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ABSTRACT

The primate visual system builds robust, multi-purpose representations of the ex-
ternal world in order to support several diverse downstream cortical processes.
Such representations are required to be invariant to the sensory inconsistencies
caused by dynamically varying lighting, local texture distortion, etc. A key ar-
chitectural feature combating such environmental irregularities is long-range hor-
izontal connections that aid the perception of the global form of objects. In this
work, we explore the introduction of such horizontal connections into standard
deep convolutional networks; we present V1Net – a novel convolutional-recurrent
unit that models linear and nonlinear horizontal inhibitory and excitatory connec-
tions inspired by primate visual cortical connectivity. We introduce the Texturized
Challenge – a new benchmark to evaluate object recognition performance under
perceptual noise – which we use to evaluate V1Net against an array of carefully se-
lected control models with/without recurrent processing. Additionally, we present
results from an ablation study of V1Net demonstrating the utility of diverse neu-
rally inspired horizontal connections for state-of-the-art AI systems on the task of
object boundary detection from natural images. We also present the emergence
of several biologically plausible horizontal connectivity patterns, namely center-
on surround-off, association fields and border-ownership connectivity patterns in
a V1Net model trained to perform boundary detection on natural images from
the Berkeley Segmentation Dataset 500 (BSDS500). Our findings suggest an in-
creased representational similarity between V1Net and biological visual systems,
and highlight the importance of neurally inspired recurrent contextual processing
principles for learning visual representations that are robust to perceptual noise
and furthering the state-of-the-art in computer vision.

1 INTRODUCTION

Following Hubel and Wiesel’s (Hubel & Wiesel, 1968) seminal work on characterizing receptive
fields in the cat striate cortex and Fukushima’s Neocognitron (Fukushima, 1980) (a hierarchical
extension of this building block), two broad families of visual models have been developed by the
neuroscience and computer vision communities respectively. The former family of models aims to
account for findings from single-cell neurophysiology, either by directly modeling types of neuronal
responses (De Valois et al., 1982; Sullivan & De Sa, 2006; Chichilnisky, 2001; Pillow, 2007) or
by proposing computational models that give rise to similar neural phenomena (Olshausen & Field,
1997; Schwartz et al., 2006).

The latter family of models, particularly Deep Convolutional Networks (DCNs) (LeCun et al., 1998),
are also loosely inspired by Hubel & Wiesel (1968) and Fukushima (1980); they aim to optimize
performance on a wide range of computer vision benchmarks including but not limited to image
recognition (Krizhevsky et al., 2012; Hu et al., 2018; Simonyan & Zisserman, 2014), contour detec-
tion (Xie & Tu, 2015; Shen et al., 2015) and object segmentation (He et al., 2017; Long et al., 2015).
Despite their impressive performance on benchmarks in these areas, these models progressively de-
viate from biological vision and recent work highlights their interesting deficiencies and sensitivities
relative to primate vision (Geirhos et al., 2019; Papernot et al., 2016; Kurakin et al., 2016; Eykholt
et al., 2017).
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Our motivation is to reverse-engineer the cortical contextual processing principles that have been
shown to be mediated by long-range horizontal connections using DCNs. Horizontal connections
are capable of systematically filling-in sensory inconsistencies and spatially binding neighbouring
features together in order to provide stable perception. In an attempt to complement DCNs with
this property and to contribute towards bridging the gap between artificial and biological visual
representations, we develop ‘V1Net’, a novel recurrent unit inspired by visual neuroscience and
Gestalt psychology literature on cortical horizontal connectivity (Das & Gilbert, 1995; Grossberg &
Mingolla, 1985). V1Net can be flexibly incorporated as a module in existing implementations of
DCNs.

In the following Section 2, we briefly survey the existing literature on biologically plausible vi-
sion models that are related to V1Net. In Section 3, we introduce the V1Net model along with it’s
mathematical formulation and an intuitive explanation of its working. In Section 4, we demonstrate
experimental results from: (1) Texturized Challenge, our proposed benchmark to evaluate object
recognition ability under perceptual noise and (2) an ablation study of V1Net’s horizontal connec-
tions using the BSDS500 boundary detection benchmark (Arbelaez et al., 2011). Subsequently, we
demonstrate several biologically plausible horizontal connections emerging in a V1Net while learn-
ing the task of boundary detection. We also share qualitative results of V1Net’s zero-shot domain
transfer on the task of object boundary detection from natural images (used for training) to stylized
images (Gatys et al., 2015). Finally, we discuss our current plans for extending the work.

