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ABSTRACT

We introduce a new convolutional layer named the Temporal Gaussian Mixture
(TGM) layer and present how it can be used to efficiently capture longer-term
temporal information in continuous activity videos. The TGM layer is a tempo-
ral convolutional layer governed by a much smaller set of parameters (e.g., lo-
cation/variance of Gaussians) that are fully differentiable. We present our fully
convolutional video models with multiple TGM layers for activity detection. The
experiments on multiple datasets including Charades and MultiTHUMOS confirm
the effectiveness of TGM layers, outperforming the state-of-the-arts.

1 INTRODUCTION

Activity videos are spatio-temporal data: they are image frames with a specific width/height (XY)
concatenated along time axis (T). Recognition from such videos requires capturing both spatial
and temporal information in the videos, desirably using learned convolutional kernels. Temporal
convolution is particularly beneficial in activity ‘detection’ tasks, which require making activity
decisions at every frame given a continuous video (Sigurdsson et al., 2016b; Yeung et al., 2015).
Previous methods investigated using 3-D XYT convolutional filters (Tran et al., 2014; Carreira &
Zisserman, 2017) as well as the models with 2-D XY conv. layers followed by 1-D temporal conv.
(Tran et al., 2018), pooling or attention layers (Piergiovanni et al., 2017).

Understanding complex multi-activity videos requires capturing information in long-term time inter-
vals. Different frames contain different information, and the model needs to learn to take advantage
of as many frames as possible, while abstracting them efficiently. Previous attempts of simply pool-
ing representations over time or learning temporal conv. filters with a small number of frames (e.g.,
16 or 64) was thus often insufficient to fully consider rich long-term temporal context. Simulta-
neously, bruteforcely increasing the temporal filter length (to look at more frames) results more
learnable parameters, requiring more training data, which can be expensive when activities are rare.

In this paper, we introduce a new convolutional layer named the Temporal Gaussian Mixture (TGM)
layer, and present how it can be used to efficiently capture longer-term temporal information in
activity videos. Our temporal Gaussian mixture layer is a temporal convolutional layer, whose fil-
ters/kernels are controlled by a set of (temporal) Gaussian distribution parameters. Each of our tem-
poral Gaussian distributions specify (temporally) ‘where’ the model should look, and our Gaussian
mixture layer combines them as multiple convolutional filters to be applied on top of temporally-
continuous representations. This layer allows the video representation at each time step to be con-
structed while focusing on different neighboring temporal regions, instead of only focusing on its
local segment. It is a convolutional layer governed by a much smaller set of parameters (i.e., loca-
tions/variances of the Gaussians as well as their mixture weights) that are fully differentiable.

The motivation behind our temporal Gaussian mixture layer is to learn the temporal structure of an
activity as a composition of temporal Gaussian regions/attentions. Such structure allows the model
to obtain a compact spatio-temporal representation abstracting each (long-term) time interval, using
multiple temporal conv. layers with far fewer parameters. It is also related to the previous temporal
attention works (Piergiovanni et al., 2017), but our model is designed to be fully convolutional to
handle continuous data and it learns more compositional structures with multiple layers.

We present video-CNN models using our TGM layers for activity detection in continuous videos.
Our model stacks TGM layers on top of several state-of-the-art CNNs such as I3D (Carreira &
Zisserman, 2017). This enables our model to capture longer-term temporal information than what
we use as base CNNs, compositionally modeling temporal structure with multiple TGM layers. Our
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model was evaluated on multiple public datasets including MultiTHUMOS and Charades, and was
able to outperform the best previous activity detection CNNs by a meaningful margin.

2 RELATED WORKS

Learning video representations for human activity recognition has been successful. CNN meth-
ods allow end-to-end learning of video features and representations optimized for the training data,
performing superior to traditional works (Aggarwal & Ryoo, 2011) for video understanding.

Two-stream CNN models take a single RGB frame and a small number of optical flow frames
as inputs to capture both motion and appearance information in videos (Simonyan & Zisserman,
2014; Feichtenhofer et al., 2016). Models learning 3-D spatio-temporal (XYT) convolutional filters
were designed and applied to many activity recognition tasks as well (Tran et al., 2014; Carreira &
Zisserman, 2017; Tran et al., 2017; Hara et al., 2017). Large scale datasets for activity detection,
such as THUMOS (Jiang et al., 2014), ActivityNet (Heilbron et al., 2015), Kinetics (Kay et al.,
2017), and Charades (Sigurdsson et al., 2016b) provided these approach the necessary training data
to learn the models. Such 3-D XYT CNNs were also used to capture spatio-temporal information
for activity detection (Xu et al., 2017; Shou et al., 2016; 2017; Zhao et al., 2017). However, all these
CNNs were limited to the consideration of a fixed local video segment (e.g., 16 frames in (Tran
et al., 2014) and 64-99 frames in (Carreira & Zisserman, 2017)) when making activity decisions.

