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ABSTRACT

Learning representations of data is an important issue in machine learning. Though
GAN has led to significant improvements in the data representations, it still has
several problems such as unstable training, hidden manifold of data, and huge
computational overhead. GAN tends to produce the data simply without any
information about the manifold of the data, which hinders from controlling desired
features to generate. Moreover, most of GAN’s have a large size of manifold,
resulting in poor scalability. In this paper, we propose a novel GAN to control
the latent semantic representation, called LSC-GAN, which allows us to produce
desired data to generate and learns a representation of the data efficiently. Unlike the
conventional GAN models with hidden distribution of latent space, we define the
distributions explicitly in advance that are trained to generate the data based on the
corresponding features by inputting the latent variables that follow the distribution.
As the larger scale of latent space caused by deploying various distributions in one
latent space makes training unstable while maintaining the dimension of latent
space, we need to separate the process of defining the distributions explicitly and
operation of generation. We prove that a VAE is proper for the former and modify a
loss function of VAE to map the data into the pre-defined latent space so as to locate
the reconstructed data as close to the input data according to its characteristics.
Moreover, we add the KL divergence to the loss function of LSC-GAN to include
this process. The decoder of VAE, which generates the data with the corresponding
features from the pre-defined latent space, is used as the generator of the LSC-GAN.
Several experiments on the CelebA dataset are conducted to verify the usefulness
of the proposed method to generate desired data stably and efficiently, achieving
a high compression ratio that can hold about 24 pixels of information in each
dimension of latent space. Besides, our model learns the reverse of features such
as not laughing (rather frowning) only with data of ordinary and smiling facial
expression.

1 INTRODUCTION

Developing generative model is a crucial issue in artificial intelligence. Creativity was a human
proprietary, but many recent studies have attempted to make machines to mimic it. There has been an
extensive research on generating data and one of them, generative adversarial network (GAN), has
led to significant achievements, which might be helpful to deep learning model because, in general,
lots of data result in good performance (LeCun et al., 2015). Many approaches to creating data as
better quality as possible have been studied: for example, variational auto-encoder (VAE) (Kingma
& Welling, 2013) and GAN (Goodfellow et al., 2014). The former constructs an explicit density,
resulting in an explicit likelihood which can be maximized, and the latter constructs an implicit
density (Goodfellow, 2016). Both can generate data from manifold which is hidden to us so that we
cannot control the kind of data that we generate.

Because it is costly to structure data manually, we need not only data generation but also automatically
structuring data. Generative models produce only data from latent variable without any other
information so that we cannot control what we want to generate. To cope with this problem,
the previous research generated data first and found distributions of features on latent space by
investigating the model with data, since the manifold of data is hidden in generative models. This
latent space is deceptive for finding an area which represents a specific feature of our interest; it would
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Figure 1: Examples of the manifold. Left: a complex manifold which can be seen in general models,
Right: a relatively simple manifold in the proposed model. The midpoint M of A and B can be easily
calculated in the right manifold, but not in the left one. The midpoint of A and B is computed as N in
the left manifold, which is incorrect.

take a long time even if we can find that area. Besides, in the most of research, generative models had
a large latent space, resulting in a low compression rate which leads to poor scalability. To work out
these problems, we propose a model which can generate the data whose type is what we want and
learn a representation of data with a higher compression rate, as well. Our model is based on VAE
and GAN. We pre-define distributions corresponding to each feature and modify the loss function
of VAE so as to generate the data from the latent variable which follows the specific distribution
according to its features. However, this method makes the latent space to become a more complex
multimodal distribution which contains many distributions, resulting in an instability in training
the LSC-GAN. We prove that this problem can be solved and even made more efficiently by using
an auto-encoder model with the theorem in Section 3. Although the proposed model compresses
the data into small manifold, it is well-defined with Euclidean distance as shown in Fig. 1, which
compares the manifolds in general models and in our model. The distance can be calculated with
Euclidean distance in adjacent points but not in far points at the left manifold in Fig. 1. However, in
the right manifold, we can calculate the distance between points regardless of the distance of them,
where we can recognize the manifold more easily as shown in the left side. Thanks to a relatively
simple manifold, it can produce neutral features regardless of their location in latent space, so that all
features can be said as independent to each other. Our main contribution is summarized as follows.

