combine these two model acceleration methods. Furthermore, we conduct recon-
structing operation between hints and pruning steps as a cascader. We analyze the property of these
two methods and show they are complementary to each other: pruning provides a better initializa-
tion for student model and hints method helps to adjust parameters in pruned model. Experiments on
CIFAR-10, ImageNet and COCO datasets for classification and pose estimation tasks demonstrate
the superiority of PWH Framework.

8



Under review as a conference paper at ICLR 2019

REFERENCES

J. M. Alvarez and L. Petersson. Decomposeme: Simplifying convnets for end-to-end learning. arXiv
preprint arXiv:1606.05426, 2016.

Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning efficient
object detection models with knowledge distillation. In Advances in Neural Information Process-
ing Systems (NIPS), 2017.

Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun. Cascaded
pyramid network for multi-person pose estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems (NIPS), 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. In Advances in Neural Information Processing
Systems (NIPS), 2014.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision (IJCV),
88(2):303–338, 2010.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems (NIPS), 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: efficient inference engine on compressed deep neural network. In Proceedings of the
43rd International Symposium on Computer Architecture ISCA), 2016.

Stephen Jos Hanson and Lorien Y Pratt. Comparing biases for minimal network construction with
back-propagation. In Advances in Neural Information Processing Systems (NIPS), 1989.

Hassibi, Babak, and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in Neural Information Processing Systems (NIPS), 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

9



Under review as a conference paper at ICLR 2019

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. In International Conference of
Learning Representation (ICLR), 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015.

M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low
rank expansions. In British Machine Vision Conference (BMVC), 2014.

Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. Local binary convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems (NIPS), 1990.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference of Learning Representation (ICLR), 2017a.

Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking very efficient network for object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), 2014.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference of Learning Repre-
sentation (ICLR), 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision (ECCV), 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances In Neural Information Processing Systems
(NIPS), 2015.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In International Conference of Learning
Representation (ICLR), 2015.

Wonyong Sung Sajid Anwar, Kyuyeon Hwang. Structured pruning of deep convolutional neural
networks. arXiv preprint arXiv:1512.08571, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference of Learning Representation (ICLR), 2015.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances In Neural Information Processing Systems (NIPS), 2015.

10



Under review as a conference paper at ICLR 2019

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in Neural Information Processing Systems (NIPS), 2014.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-
formance of convolutional neural networks via attention transfer. In International Conference of
Learning Representation (ICLR), 2017.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional
networks for classification and detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence (T-PAMI), 2016.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantiza-
tion: Towards lossless cnns with low-precision weights. In International Conference of Learning
Representation (ICLR), 2017.

11



Under review as a conference paper at ICLR 2019

APPENDIX

In this supplementary material, we first provide more implementation details for better illustration
of our experiments. In the second part, we give a proof in §3.3. We show that the upper bound of
normalized L2 loss will decrease if L2 loss decreases theoretically.

A IMPLEMENTION DETAILS

Following section contains more implementation details and We use PyTorch deep learning frame-
work with 4 NVIDIA Titan X GPUs.

A.0.1 CIFAR-10:

CIFAR-10 dataset has 10 classes containing 6000 32 × 32 color images each. 50000 images are
used for training and 10000 for test. We use top-1 error for evaluation. For model, we use the VGG-
16 Simonyan & Zisserman (2015) network with BatchNorm Ioffe & Szegedy (2015). In CIFAR-10
finetune (hints) step, we use standard data augmentation with random cropping with 4 pixels, mean
substraction of (0.4914, 0.4822, 0.4465) and std to (0.2023, 0.1994, 0.2010). A batch size of 128
and learning rate of 1e-3 are used . We set finetune (hints) epoch as 20. The hints method utilized on
this dataset is L2 hints method with loss weight 10. We sample 1000 images to reconstruct weights.

A.0.2 IMAGENET:

ImageNet classification dataset consists of 1000 classes. We train models on 1.28 million training
images and test models on 100k images. Top-1 error is used to evaluate models. In this experiment,
ResNet18 He et al. (2016) is our original model and we use PWH Framework to compress it. During
finetune (hints) stage, the batchsize is 256, learning rate is 1e-3. We set mean substraction to (0.485,
0.456, 0.406) and std to (0.229, 0.224, 0.225). The loss weight is set as 0.5. The random cropping
is used. In rescontructing stage, 1000 images are sampled to reconstruct hints layer weights.

A.0.3 COCO:

We conduct pose estimation experiment on COCO dataset. In this experiment, we train our models
on trainval dataset and evaluate models on minival set. The evaluation criteria for COCO dataset we
use is OKS-based mAP. We use ResNet18 with FPN Chen et al. (2018) as the original model in the
experiment. And in this experiment, we use random cropping, random rotation and random scale as
our data augmentation strategy. We use a weight decay of 1e-5 and learning rate of 5e-5. The loss
weight is set as 0.5. A batch size of 96 is used. The number of sampled images in reconstructing
step is 500.