Some works studied combining representations over longer-term temporal intervals (Karpathy et al.,
2014; Ng et al., 2015; Varol et al., 2017), but it was generally done with a temporal pooling of local
representations or (spatio-)temporal convolutions with a bit larger fixed intervals. Recurrent neural
networks (RNNs) have also been used to model activity transitions between frames (Yeung et al.,
2015; 2016; Escorcia et al., 2016), but they were strictly sequential and had limitations in main-
taining temporal information over a longer temporal duration, particularly for videos with multiple
complex activities. Recently, CNN models using temporal attention for activity videos (Piergiovanni
et al., 2017; Piergiovanni & Ryoo, 2018b) were studied as well. However, a fully convolutional
model to analyze continuous videos while efficiently representing information in long term intervals
has been lacking.

Our layer is different from the previous standard (spatio-)temporal convolutional layers in that it
relies on significantly fewer parameters by forcing filter shapes to be Gaussian compositions. Our
temporal layer is also different from previous Gaussian Mixture Model layers (Variani et al., 2015)
in that our layer is convolutional while they are not.

3 APPROACH

In this section, we introduce a new convolutional layer named the Temporal Gaussian Mixture
(TGM) layer, and present how it can be used for activity recognition. Our Temporal Gaussian
Mixture layer is a temporal convolutional layer to be applied on top of a sequence of representations
(usually from frame-level or segment-level CNNs), whose filters/kernels are controlled by a set of
(temporal) Gaussian distribution parameters. The motivation is to make each temporal Gaussian
distribution specify (temporally) ‘where to look’ with respect to the activity center, and represent
the activity as a collection/mixture of such temporal Gaussians convolved with video features. Our
layer is fully differentiable and trainable using standard backpropagation.

Our TGM layer can be interpreted as a a form of 1-D convolution where the filters are determined by
a mixture of Gaussians. However, our TGM layer differs from the standard temporal convolutional
layers of learning 1-D (time) or 2-D (channel-by-time) filters in the following aspects:

1. Our temporal Gaussian mixture layer handles multiple 3-D tensors internally to preserve
channels from the frame-level CNN by adding a new temporal channel axis. Its input
is 3-D (channel-by-channel-by-time), where one channel dimension is inherited from the
frame-level CNN and this dimension size remains unchanged.

2. Instead of learning temporal convolution filters of any arbitrary values, our filter is forced to
have the form of a temporal Gaussian mixture shared across all frame-level channels. This
allows the layer to rely on significantly fewer number of (fully differentiable) parameters,
while capturing the concept of temporal structure/attention.
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Figure 1: Example illustrating how our Temporal Gaussian Mixture layer is computed. Multiple (M )
temporal Gaussian distributions are learned, and they are combined with the learned soft attention
weights to form the C temporal convolution filters. L is the temporal length of the filter.

3.1 TEMPORAL GAUSSIAN MIXTURE LAYER

Our temporal Gaussian mixture layer takes a 3-D input with the dimensionality of Cin × D × T ,
where Cin is the number of input channels, D is the dimensionality of the representations from
frame-level (or segment-level) CNNs, and T is the time. Given such input, the TGM layer convolves
it with Cout number of 1 × L filters/kernels, generating a Cout ×D × T -dim representation as an
output. L is the temporal length of the temporal Gaussian mixture filter. D is usually 1K or 4K and
T is the number of time steps (frames) in each video (i.e., it varies per video). Cout is the number
of different mixtures, corresponding to the number of output channels in standard convolution.

Our layer is composed of a set of M Gaussians. Each Gaussian has 2 parameters: a center µ̂ and a
width σ̂. Each layer has additional hyper-parameters: L, the temporal duration and M , the number
of Gaussians to learn. We force the learned center to be between −L

2 and L
2 and σ to be positive:

µ = (L− 1) · tanh (µ̂+ 1)

2
, σ2 = exp (σ̂). (1)

We use the above µ and σ to construct the temporal Gaussian kernels. This acts as a strong sparsity
constraint on the convolutional kernel as well as a drastic reduction of the number of learnable
parameters. We construct a temporal Gaussian mixture convolutional kernel as:

K̂m,l =
1

Z
exp− (l − µm)2

2σ2
m

(2)

where Z is a normalization constant such that
∑L

l K̂m,l = 1, resulting in K̂ being anM×Lmatrix.

Instead of making the model learn a separate set of Gaussian distributions per activity class, we
take the approach of maintaining multiple Gaussian distributions shared across classes and obtain a
Gaussian ‘mixture’ filter by learning soft-attention weights. We learn a set of soft-attention weights
per output channel i, ω ∈ RCout×M . We create the soft-attention weights by applying the softmax
function over the M Gaussians, enforcing each input channel weights sum to 1.

ai,m =
expωi,m∑
j expωi,j

(3)

Based on temporal Gaussian distributions K̂i and attention weights ai,m, the temporal convolution
filters our TGM layer is computed as:

Ki =
∑
m

ai,mK̂i. (4)

This provides us convolutional filters having the form of a mixture of temporal Gaussians, controlled
based on 2 ·M + Cin · Cout ·M parameters (instead of learning D2 · L parameters without any
constraint, as in standard temporal convolution where C << D). An overview of this process is
shown in Fig. 1.