• We propose a method to improve the stability of a LSC-GAN with LSC-VAE by performing
the weight initialization, and prove it theoretically.

• We achieve conditional generation without additional parameters by controlling the latent
space itself, rather than adding additional inputs like the existing model for condition
generation.

• We propose a novel model that automatically learns the ability to process data continuously
through latent space control.

• Finally, we achieve an efficient compression rate with LSC-GAN based on weight initializa-
tion of LSC-VAE.

The rest of the paper is organized as follows. Section 2 reviews the related works and the proposed
LSC-GAN model is illustrated in Section 3. In Section 4, we evaluate the performance of the proposed
method with some generated data. The conclusion and discussion are presented in Section 5.

2 RELATED WORKS

Many research works have been conducted to generate data such as text, grammar, and images (Yang
et al., 2017; Kusner et al., 2017; Denton et al., 2015). We divide the approaches for data generation
into three categories: only generation, conditioned generation, and transforming data to have different
features.

Several researchers proposed generative models of VAE and GAN (Kingma & Welling, 2013;
Goodfellow et al., 2014). These are basis of the generative models. Both use maximum likelihood
approach, but they have different policies to construct density: explicitly and implicitly. There are lots
of variations of these models. Radford et al. (2015) constructed deep convolutional GAN (DCGAN)
with convolutional neural networks (CNN) for improving the performance with the fact that CNN
had been huge adoption in computer vision applications. Zhao et al. (2016) introduced energy-based
GAN (EBGAN) using autoencoder in discriminator. Kim et al. (2017a; 2018a;b) proposed transferred
encoder-decoder GAN (TED-GAN) for stabilizing process of training GAN and used it to classify
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the data. These studies focused on high productivity in generation so that they could not control the
type of generated data.

Recently, some researchers began to set conditions on the data they generate. Sohn et al. (2015) and
Walker et al. (2016) inputted data and conditions together into VAE and generated data whose type is
what they want, called conditional VAE (CVAE). van den Oord et al. (2017) set discrete embedding
space for generating a specific data using vector quantized variational auto-encoder (VQ-VAE), but
because of discrete space, they could not control latent space continuously. Larsen et al. (2015) used
both VAE and GAN in one generative model. As they just mixed two models and did not analyzed
a latent space, so that the manifold of data was hidden to us. To generate image with a specific
feature, they extracted a visual attribute vector which is a mean of vector in latent space. Mirza &
Osindero (2014) inputted not only data but also conditions into GAN to create data that we want,
called conditional GAN (CGAN). Chen et al. (2016) used mutual information for inducing latent
codes (InfoGAN) and Nguyen et al. (2017) added a condition network that tells the generator what to
generate (PPGN) . These two models needed an additional input to generate the type of data we want.
These studies make us to generate data with condition, but we still do not know about latent space
and it is hard to find the location of a specific feature in the latent space. Therefore, we propose a
model that learns to generate concrete features that we want from the latent space determined when
LSC-VAE is trained.

Some studies attempted to transfer the given data to others which have different features or even in
different domain. Tran et al. (2017) proposed disentangled representation learning GAN (DRGAN)
for pose-invariant face recognition. Reed et al. (2016a;b) tried matching latent space of text and
images and finally they translated text to image. Zhang et al. (2017) also translated text to image
and generated photo-realistic images conditioned on text by stacking models (StackGAN). Zhu et al.
(2017) and Kim et al. (2017b) discovered cross-domain relations with CycleGAN and DiscoGAN.
They can translate art style, face features, and bags to shoes. While other models could only do one
conversion task, Choi et al. (2017) proposed StarGAN that could do multiple translation tasks with
one model. These studies have been conducted to transform the data into those in other domains.
However, they could not generate new data without input data. In addition, the size of latent space of
most of them was too large. We aim to generate conditioned data even with a small size of latent
space.