2 RELATED WORK

Computational models of visual perception have been an interesting and active area of research
in the vision science and machine vision communities. Riesenhuber & Poggio (1999) and Serre
et al. (2007b;a) introduced hierarchical visual models inspired by computations in the visual cortex
to perform robust object recognition. Relevant to their models is the recently proposed CORNet
by Kubilius et al. (2018). CORNet is a deep recurrent-convolutional model of the ventral visual
stream primarily motivated by the task of core object recognition. There has been a parallel direc-
tion of research related to cortically inspired models, such as Fan et al. (2018) that compare the
representational similarity between the ventral visual stream and hierarchical deep convolutional
models trained on image recognition. Concurrently, there have been several efforts such as Cao
et al. (2018); Wang et al. (2018) from the computer vision community on incorporating long-range
spatial dependencies and lateral inhibition into deep convolutional networks.

There has been a great deal of interest in exploiting the potential of dynamical systems to model
early visual perception which is highly relevant to our work. Early computational models of vi-
sual routines proposed by Grossberg & Mingolla (1985); Grossberg & Williamson (2001); Li et al.
(2006) were primarily implemented in this dynamical systems framework using partial differen-
tial equations. However with the recent hardware and software improvements (Jouppi et al., 2017;
Abadi et al., 2016) to efficiently train Recurrent Neural Networks (RNNs), there has been a surge
in the development of biologically plausible models of vision using RNNs from the neuroscience
and computer vision communities. Kar et al. (2019) provide experimental and computational mod-
eling results demonstrating the need for recurrence in core object recognition routines. Through a
large-scale neural architecture search over models that vary along the dimensions of their core op-
erations, Nayebi et al. (2018) demonstrate the emergence of architectures equipped with recurrent
and feedback interactions to be ideal for object recognition. Additionally, they provide evidence for
the model’s neural plausibility by explaining neural data recorded from the visual cortex of awake
primates during image-viewing.

The horizontal Gated Recurrent Unit (hGRU) introduced by Linsley et al. (2018) is relevant to our
proposed V1Net. However, there are several key differences between hGRU and the V1Net in terms
of their design and horizontal connection dynamics. Among other differences, V1Net’s computa-
tions are not deliberately divided into two sequential within-timestep stages. In hGRU the inhibitory
horizontal connections are developed in the first stage which are followed by excitatory horizontal
connections. However in V1Net, linear excitatory and inhibitory connections are not exercised in
any particular order. As a subtle form of ordering, our nonlinear shunting inhibition mechanism is
implemented disynaptically as they inhibit the excitatory cells which synapse onto simple cells in
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a facilitatory fashion (see Eqn.1). We find this design to be more in line with biological horizontal
connections.

3 V1NET: A MODEL OF LONG-RANGE HORIZONTAL CONNECTIONS

We employ recurrent-convolutional neural networks to model V1Net’s computation. V1Net consists
of a population of neurons akin to simple cells in V1 that learn to detect features from their presy-
naptic input (available in the convolutional activation maps from the corresponding bottom layer).
Each ‘simple-cell’ receives recurrent inhibitory and excitatory influences from its neighboring cells
which we implement using the following three types of horizontal connections: (1) Linear additive
excitation, (2) Linear subtractive inhibition, and (3) Nonlinear divisive shunting inhibition. These
three types of horizontal connections create a push-pull integration at each neural site, resulting in a
net inhibition/excitation of a neuron’s activity as a nonlinear function of its neighbors’ activity.

3.1 MATHEMATICAL FORMULATION OF V1NET

We derive the V1Net cell by starting from the convolutional variant of a Long Short Term Memory
(LSTM) cell (Hochreiter & Schmidhuber, 1997) called the ConvLSTM (Xingjian et al., 2015). The
hidden-state dynamics of a ConvLSTM are governed by that of the original LSTM update equations
with the fully-connected operations replaced with convolution operations. At any discrete timestep t
of recurrent processing, we utilize the previous convolutional layer’s activation map to set the value
of our recurrent input tensor at time t, Xt; i.e, the input tensor Xt is set to the bottom layer’s feature
representation at all timesteps t = 0 to the final timestep t = T .

Figure 1: Comparison of a V1Net cell (left) with a ConvLSTM cell (right)

V1Net’s different horizontal connections are implemented using distinct convolutional filter banks
with varying spatial dimensions, namely Wshunt, Winh and Wexc. These convolutional filter banks
model the horizontal connectivity between all possible pairs of feedforward ‘simple-cells’ (or con-
volution feature maps) giving us the ability to visualize the nature (inhibitory/excitatory) of the
horizontal connections along with their spatial profile and connectivity strength between any pair of
feedforward receptive fields.