3.1.1 SINGLE TGM LAYER - DIRECT PER-CLASS ACTIVITY MODELING

The representation we obtain by applying our base CNNs to each frame (or local segment) has
the dimensionality of D, and stacking them along time axis provides us the representation with
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Figure 2: Illustration of a TGM layer with grouped convolution. This layer learns a set ofC Gaussian
mixtures that are convolved with the input channels.

1×D×T -dim. That is, in the case of using only one TGM layer to capture activity representations,
our Cin is fixed to 1 and Cout is fixed to be the number of activity classes. This is the simplest case
of our model, attaching one TGM layer on top of the 1×D × T representation.

Our convolutional kernel, K, has a learned Gaussian mixture for each activity class. Let the video
features v be a D × T matrix. Each Ki is a 2-D convolutional filter with a size of 1 × L, and
convolving this with v provides us a representation S with Cout number of D × T responses since
Cin is 1 in this case. This per-class representation can then be used as input to a fully-connected
layer for activity classification. For i ∈ {1, 2, . . . , Cout}:

si = v ∗Ki, S = [s1, s2, . . . , sCout
] (5)

Fig. 7 in the appendix visually illustrates how each TGM filter is convolved with the input (Fig. 7d),
compared to the standard 1-D convolution (Fig. 7a) or other forms of the temporal layers (Fig. 7b-c).

3.1.2 MULTIPLE TGM LAYERS - GROUPED CONVOLUTION

We generalize the above formulation to allow the TGM layers to be sequentially applied. The idea
is to enable our model to capture more complex, nonlinear temporal structure by having multiple
levels of temporal layers. In this case, the input for each layer is Cin ×D× T dimensional (instead
of 1×D× T ), where the input channels are the number of output channels from the previous layer.
Our kernels at each layer, Ki, are parameterized and learned as before.

By using grouped convolution with the number of groups set to Cin, we can efficiently separate the
input into per-channel values and convolve each of them with the designated Ki kernel, as shown in
Fig. 2. That is, we learn a filter Ki per channel by setting Cin = Cout. For i ∈ [1, Cout],

si = fi ∗Ki, S = [s1, s2, . . . sCout
] (6)

Here, f is a Cin ×D × T tensor, where D is the dimensionality of the feature and T is the number
of frames. The result of the per-channel convolution, si, is a D × T representation. We concatenate
these representations along the channel axis, resulting in S, a Cout ×D× T representation. As this
convolution results in the same output shape, we can stack these layers. Each layer is able to capture
increasing temporal resolution, allowing the model to capture levels of abstractions.

3.1.3 MULTIPLE TGM LAYERS - CHANNEL COMBINATION

In the above subsection, we introduced an approach of stacking multiple TGM layers to model a
hierarchical composition of temporal representations. However, in the grouped convolution case,
each output channel of the layer is solely dependent on its corresponding input channel. That is,
each kernel only considers information from a single output channel of the previous layer.

Therefore, we further generalize our TGM layer so that the layer combines representations from
multiple input channels for each output channel while using the learned temporal kernels. We learn
a set of convolutional kernels K ∈ RCout×Cin×L (i.e., we learn Cout · Cin Gaussian mixtures).
Given f which is the Cin × D × T representation, for each output channel i ∈ [1, Cout] and each
input channel j ∈ [1, Cin] pair, we convolve the associated filters with the input.

Gi,j = (fj ∗Ki,j) (7)

where each Gi,j is a D × T -dim representation.

We then learn a 1x1 convolution followed by a ReLU activation function for each i ∈ [1, Cout],
which we call wi, that maps from Cin channels to 1 channel. The 1x1 convolution learns to combine
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Figure 3: Illustration of a TGM layer with channel combination. The kernels are applied to each
input channel, Cin, and a 1x1 convolution is applied to combine the Cin input channels for each
output channel, Cout.

the channels from the previous layer. By design, the TGM kernel is positive and sums to 1. Adding
the unconstrained 1x1 convolution adds non-linearity (using the ReLU activation function) to our
layer and only adds Cout · Cin parameters.

si = Gi ∗ wi = (fj ∗Ki,j) ∗ wi, S = [s1, s2 . . . , sCout
] (8)

We then stack the si representations along the channel axis to produce S, the Cout × D × T -dim
representation. This process is illustrated in Fig. 3. This method generalizes our approach to allow
the layer to take input of Cin×D×T and produce output of Cout×D×T . These layers can easily
be stacked to learn a hierarchical representation.