B THE PROOF IN §3.3

In reconstructing step, we use least square method to reconstruct parameters in hints layer. The
objective function of this step can be described in equation 7.

min
W
‖Y −WX‖22 (7)

Where Y is the feature map of original (teacher) model, X is the input of hints layer and W is the
parameter of hints layer. However, many hints methods use normalized L2 loss as hints loss (See
equation 8). It’s difficult to optimize the problem using common methods if we set normalized L2
loss as objective function.

min
W

∥∥∥∥ Y

‖Y ‖
− WX

‖WX‖

∥∥∥∥2
2

(8)

In this section, we will show that the upper bound of normalized L2 loss is related to L2 loss. In
other words, if L2 loss decreases, the upper bound of L2 loss will decrease. For an image x, y is the
feature map of teacher network whose input is x. We suppose that:

y = Wx+e = y0 + e

E[‖y − y0‖2] = E[‖e‖2] ≤M
(9)
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Where e is the error and it is independent with x. E[·] means the expectation. We suppose that
1
‖y‖ can be expressed as the function of y0 and e using taylor expansion. Equation 10 shows the
expression.

1

‖y‖
=

1

‖y0 + e‖
=

1

‖y0‖
+ATe+ o(ATe) ≈ 1

‖y0‖
+ATe (10)

Where AT is the Jacobian matrix. And we use this approximation to estimate the upper bound of
normalized L2 loss:

E[

∥∥∥∥ y

‖y‖
− y0
‖y0‖

∥∥∥∥2]

=E[

∥∥∥∥ y0 + e

‖y0 + e‖
− y0
‖y0‖

∥∥∥∥2]

≈E[

∥∥∥∥ e

‖y0‖
+ (y0 + e)(ATe)

∥∥∥∥2]

=E[

∥∥∥∥(
1

‖y0‖
I + y0A

T + eAT)e

∥∥∥∥2]

(11)

Where I is the identity matrix. For convenience, we assume that K = 1
‖y0‖I + y0A

T. And K is
irrelevant to e. The above equation can redescribed as:

=E[
∥∥(K + eAT)e

∥∥2]

=E[eT(K + eAT)T(K + eAT)e]

=E[eTKTKe+ 2eTAeTKe+ eTAeTeATe]

(12)

Using Cauchy Inequality and the property of eigenvalue, we propose that:

eTKTKe ≤ λ1eTe = λ1 ‖e‖2

(eTA)(eTKe) ≤ (‖e‖ ‖A‖)(λ2eTe) = λ2 ‖A‖ ‖e‖3

eTAeTeATe ≤ |eTA||eTe||ATe| ≤ ‖A‖2 ‖e‖4
(13)

Where λ1 and λ2 are the maximal eigenvalues of KTK and K. We suppose that ‖e‖ ≤ 1. In this
way, we can get the estimation of normalized L2 loss:

E[

∥∥∥∥ y

‖y‖
− y0
‖y0‖

∥∥∥∥2]

≤λ1E[‖e‖2] + λ2E[‖A‖ ‖e‖3] + E[‖A‖2 ‖e‖4]

=λ1E[‖e‖2] + λ2E[‖A‖]E[‖e‖3] + E[‖A‖2]E[‖e‖4]

≤(λ1 + λ2E[‖A‖] + E[‖A‖2])M

(14)

And A is irrelevant to M . So we conclude that when L2 loss M decreases, the upper bound of
normalized L2 loss will decrease.

C HINTS METHODS USED IN EXPERIMENTS

L2 Hints L2 hints is a widely used hints method. It can be easily implemented by adding an extra
L2 loss. L2 hints use the euclidean distance of feature map between teahcer and student model’s as
the supervision. Equation 15 shows the expression of L2 hints.

Lm =
1

N
‖ft − fs‖22 (15)

Where ft and fs are the feature map of teacher and student networks. N is the total number of
elements in feature map.
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Normalization Hints Unlike normal hints loss, normalization hints first do normalization op-
eration to both teacher’s and student’s features and then calculate the euclidean distance of two
normalized features. Equation 16 shows the expression of normalization hints.

Lm =
1

N

∥∥∥∥ ft
‖ft‖

− fs
‖fs‖

∥∥∥∥2
2

(16)

D PSEUDOCODE

The pseudocode of our method is as follows:

Algorithm 1 The pipeline of PWH Framework

Input: Initial original model W0, Dataset X
Output: Compressed model W

1: Iterations T , channels to be pruned in an iteration C, student model Ws, teacher model Wt

2: Wp = P (W,C,X), P (·) represents pruning step
3: Wh = H(Wt,Ws, X), H(·) represents hints step
4: Wr = R(W,X), R(·) represents reconstructing step
5: Initial Wt=W0, i = 1
6: while i <= T do
7: Wp ← P (Wt, C,X)
8: Ws ← R(Wp, X)
9: W ← H(Wt,Ws, X)

10: Wt ←W
11: end while
12: W ← H(W0,W,X)
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