Horizontal connection kernels convolve over the hidden state of V1Net, Ht−1 to produce Hshunt
t ,

Hinh
t and Hexc

t respectively. The activity at each position Hexc
t [i, j, k] in layer L denotes the net

horizontal excitation received by a feedforward neuron at spatial location (i, j) in the kth activation
map from its spatial neighbors within a fixed distance from all activation maps in layer L. Similarly,
Hinh

t and Hshunt
t encode the pointwise net contextual linear and nonlinear inhibition received by

the feedforward neurons. Inhibitory and excitatory influences are then integrated with the input at
the current timestep to produce c̃t, the candidate memory cell at time t. c̃t is mixed with V1Net’s
memory cell from the previous timestep to compute ct, the current memory cell of V1Net. The
current hidden state Ht of V1Net is computed as a gated nonlinear function of the cell state ct.
A key property to note is that receptive fields of neurons in the horizontal kernels grow at every
iteration of recurrence, and hence their range of horizontal connectivity scales proportionate to the
amount of recurrent processing. The internal working of our proposed V1Net unit is shown in Fig.1
(left) alongside that of a standard ConvLSTM (right).
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The following equations summarize the working of V1Net:

ft = σ(Wf ∗Xt + Uf ∗Ht−1)

it = σ(Wi ∗Xt + Ui ∗Ht−1)

ot = σ(Wo ∗Xt + Uo ∗Ht−1)

Hexc
t , Hinh

t = σ(Wexc ∗Ht−1), σ(Winh ∗Ht−1)

Hshunt
t = σ(Wshunt ∗Ht−1)

c̃t = α×Hshunt
t × (Wc ∗Xt +Hexc

t )− β ×Hinh
t

ct = ft � ct−1 + it � σ(c̃t)
Ht = ot � tanh(ct)

(1)

Each W. and U. is a 2-D convolution kernel, ‘∗’ and σ(.) represent 2D convolution operation and
the sigmoid nonlinearity respectively. α and β are learnable parameter vectors that allow V1Net
to selectively scale up/down horizontal influences in a channel-wise fashion. Additionally as a
straightforward mathematical way to compare a V1Net cell to a ConvLSTM cell, we present below
the state-update equations of a standard ConvLSTM cell.

ft = σ(Wf ∗Xt + Uf ∗Ht−1)

it = σ(Wi ∗Xt + Ui ∗Ht−1)

ot = σ(Wo ∗Xt + Uo ∗Ht−1)

c̃t = σ(Wc ∗Xt + Uc ∗Ht−1 + bc)

ct = ft � ct−1 + it � σ(c̃t)
Ht = ot � tanh(ct)

(2)

From (1) and (2), it can be observed that the equations governing the representation dynamics of
V1Net and ConvLSTM are fairly similar. We also present diagrammatically, the process of convert-
ing a ConvLSTM into a V1Net by adding the transparent components in Fig.1 (right).

3.2 PICTORIAL EXAMPLE DEMONSTRATING V1NET’S WORKING

By design in DCNs, the flow of information between neurons within a particular spatial resolution
(within a layer) is restricted to the dimensions of the convolution kernels in that layer. This may not
be ideal for tasks such as object recognition in the presence of perceptual noise (such as clutter) or
contour tracing wherein long-range neighbouring elements at a particular spatial resolution should
explicitly be grouped together/separated in order to form a holistic object representation. V1Net’s
long-range horizontal connections precisely build in this functionality of grouping within a DCN
layer in order to efficiently link elements and represent objects robustly.

Consider the toy example of multi-digit recognition under perceptual noise (breaking up of object
boundary) and clutter as shown in Fig. 2. Standard DCNs that learn this task will require explicit
supervision for every possible configuration of overlapping digits in order to classify both digits
correctly. Moreover, one may suspect that a DCN may not generalize during test-time to overlapping
digit pairs that were not presented together during training time. This is because of the lack of a
DCN’s ability to group together elements that belong to an object and separate out those that belong
to different objects.

In a V1Net model, the horizontal excitatory connections (highlighted in red in Fig. 2) learn to
selectively link elements that are like-oriented in a neighborhood, resulting in a strong facilitation
and representational grouping of those elements that belong to a digit. On the other hand, inhibitory
connections (highlighted in blue) learn to suppress elements that are not like-oriented and (probably)
don’t belong to the same object, hence perceptually decluttering and separating the different target
digits to be recognized. Due to this reason, a V1Net model will require many fewer examples
to learn to recognize digits under clutter as it only needs to learn invariant digit templates on top
of the horizontal connections, and not require rote-memorization of every possible configuration
of overlapping digits. For the same reasons a V1Net model will require fewer parameters than a
standard DCN at a particular performance level, as the DCN needs a large number of parameters to
memorize all object configurations. Due to this decluttering effect of V1Net, we hypothesize that it
will also generalize to unseen pairs of overlapping/cluttered objects during test-time.
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Figure 2: Toy example showing excitatory grouping (in red) and inhibitory decluttering (in blue)
during digit recognition under clutter. Output represents the predicted probability distribution over
all digits (light shade represents high probability). Transparency of horizontal connections reflect
their strength.