3.2 VIDEO CNN MODELS WITH TGM LAYERS

Our goal is to do activity detection which we define as making a per-frame (or per-segment) classi-
fication. Given a video, at each time step t, we want to make the model decide which activity the
frame corresponds to (including no-activity). As a baseline, we train a fully-connected layer that
classifies each per-frame D-dimensional vector, vt. As multiple activities can occur at the same
time, or no activities at all, we treat this as a mutli-label classification task. We minimize binary
cross entropy:

L(v) =
∑
t,c

zt,c log(p(c|vt)) + (1− zt,c) log(1− p(c|vt)) (9)

where zt,c is the ground truth label, 1 if activity c is occurring at time t and p(c|vt) is the output of
our model for class c at time t. Fig. 4 shows an example CNN.
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Figure 4: An overview of an example video CNN model with two TGM layers. It is able to handle
videos with any length, because of its fully convolutional design.
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4 EXPERIMENTS

4.1 IMPLEMENTATION AND BASELINES

Implementation We used I3D (Carreira & Zisserman, 2017) and the two-stream version of In-
ceptionV3 (Szegedy et al., 2016) pretrained on Imagenet and Kinetics as our base per-frame CNNs.
Our default L setting used for the TGM layers as well as the other baselines was as follows: when
using I3D segment features (collected at 3fps), the 1 layer models used L = 15 and the 3 layer
models used L = 5. When using InceptionV3 frame feature (collected at 8fps), the 1 layer models
used L = 30 and the 3 layer models used L = 10. These layers were attached on top of the base
CNN, as described in Subsection 3.2. Please check the appendix for implementation and training
details and results on other datasets.

Baselines In order to confirm the advantages of our TGM layers, particularly against previous
temporal models, we implemented several baselines. The first is (i) a standard per-frame classifier
in which the prediction at each time-step only depends on a single feature vector with no contextual
temporal information. We also used (ii) LSTMs on top of per-frame representations, which were
popularly used to capture temporal information (Donahue et al., 2015). We train a bi-directional
LSTM with 512 hidden units to make per-frame predictions. We also tried (iii) the fixed pyramid
temporal max-pooling of level 3 (Ryoo et al., 2015). Finally, we compare our model against (iv) the
model with standard temporal convolutional layers (i.e., 1-D convolution with a D × L kernel) on
top of per-frame representations. This is similar to the temporal conv. used in (Tran et al., 2018).
Temporal lengths (i.e., L) of the 1-D conv. filters and the pooling windows were set to be identical to
the TGM filters. That is, they capture the same temporal duration as TGMs. In all our experiments,
we follow the standard evaluation setting of computing per-frame mean average precision (mAP)
and report those values. We also compare to different versions of the TGM layer, (v) with a learned
mixture of random temporal filters and (vi) with a learned mixture of fixed Gaussians.

In addition, we also tried the approach of combining our TGM layers with the recent super-event
representations (Piergiovanni & Ryoo, 2018b). We concatenated the learned super-event represen-
tation with our representations from TGM layers.

4.2 MULTITHUMOS

Dataset MultiTHUMOS (Yeung et al., 2015) is an extended version of the THUMOS (Jiang et al.,
2014) dataset that densely annotates the continuous videos. The dataset consists of 65 different
classes, compared to 20 in THUMOS, and contains on average 10.5 activities per video and 1.5
labels per frame and up to 25 activity instances in each video. This is in contrast to many other
activity detection dataset such as ActivityNet (Heilbron et al., 2015), which only has on average ∼1
activity per video. MultiTHUMOS consists of YouTube videos of various sport activities such as
basketball games, volleyball games, weight lifting, and track and field.

We followed the standard MultiTHUMOS evaluation setting of measuring mAP based on per-frame
annotations. There are 1010 validation videos and 1574 test videos. We used these continuous
validation videos for the training of our models. We did not need to take advantage of the separate
training set with segmented videos; even without them, we outperformed the state-of-the-arts.

Results We compared baselines as well as multiple different versions of our architectures, shown
in Table 1. The model with our TGM layers consistently outperformed baseline I3D (or Incep-
tionV3) while using the same per-segment representations. Learning 3 TGM layers further improved
the performances. On the other hand, we found that stacking multiple standard temporal convolu-
tional layers does not improve performance, often performing worse than the baseline. While a
single standard temporal conv. layer improves over the baseline, having multiple of them signifi-
cantly increases the number of parameters to learn (Table 2) and we suspect that this was causing
the overfitting with the limited amount of samples in the dataset. In Table 3, we compare the results
of using a LSTM or temporal conv. with a similar number of parameters. This was done by making
their temporal conv. filters to share values across multiple channels. These models result in nearly
random performance, as they were not designed to cope with a small number of parameters. We
also show results with a mixture of random (fixed) temporal filters and with a mixture of fixed Gaus-
sians. These results confirm that (i) modeling the temporal structure as a learned Gaussian mixture
is beneficial and that (ii) further learning the Gaussian distribution parameters is important.
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Table 1: Comparison of various architectures on MultiTHUMOS using both I3D per-segment and
InceptionV3 per-frame features. We found that TGM layers with 1x1 convolution channel com-
bination performed the best. Results are in mAP %. Note that we use the same filter length for
“Temporal Conv” and “TGM” models, as described in Section 4.1.