3 THE PROPOSED METHOD

In this section, we present a method to generate the data with the corresponding characteristics by
inputting the latent variable which follows the specific distribution in latent space. As the instability
caused by the larger scale of latent space in this process, we use the modified VAE, called LSC-VAE1.
As shown in Fig. 2(a), we train the LSC-VAE with Lprior for the data to be projected by the encoder
into the desired position in the latent space according to the characteristics of the data. The trained
decoder of the LSC-VAE is used as a generator of LSC-GAN so that the LSC-GAN generates the
data with the corresponding features by using latent variables sampled from a specific distribution.

The proposed model is divided into two phases: initializing latent space (Fig. 2(a)) and generating
data (Fig. 2(b)). In the first phase, latent semantic controlling VAE (LSC-VAE) is trained to project
data into a specific location of latent space according to its features, and it learns to reconstruct data
which is compressed. The decoder of LSC-VAE is used in the generator (G) of LSC-GAN in the
second phase. G and discriminator (D) are trained simultaneously so that G can produce data similar
to real data as much as possible and that D can distinguish the real from the fake. The architecture of
the generation process is shown in Fig. 2(b).

3.1 INITIALIZING THE LATENT SPACE WITH LSC-VAE

Auto-encoder has been traditionally used to represent manifold without supervision. In particular,
VAE, one type of auto-encoders, is one of the most popular approaches to unsupervised learning of
complicated distributions. Since any supervision is not in training process, the manifold constructed
is hidden to us. As we mentioned in Section 1, this is usually too complex to generate the conditioned

1Intuitively, as opposed to GAN, VAE constructs the distribution of data explicitly, resulting in efficient
training of LSC-GAN. We deal with this theoretically in Section 3.2.
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Figure 2: (a) The process of pre-defining a latent space. The LSC-VAE is trained to project the data
into the appropriate position on latent space. (b) Generating process of the proposed method. The
latent space is pre-defined in the process of (a).

data. Therefore, we allow LSC-VAE to learn a representation of data with supervision. It compresses
data into a particular place on latent space according to its features. The proposed model consists of
two modules that encode a data xi to a latent representation zi and decode it back to the data space,
respectively.

zi ∼ Enc(xi) = Q(zi | xi) (1)
x̃i ∼ Dec(zi) = P (xi | zi) (2)

Index i means a feature which is included in data x and latent space z. The encoder is regularized
by imposing a prior over the latent distribution P (z). In general, z ∼ N(0, I) is chosen, but we
choose zi ∼ N (µi, I)for controlling latent space. In addition, if we want to produce data which has
multiple features i, j, we generate data from zij ∼ N (µi + µj , I)

2. The loss function of LSC-VAE
is as follows.

LLSC−V AE = −Ezi∼Q(zi|xi)[logP (xi | zi)] +DKL[Q(zi | xi) || P (zi)]
= LV AE + Lprior

(3)

whereDKL is the Kullback-Leibler divergence. The first term of equation 3 is related to reconstruction
error and the second term is related to appropriate projection of data to the latent space. For example,
when LSC-VAE projects the data with i− and j−features into the latent space, it is trained to map the
data into the pre-defined latent space (N (µi + µj , I)) with Lprior in equation 3 so as to locate the
reconstructed data as similar to the input data according to its characteristics using LV AE . Therefore,
LSC-VAE can be used in initializing GAN and it is demonstrated that LSC-VAE is valid and efficient
for LSC-GAN in the next section.