4 EXPERIMENTS

We evaluate the proposed V1Net model on two different tasks related to perceptual robustness and
early visual representations. First, we describe the Texturized challenge, a novel challenge we
present along with this paper that aims to assess a model’s ability to robustly recognize objects
under an identity-preserving image transformation based on Fourier analysis. Second, we show ex-
perimental results from a V1Net model trained to perform the task of boundary detection on natural
images from the Berkeley Segmentation Dataset, BSDS500. Please refer to Appendix A for details
about the architectural design for these experiments.

4.1 TEXTURIZED CHALLENGE

Given the ability of horizontal connections to provide robustness against local perceptual noise, we
designed a challenge that we call the ‘Texturized challenge’. This challenge aims to assess the
perceptual robustness of various models by testing their ability to recognize object shape under per-
ceptual noise and uncertainty in their texture. All images used to generate the stimuli for texturized
challenge were sourced from the CIFAR 10 object recognition dataset (Krizhevsky et al., 2009).

Figure 3: A demonstration of our process used to generate Texturized Challenge images

By applying a Fourier transform on RGB images, we obtain a representation of the image in Fourier
space separating its phase and magnitude signals. One may incorporate local perceptual noise into
an image, particularly in the object texture (Morgan et al., 1991) while retaining the overall object
identity (via object form) by reconstructing the image with an intact phase and perturbed magnitude
representation. However, corrupting the phase (which is of higher importance for object identity
(Oppenheim & Lim, 1981; Piotrowski & Campbell, 1982)) and retaining the magnitude results in a
reconstructed image with disrupted object identity, recognizing objects from such images is difficult
even for humans and is hence not considered for our challenge. By exploiting this conceptual frame-
work, we generate images for our Texturized Challenge. Texturized images for each sample from
CIFAR10 are obtained by reconstructing the sample using its own Fourier phase representation,
and a linear combination of its own Fourier magnitude with the Fourier magnitude of a different
randomly selected image from CIFAR10. This selectively adds local perceptual noise to objects
present in the CIFAR10 dataset and retains the overall shape of objects. This complete procedure
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is demonstrated in Fig. 3. As observable from the inset figures in Fig. 4, humans are fairly robust
to this challenge. The ratio that governs the amount of randomly selected Fourier magnitude de-
notes the difficulty levels in the challenge; we present results for 4 increasing difficulty levels in our
evaluation below.

For this challenge, we systematically compare V1Net to 2 other parameter matched control models
that are void of horizontal connections. Each model was developed using the above described 3
layer framework, with the third layer being one of: (1) V1Net with horizontal connections, (2) A
traditional ConvLSTM model without horizontal connections (ConvLSTM), and (3) A feedforward
baseline with a regular 2D convolution without horizontal connections (Control-FF).

We evaluated the test-time classification accuracy of the above three types of models on images
from the Texturized challenge, the results for this evaluation are presented in Fig. 4. Each model
was tested on a range of 4 different versions of the task with increasing difficulty levels plotted on
the vertical axis. The horizontal axis represents the test-set accuracy of models at different levels of
task difficulty, which we measure using the amount of noise present in the Fourier magnitude.

From the below evaluation, we observe two attributes related to the efficacy of recurrence and hor-
izontal connections: (1) Feedforward models are the least robust to perceptual noise compared to
recurrent models. This is validated by the feedforward control’s quick deterioration in classification
accuracy at a relatively easier version of the task (compared to recurrent models). This result pro-
vides positive evidence to the claim that recurrent processing aids visual recognition, and is capable
of adding robustness to visual representations. (2) The results also reflect the superior performance
of the V1Net model with horizontal connections compared to the control models. V1Net’s improved
robustness relative to also the recurrent control (ConvLSTM) highlights the utility of horizontal con-
nections in enhancing the robustness of a model’s object representations.

Figure 4: Performance of (1) V1Net, (2) Recurrent control (ConvLSTM) and (3) Feedforward con-
trol models (Control-FF) on the Texturized challenge. Note that the difficulty level under the green
bar is the same difficulty for the adjacent blue and red bars.