I3D InceptionV3
Spatial Temporal Two-Stream Spatial Temporal Two-Stream

Baseline 22.3 25.0 29.7 13.6 14.1 15.2
Temporal Conv 32.5 35.5 38.4 15.2 15.5 15.8

3 Temporal Conv 20.4 23.4 24.4 5.3 6.1 6.5

TGM layers with grouped convolution

1 TGM 35.1 37.8 40.5 16.3 17.5 18.0
3 TGM 36.4 42.3 43.5 17.5 18.3 19.2

TGM layers with channel combination

1 TGM (soft) 35.2 37.9 40.2 17.2 17.6 18.4
1 TGM (1x1) 36.1 38.2 40.8 17.2 17.7 18.4
3 TGM (soft) 36.2 40.1 42.3 17.5 19.1 21.2
3 TGM (1x1) 37.2 42.1 44.3 17.9 19.3 22.2

Table 2: Additional number of parameters for
models when added to the base architecture
(e.g., I3D or Inception V3).

Model # of parameters

LSTM 10.5M
1 Temporal Conv 10.5M
3 Temporal Conv 31.5M

1 TGM Layer 10K
3 TGM Layers 100K

Table 3: Comparison of previous methods with
comparable number of parameters and random
forms of our TGM layer.

Model mAP

LSTM with 100k parameters 6.5
Temporal Conv. with 100k parameters 7.3

TGM with random temporal filters 34.5
TGM with fixed Gaussians 38.5

Full TGM 44.3

Learning multiple TGM layers with channel combination outperforms the grouped convolution ver-
sion of TGM and all the baselines. We also experimented with a version using soft-attention weights
to combine the TGM layer channels, in addition to our method (Fig. 3) of using 1x1 convolution
followed by a ReLU (to gain non-linearity). We found that the 1x1 convolution performed better.
We tested various number of Gaussian mixtures (i.e., output channels) and found that using 80 for
the first and second layer and using 65 (i.e., number of classes) for the final layer performs best.

Table 4 compares our model using TGM layers with multiple previous state-of-the-art approaches
and baselines such as LSTM. Our approach meaningfully outperforms all previous approaches. Im-
portantly, we are comparing our approach with different methods of capturing temporal informa-
tion such as LSTMs and fixed temporal pyramid pooling while making them use the exactly same
per-frame representations. We found that while all these methods capture some temporal informa-
tion, the TGM layers provide the best performance. Further, combining the super-event represen-
tation (Piergiovanni & Ryoo, 2018b) with our TGM feature also benefited detection, confirming
that our TGMs and super-events capture different aspects of the activity videos. In Fig. 5, we show
an example of the various models predictions on a basketball video. We outperform the previous
state-of-the-art performance (mAP) by 10% (36.4 vs. 46.4).

4.3 CHARADES

Dataset Charades (Sigurdsson et al., 2016b) is a large scale dataset with 9848 videos across 157
activity classes. These videos were recorded in home environments of the participants based on
provided scripts. Each video contains on an average of 6.8 activity instances, and there are often
complex activities co-occurring. The activities were mainly performed at home. For example, some
activity classes are ‘preparing a meal’, ‘eating’, ‘sitting’, ‘cleaning’, etc.

In our experiments, we follow the original Charades detection setting (i.e., Charades v1 localize
evaluation), which is the setting used in many previous approaches (Sigurdsson et al., 2016a; Xu
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Figure 5: Illustration of the temporal regions classified as various basketball activities from a bas-
ketball game video in MultiTHUMOS. Our TGM layers greatly improve performance.

Table 4: Performances of the state-of-the-art methods and our approach on MultiTHUMOS. Our
approach meaningfully outperforms all previous results.

mAP

Two-stream (Yeung et al., 2015) 27.6
Two-stream + LSTM (Yeung et al., 2015) 28.1

Multi-LSTM (Yeung et al., 2015) 29.6
Predictive-corrective (Dave et al., 2017) 29.7

I3D baseline 29.7
I3D + LSTM 29.9

I3D + temporal pyramid 31.2
I3D + super-events (Piergiovanni & Ryoo, 2018b) 36.4

I3D + our TGMs 44.3
I3D + super-events (Piergiovanni & Ryoo, 2018b) + our TGMs 46.4

et al., 2017; Piergiovanni & Ryoo, 2018b). This is the original setting more challenging than the
Charades Challenge 2017 setting (whose evaluation server was no longer approving new account
access), in the aspect that it uses less amount of training videos.

Results We compare our results with the state-of-the-arts in Table 5. To our knowledge, our
method is obtaining the best known performance in the original localization setting of the Charades
dataset. Notably, it is performing better than I3D that obtained the best competition performance,
while using the same feature. Our method also outperforms standard temporal convolution, LSTMs,
and fixed pyramid pooling, as well as the use of latent super-events. When setting L = 30 and
using 3 TGM layers, our model is able to capture around 800 frames (about ±15 seconds from each
frame) of temporal information, significantly more than previous works (e.g., I3D only captures ±2
seconds).