3.2 GENERATING DATA WITH LSC-GAN

GAN has led to significant improvements in data generation (Goodfellow et al., 2014). The basic
training process of GAN is to adversely interact and simultaneously trainG and D. However, because
the original GAN has a critical problem, unstable process of training (Radford et al., 2015), the least
squares GAN (LS-GAN) is proposed to reduce the gap between the distributions of real data and
fake data by Mao et al. (2017). Equation 4 shows the objective function of the LS-GAN. pdata is the
probability distribution of the real data. G(z) is generated data from a probability distribution pz ,
and it is distinguished from the real by D.

2More precisely,N (µi + µj , 2I) is correct but calculated asN (µi + µj , I) for convenience in computation
and scalability.
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min
D

Ex∼pdata(x)[(D(x)− 1)2] + Ez∼pz(z)[(D(G(z)))2]

min
G

Ez∼pz(z)[D(G(z))− 1)2]
(4)

The main differences of the proposed model with VAE-GAN and LS-GAN is that LSC-GAN is based
on LSC-VAE for initializing a latent space to control it. To produce the type of data we want, we just
input latent variable zi ∼ N (µi, I) to G, if the data has i−feature. Besides, we add the encoder of
LSC-VAE into LSC-GAN to make sure that the generated data actually have the desired features. The
encoder projects back to latent space so as to be trained to minimize the difference between latent
space where data is generated and the space where the compressed data is projected. Equation 5 is
about loss of D and loss of encoder and G.

min
D

Exi∼pdata(xi)[(D(xi)− 1)2] + Ezi∼pz(zi)[(D(G(zi)))
2]

min
Q,G

Ezi∼pz(zi)[D(G(zi))− 1)2] +DKL[Q(zi | G(zi)) || N (µi, I)]
(5)

3.2.1 PRE-TRAINED GENERATOR

Since the original GAN has disadvantage that the generated data are insensible because of the
unstable learning process of the G, we pre-train G with decoder of LSC-VAE. The goal of the
learning process of generating data of G is the same as equation 6 from equation 5, and it is
equivalent to that of equation 7. However, it is not efficient to pre-train the G, because it depends
on the parameters of the D. Therefore, we change this equation to equation 8 again, and it is
represented only by the parameters of G. In this paper, to train the G with equation 8, we use the
decoder of LSC-VAE, which is trained by using Dec(Enc(x)) ≈ x. The result of LSC-VAE is that
| pLSC−V AE

data − pLSC−V AE)
G |≤| pdata − pG | so that it can reach a goal of GAN (pdata ≈ pG)

stably, which is proved by Theorem 1 and 2.

min
G

(1−D(G(zi)))
2 (6)

⇔ D(G(zi)) ≈ 1 (7)
⇔ G(zi) ≈ x ∈ Xi, (8)

where Xi is real dataset with i−feature.

3.2.2 VALIDITY AND EFFICIENCY OF LSC-VAE

From the game theory point of view, the GAN converges to the optimal point when G and D reach
the Nash equilibrium. In this section, let pG be the probability distribution of data created from G.
We show that if G(z) ≈ x, i.e., pdata ≈ pG, the GAN reaches the Nash equilibrium. We define
J(D,G) =

∫
x
pdata(x)D(x)dx +

∫
z
pz(z)(1 − D(G(z)))dz and K(D,G) =

∫
x
pdata(x)(1 −

D(x))dx+
∫
z
D(G(z))dz3. We train G and D to minimize J(D,G) and K(D,G) for each. Then,

we can define the Nash equilibrium of the LSC-GAN as a state that satisfies equation equation 9 and
equation equation 10. Fully trained G and D are denoted by G∗ and D∗, respectively.

J(D∗, G∗) ≤ J(D∗, G)∀G (9)
K(D∗, G∗) ≤ K(D,G∗)∀D (10)

Theorem 1. If pdata ≈ pG almost everywhere, then the Nash equilibrium of the LSC-GAN is
reached.

Before proving this theorem, we need to prove the following two lemmas.

Lemma 1. J(D∗, G) reaches a minimum when pdata(x) ≤ pG(x) for almost every x.