5 CONCLUSIONS

We newly introduced the Temporal Gaussian Mixture (TGM) layer and demonstrated its effective-
ness for multi-activity detection in continuous videos. Our layer is fully differentiable and trainable
using standard backpropagation, designed to learn temporal structure. We were able to confirm that
our layer performs superior to state-of-the-art methods on activity detection datasets including Mul-
tiTHUMOS and Charades, obtaining the best known performance. We also tested our approach with
two more public video datasets, MLB-YouTube (Piergiovanni & Ryoo, 2018a) and AVA (Gu et al.,
2017), and confirmed its advantage over the previous works in Appendix.
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A IMPLEMENTATION DETAILS

As our base per-segment CNN, we use the I3D (Carreira & Zisserman, 2017) network pretrained
on the ImageNet and Kinetics (Kay et al., 2017) datasets. I3D obtained state-of-the-art results on
segmented video tasks, and this allows us to obtain reliable vt. We also use two-stream version of
InceptionV3 (Szegedy et al., 2016) pretrained on Imagenet and Kinetics as our base per-frame CNN,
and compared them. We chose InceptionV3 as it is deeper than previous two-stream CNNs such as
(Simonyan & Zisserman, 2014; Feichtenhofer et al., 2016). We extracted frames from the videos at
25 fps, computed TVL1 (Zach et al., 2007) optical flow, clipped to [−20, 20]. For InceptionV3, we
computed features for every 3 frames (8 fps). For I3D, every frame was used as the input. I3D has
a temporal stride of 8, resulting in 3 features per second (3 fps).

We implemented our TGM layers as well as other baseline layers in PyTorch. Our default setting
was as follows: for 3-layer models, we set L = 10 for frame-based features (i.e., InceptionV3)
and L = 5 for segment-based features (i.e., I3D), as each segment already contains some temporal
information. For 1-layer models, we set L = 30 for frame-based features and L = 15 for segment-
based features. We set M = 16 and Cout = 80 and Cout = 65 for the last TGM layer. We found
these values to work well on a held out portion of the training set of MultiTHUMOS. In all models,
we used one fully-connected layer at the end to make the per-frame or per-segment classification.

We trained our models using the Adam (Kingma & Ba, 2014) optimizer with the learning rate set to
0.01. We decayed the learning rate by a factor of 10 after every 10 training epochs. We trained our
models for 50 epochs. We plan to make all our source code and trained models publicly available
once the paper is published.

B HYPERPARAMETER EXPERIMENTS

We conducted a set of experiments to compare the effects of the temporal duration, L, number of
Gaussians, M , and the number of output channels, Cout. For these experiments, we only used the
one-stream version of I3D with RGB inputs.

Effect of L: In Table 6, we compare different values of L. For these experiments, we use M = 16
andCout = 16. We find that the 3-layer model with L = 5 performs the best. With I3D features, this
allows the model to capture up to 8 seconds of information. The average activity in MultiTHUMOS
is 3.3 seconds long and the maximum is 14.7 seconds long, and with this setting, the model is able
to capture enough temporal context to perform well. Larger values of L capture too much temporal
information, but due to the Gaussian structure, it does not drastically harm performance. Figure 6
shows that even with longer kernels, the Gaussians learn to focus mostly on the center of the interval
and capture the rough duration of the activities. Thus, having too long intervals does not drastically
harm performance, which is in contrast to the standard 1-D convolution. Note that for Charades,
the temporal kernels are learned to capture much longer temporal duration, as the average activity
in charades is 12.8 seconds and larger values of L perform better.

Figure 6 illustrates examples of the learned TGM kernels of various lengths. The figure shows that
the kernels focus on short temporal intervals on MultiTHUMOS even if we make the filters longer,
as the activities are an average of 3.3 seconds long. On Charades, the TGM kernels learn to capture
much longer intervals, as the activities are an average of 12.8 seconds long. We believe that this
suggests TGMs are learning to capture information from the important necessary intervals.

In Table 6, we also report the results of using a standard 1-D conv. layer with different L values.
The number of parameters in our TGM layer is independent of L, however, with the standard 1-D
conv. layer, the number of parameters increases as L increases. We find that increasing L with 1-D
convolution helps for small values of L, but for L > 15, the performance drastically drops, while
TGM layers only show a small decrease.

Effect ofM : In Table 7, we compare different values ofM . For these experiments, we set L = 15
and Cout = 16. We find that M = 16 performs best, suggesting that smaller values of M restrict
the possible temporal kernels too much. We also observe that larger values of M performs slightly
worse than M = 16 (but not much), likely because they introduce more parameters than needed.
When M and L have similar values, it allows the model to learn a sufficient number of Gaussians
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Table 6: Effect of L on MultiTHUMOS and Charades using only RGB I3D features. Note that the
3 TGM layer models have larger temporal resolution than the 1 TGM layer models for the same
values of L. We also compare to using standard one-layer 1-D conv layer with different values of L.

MultiTHUMOS Charades
1 Layer 3 Layers 1-D Conv 1 Layer 3 Layers 1-D Conv

I3D Baseline 22.3 - - 15.3 - -
L = 3 30.2 31.7 26.6 15.5 16.1 15.5
L = 5 32.5 37.2 28.3 15.7 17.8 16.3
L = 10 34.5 35.4 31.7 16.1 18.2 16.6
L = 15 36.1 34.1 32.5 17.5 18.6 16.8
L = 30 32.5 33.9 26.5 18.1 18.9 12.1
L = 50 32.1 33.7 15.4 18.3 18.8 6.7

Table 7: Comparison of various values of M on
MultiTHUMOS and Charades using RGB I3D
features. For these experiments, 1 layer was
used with L = 15 and Cout = 16.

MultiTHUMOS Charades

M = 2 27.8 15.5
M = 4 33.1 16.2
M = 8 34.8 17.5
M = 16 36.1 17.5
M = 32 35.7 17.1
M = 64 35.8 17.3

Table 8: Comparison of values of Cout on Mul-
tiTHUMOS and Charades using RGB I3D fea-
tures. For these experiments, 1 layer was used
with L = 15 and M = 16.

MultiTHUMOS Charades

Cout = 1 33.5 16.2
Cout = 4 34.2 17.4
Cout = 8 35.5 17.5
Cout = 16 36.1 17.5
Cout = 32 36.0 17.2
Cout = 64 36.1 17.4
Cout = 80 36.1 17.5

and create a diverse range of temporal kernels. When M is larger than L, it results in learning a
kernel similar to standard 1-D convolution.

Effect of Cout: In Table 8, we compare different values of Cout. For these experiments, L =
15, we used 1-layer and M = 16. We find that Cout performs best when set to 16 or larger on
these datasets. Larger values of Cout seem to capture redundant information, as it does not lower
performance.

MultiTHUMOS L=15 MultiTHUMOS L=30

Charades L=30Charades L=15

Figure 6: Illustration of several learned TGM kernels. On MultiTHUMOS, it learns to focus on
shorter intervals to capture shorter events. On Charades, the Gaussians have a larger σ value, result-
ing in filters that attend to longer temporal durations.
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Figure 7: (a-c) Different forms of 1-D temporal convolutions which take aD×T input and produces
a C × T output based on C number of D × L kernels: (a) the standard 1-D convolution, (b) using
Gaussian mixtures for 1-D convolution while sharing Gaussian mixtures across input channels, and
(c) usingD different Gaussian mixtures for 1-D convolution. (d) Our TGM layer in its simplest form
(i.e., 1-layer case) applying the 1 × L temporal kernel in a 2-D convolutional fashion, maintaining
both time and feature axis.
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Figure 8: A temporal convolutional layer with channel combination similar to Fig. 3. The difference
is that this layer does not learn Gaussian mixtures, but unconstrained 1-D temporal kernels.

C COMPARISON OF DIFFERENT LAYER FORMS

To confirm the various aspects of our design, we conducted experiments comparing different types
of temporal convolution. In Fig. 7a we illustrate the standard 1-D convolution, taking D × T input
and producing a C × T output, where D is the number of input channels and C is the number of
output channels. In Fig. 7b, we illustrate the method of applying a Gaussian mixture kernel as 1-D
convolution. Here, the Gaussian mixture kernel is shared by all D input channels and we learn a
C number of such kernels. In Fig. 7c, we illustrate the approach of applying a Gaussian mixture
kernel as 1-D convolution while learning D different Gaussian mixtures. This is very similar to the
standard 1-D convolution, except that the filter values are constrained to have the shape of Gaussian
mixtures.

Fig. 8 illustrates one more baseline. This is similar to our full TGM layer with the channel-
combination described Fig. 3. However, in this baseline, instead of learning Gaussian mixtures, we
learn Cin ·Cout number of 1×L kernels. The kernel values are left unconstrained. While the TGM
layer has 2 ·M+Cin ·Cout ·M+Cin ·Cout parameters, this layer has L ·Cin ·Cout ·M+Cin ·Cout,
which is more than the TGM layer.

In Table 9, we compare the results of the various above-mentioned layers on MultiTHUMOS using
RGB I3D features. We find that the Fig. 7b method performs poorly, while the Fig. 7c method
slightly outperforms the standard 1-D convolution. The Fig. 8 method is slightly better than the
standard 1-D convolution, but performs worse than Fig. 7c. However, none of these layers per-
form as well as our TGM layer, confirming that both the design of learning Gaussian mixtures and
maintaining temporal channel axis are important for activity detection.
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Table 9: Comparison of the different forms of temporal convolution on MultiTHUMOS using RGB
I3D features. We set L = 15 and used 1 layer models for these experiments.