3Since (1pdata(x)>pG(x))
2 = 1pdata(x)>pG(x) and (1 − 1pdata(x)>pG(x))

2 = (1 − 1pdata(x)>pG(x)), we
eliminate the square.
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Lemma 2. K(D,G∗) reaches a minimum when pdata(x) ≥ pG∗(x) for almost every x.

The proof of Lemma 1 and 2 were discussed by Kim et al. (Kim et al., 2018b). We assume that
pdata ≈ pG. From Lemma 1 and Lemma 2, if pdata ≈ pG, then J(D,G) and K(D,G) both reach
minima. Therefore, the proposed GAN reaches the Nash equilibrium and converges to optimal points.
By theorem 1, GAN converges when pd ≈ pg , and it is done to some extent by the modified VAE, i.e.
| pLSC−V AE

d −pLSC−V AE
g |≤| pd−pg | since the one goal of modified VAE is P (x | Q(z | x)) ≈ x.

Therefore, the proposed method is useful to initialize the weight of the generative model. However, it
shows only validity of using VAE when learning GAN. We prove that it is also efficient by proving
theorem 2. Assume that a model f is well-trained if and only if ∇Lf ≈ 0, where Lf is the loss
function of f .

Theorem 2. Let enk, dek be k epoch-trained encoder and decoder whose goal is dek(enk(x)) ≈
x ∈ X . D and de’s are linear functions.4 Let Lk

G = Ez∼Q(z|x)[(D(dek(z))− 1)2], then5Lf → 0
as k →∞.

Proof. Notice that the derivative is unique, and a derivative of linear function is itself. Since en and
de are trained with LV AE and Lprior, the following statement is satisfied.

∀ε ≥ 0,∃N ∈ Ns.t.∀k ≥ N, || dek(z)− x ||< ε (11)

By differentiating the formula,

∇Lk
G ≈ 0 as k →∞ (12)

⇔ [p(z)(D(dek(z))− 1)DD(dek(z))](z)→ 0 as k →∞

where z ∼ Q(z | x). Since the derivative of linear function is itself, it derives to

⇔ p(z)(D · dek(z)− 1)D · dek(z)→ 0 as k (13)

With the fact that D(x) = 1, ∀x ∈ X and equation 11, it finally derives to

p(z)(D(x)− 1)D(x)→ p(z) · 0 · 1 as k →∞ (14)

By theorem 1 and 2, the proposed learning process is valid and efficient.

4 EXPERIMENTS

4.1 DATASET AND EXPERIMENTAL SETTING

To verify the performance of the proposed model, we use the celebA dataset (Liu et al., 2015). It is a
large-scale face attributes dataset. We crop the initial 178×218 size to 138×138, and resize them as
64×64. We use 162,769 images in celebA and 14 attributes: black hair, blond hair, gray hair, male,
female, smile, mouth slightly open, young, narrow eyes, bags under eyes, mustache, eyeglasses, pale
skin, and chubby. We assign 20 dimensions to each feature and set mean of the ith-20 dimensions as
1. For example, if an image has i-feature, the elements of i ∗ 20th to (i+ 1) ∗ 20th of the image’s
latent variable are 1 in average and 0 in the remainder and we denote that latent variable as ni.

4.2 GENERATED IMAGES

As shown in Fig. 3, we generate images from a specific latent space by using LSC-GAN. The images
in the first column are generated to have ‘female’ and ‘blond hair’ features. We confirm that the

4In fact, it is enough that D does not satisfy DD = Da, where a ≤ −1.
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Figure 3: The generated images. The images are shown in each column according to the features
below the columns.