MultiTHUMOS

Standard 1-D Convolution (Fig. 7a) 32.5
The layer described in Fig. 7b 28.6
The layer described in Fig. 7c 33.2
The layer described in Fig. 8 32.8

Our TGM Layer 36.1

(a) (b) (c) (d) (e)

Figure 9: Examples of several of the activities in the MLB-YouTube dataset: (a) Pitch, (b) Hit, (c)
Bunt, (d) Hit by pitch, (e) No activity. This shows the difficulty of this dataset, as the difference
between hit and bunt, swing and no swing are very small.

D EXPERIMENTS ON ADDITIONAL DATASETS

D.1 MLB-YOUTUBE DATASET

D.1.1 DATASET

The MLB-YouTube dataset (Piergiovanni & Ryoo, 2018a) consists of 20 baseball games from the
2017 MLB post-season available on YouTube. This dataset consists of over 42 hours of video. For
these experiments, we used the continuous video setting which have 2,126 1-2 minute long clips.
Each clip is densely annotated with the baseball activities that occur. There are 8 activity classes:
pitch, strike, ball, swing, hit, foul, hit by pitch, and bunt. Examples of some of these classes are
shown in Fig. 9. Each continuous clip contains on average of 7.2 activities, giving a total of over
15,000 activity instances in the dataset.

What makes this dataset challenging is that the variation between classes is very small. In Activi-
tyNet (Heilbron et al., 2015), for example, the difference between swimming and brushing hair is
drastic. The background, motion, and even size of the person in the video is different. However,
in broadcast baseball videos, the difference between a ball and a strike, or a swing and a bunt, are
small. All actions are recorded from the same camera angle as we can confirm from Fig. 9.

D.1.2 RESULTS

In Table 10, we compare various approaches on this dataset. Our TGM layers improve over the
baseline by ∼6% (40.1 vs. 34.2). Additionally, we compare to methods using the super-event rep-
resentation (Piergiovanni & Ryoo, 2018b), which previously achieved state-of-the-art performance
on several activity detection datasets. On this dataset, our approach outperforms the super-event
representation, and further the concatenation of our TGM representation with such super-event rep-
resentation performs best by a significant margin (∼13% compared to the baseline). This suggests
that TGMs and super-event capture different temporal information and are both useful to the detec-
tion task.

We further find that using multiple, standard temporal convolution layers leads to worse perfor-
mance, likely due to overfitting from the large number of parameters. While using multiple TGM
layers improves performance, confirming that the Gaussian structure and sparsity constraint benefits
model learning.
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Table 10: Result mAP on the MLB-YouTube dataset using InceptionV3 and I3D to obtain features.
Our TGM layers significantly outperform the baseline models.

Model Spatial Temporal Two-stream

Random 13.4 13.4 13.4

InceptionV3 31.2 31.8 31.9
InceptionV3 + LSTM 32.1 33.5 34.1

InceptionV3 + 1 temporal conv 32.8 34.4 35.2
InceptionV3 + 3 temporal conv 28.4 29.8 30.1

InceptionV3 + super-events 31.5 36.2 39.6
InceptionV3 + 1 TGM 32.4 36.3 37.4
InceptionV3 + 3 TGM 33.2 38.2 38.2

InceptionV3 + 3 TGM+super-events 34.6 42.4 42.9

I3D 33.8 35.1 34.2
I3D + LSTM 36.2 37.3 39.4

I3D + 1 temporal conv 37.3 38.6 39.9
I3D + 3 temporal conv 32.4 34.6 35.6

I3D + super-events 38.7 38.6 39.1
I3D + 1 TGM 35.5 37.5 38.5
I3D + 3 TGM 36.5 38.4 40.1

I3D + 3 TGM+super-events 39.4 46.0 47.1

Table 11: Results on AVA dataset with the temporal annotation-only setting (i.e., frame classification
without using bounding box training labels).

mAP

Random 2.65
I3D baseline 7.5

I3D + 3 temporal conv. layers 7.9
I3D + LSTM 7.8

I3D + super-events(Piergiovanni & Ryoo, 2018b) 9.8
I3D + 1 TGMs 11.2
I3D + 3 TGMs 14.5

I3D + 3 TGMs + super-events 14.9

D.2 AVA

D.2.1 DATASET

AVA (Gu et al., 2017) is a large-scale video dataset containing of 80 atomic action classes in 57k
video clips. These clips are drawn from movies. Existing datasets, such as Charades, have very
specific actions that depend on objects, such as holding a cup vs. holding a picture. In AVA, the
actions are intentionally generic, such as sit, stand, hold, carry, etc. Further, the AVA dataset is
annotated with both spatial and temporal locations of activities. Since we are interested in temporal
activity detection, we follow the setting of Piergiovanni & Ryoo (2018b) and label each frame with
the occurring activities while ignoring the spatial location. We evaluate performance following the
same method as MultiTHUMOS, Charades and MLB-YouTube by measuring per-frame mAP.

D.2.2 RESULTS

In Table 11, we present the results of our model. We again find that temporal convolution and LSTMs
provide some benefit over the baseline, but TGM layers further improve performance. Again, com-
bining the TGM, which captures local temporal structure, with super-events which capture global
temporal structure, provides the best performance by ∼ 7.4%.
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