Figure 4: Interpolation between a series between images in leftmost and rightmost columns.

condition works well. The images in the remaining columns are transformed using equation 15 for
the features listed below. For example, if we generate an image xi which has i−feature from the
latent variable zi, we add nj to add j−feature into the image.

xij = G(zi + nj) (15)

where xij is an image which has i− and j−features, and zi is the latent variable for i−feature. To
show that the proposed model does not simply memorize data but understand features of data and
generate them, we generate images from a series between two random images as in DCGAN. As
shown in Fig. 4, the change between images is natural so that we can say that the latent space of
LSC-GAN is a manifold. Besides, the images in the middle column have both features of images in
leftmost and rightmost, resulting in more simple manifold as shown in Fig. 1.

Unlike other GAN models, the LSC-GAN fully understands features of data so as to generate data
including inverse-feature. We only train the model about the presence of the ‘pale skin’ and ’smile’
features, but the model also learned about the reverse of ‘pale skin’ and ’smile’ automatically as
shown in the fourth and the ninth column of Fig. 5. Besides, if we assign a value of 2 rather than 1
to the average of latent variable which is related to ‘mustache’, we can see that more mustaches are
created in the last column in Fig. 5. Therefore, our model can automatically infer and generate the
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Figure 5: The result of generating inverse-features. Our proposed model automatically learns inverse
features such as dark skin (inverse of ’pale skin’) and frown (inverse of ’smile’).

data with inverse-feature that do not exist in the dataset. This shows that the proposed model has the
ability to deduce a negative feature by itself although only positive features are used in training

To verify the proposed model, we conduct subjective test about the quality of the generated data. We
generate data by using DCGAN, EBGAN, and the proposed GAN. We randomly choose 25 generated
data for each model. We perform the subjective test on 30 subjects and ask them to evaluate the
quality of the generated data in 5 ways: very low, low, medium, high, and very high. We collect the
results of 750 questionnaires, which are the evaluated result of 25 generated images by 30 subjects,
and summarize them in Table 1. We score 1,2,3,4, and 5 points for each evaluation result which is
shown in the last column in Table 1.

Table 1: The results of subjective test about the quality of the generated data by DCGAN, EBGAN,
and the proposed model.

Model DCGAN EBGAN Ours
Very low (1) 38.8% 18.2% 3.6%

Low (2) 38.5% 37.6% 20.8%
Medium (3) 15.3% 28.9% 36.7%

High (4) 4.3% 11.6% 24.8%
Very high (5) 3.1% 3.6% 14.1%

Score 1.943 2.447 3.251

4.3 COMPRESSION RATE

Our model not only generates images according to input conditions, but also compress efficiently.
We calculate the compression rate with rate= sizeinputdata/sizebottleneck/#classes. As shown
in Table 2, our proposed model has the best compression rate compared to others. This proves
experimentally that LSC-VAE, theoretically proven with theorems 1 and 2, has been helpful in
initializing the weights of the LSC-GAN, and it can achieve good performance even in small latent
spaces.
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Table 2: The compression rate of models with 14 classes.
Model U-NET VQ-VAE DiscoGAN CycleGAN StarGAN LSC-GAN

Compression rate 0.504/14 48.006/14 40.922/14 0.378/14 0.188 24.546

5 CONCLUSION

In this paper, we address some of significant issues in generative models: unstable training, hidden
manifold of data, and extensive hardware resource. To generate a data whose type is what we want,
we propose a novel model LSC-GAN which can control a latent space to generate the data that we
want. To deal with a larger scale of latent space cause by deploying various distributions in one latent
space, we use the LSC-VAE and theoretically prove that it is a proper method. Also, we confirm
that the proposed model can generate data which we want by controlling the latent space. Unlike the
existing generative model, the proposed model deals with features continuously, not discretely and
compresses the data efficiently.

Based on the present findings, we hope to extend LSC-GAN to more various datasets such as
ImageNet or voice dataset. In future work, we plan to conduct more experiments with various
parameters to confirm the stability of model. We will also experiment by reducing the dimension of
the latent space to verify that the proposed model is efficient. Besides, since the encoder can project
the data to the latent space according to the features inherent in data, it could be used as a classifier.
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