4.2 UTILITY OF HORIZONTAL CONNECTIONS TO DETECT OBJECT BOUNDARIES – ABLATION
STUDY

We evaluate the proposed V1Net model on the task of boundary detection on natural images from the
Berkeley Segmentation Dataset, BSDS500 (Arbelaez et al., 2011). We chose a boundary detection
task due to the correspondence of our model with early layers in the primate visual cortex that
detect contours from visual input among their other functions. We compare 3 different lesions
of V1Net for this ablation study: (1) A standard ConvLSTM without horizontal connections acts
as our comparison baseline with all horizontal connections lesioned. We test 2 variants of this
architecture with (a) wider convolution kernels (ConvLSTM-LargeRF) and (b) greater number of
channels (ConvLSTM-MedRF) to match effective receptive field and/or number of parameters with
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V1Net respectively. (2) We evaluate the necessity of nonlinear inhibition in the presence of linear
horizontal connections by testing a lesion of V1Net without shunting inhibition (V1Net-Linear).

Fig.9 shows a sample set of boundary predictions (from V1Net) on images from the BSDS500 test
set. From our experiments with V1Net, we have consistently noticed that V1Net has relatively
higher precision compared to parameter-matched control feedforward and recurrent models trained
in similar environments.

t=0 t=3t=2t=1 t=7Input

…

t=4..6

Figure 5: Evolution of V1Net boundary predictions through time on BSDS500 test set

Model ODS-F OIS-F AP nParams
Human 0.803 0.803 - -
ConvLSTM-LargeRF 0.690 0.713 0.615 1845921
ConvLSTM-MedRF 0.653 0.671 0.581 527009
V1Net-Linear (t=2) 0.604 0.619 0.526 470241
V1Net-Linear (t=4) 0.669 0.687 0.633 470241
V1Net-Linear (t=6) 0.681 0.699 0.628 470241
V1Net (t=6) 0.710 0.727 0.659 520513
V1Net (t=6)* 0.738 0.753 0.711 520513
CEDN (Yang et al., 2016) 0.788 0.804 - 119.6M
BDCN (He et al., 2019) 0.806 0.844 0.890 16.3M
HED (Xie & Tu, 2015) 0.788 0.808 0.840 14.7M

Table 1: Quantitative evaluation of BSDS; * - V1Net model trained with data augmentation and
larger batch size

As suggested by the Optimal Dataset Scale F-1 scores (ODS-F1) in Table.1, horizontal connec-
tions in general are helpful to increase the precision and accuracy of boundary detection. While we
have not included quantitative results for a parameter-matched feedforward baseline, we noticed its
performance to be qualitatively worse than ConvLSTM-MedRF, our parameter-matched recurrent
baseline. These two observations together suggest the importance of recurrent processing for de-
tecting object boundaries, and further the advantage of employing horizontal connections to push
forward the prediction performance. Comparing our results from a full V1Net and one with hori-
zontal nonlinear connections lesioned (V1Net-Linear) reveals the pivotal role played by nonlinear
horizontal connections in the process of boundary detection. In addition, progressively decreasing
boundary prediction performance of two variants of V1Net-Linear with shorter amounts of recur-
rent processing (t=4 & t=2, 4 & 2 timesteps respectively) reveals a speed-accuracy tradeoff that is
reminiscent of similar previously reported observations in primate behavioral studies.

In order to assess the impact of standard techniques on improving performance on computer vi-
sion benchmarks, we trained a V1Net model (t=6) on the BSDS500 training set with online data
augmentation and a 1.5× larger batch size. This experiment resulted in improving V1Net’s per-
formance on all three evaluation metrics, bringing the performance closer to that of state-of-the-art
object boundary detection methods (implementation details w/ hyperparameter choices can be found
in Appendix. A).

4.3 EMERGENT NEURALLY PLAUSIBLE HORIZONTAL CONNECTIONS

There have been several accounts of ‘center-on surround-off’ surround modulation patterns in the
visual cortex of primates perceiving natural scenes. We visualized the learned horizontal connection
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patterns in a V1Net model trained to perform boundary detection on natural images. The connection
patterns reveal emergent ‘center-surround’ and ‘association-field’ like receptive fields, validating
V1Net’s increased biological plausibility. In addition, we also observed horizontal connections
giving rise to border-sensitive cells in our model that we hypothesize to correspond with ‘border-
ownership’ cells (Hesse & Tsao, 2016). Such connections in our model horizontally facilitate activ-
ity of cells with receptive fields (RFs) on a particular side of an object boundary (inside/outside the
object) and inhibit those with RFs on the opposite side of the boundary. We believe such cells are
enabling the model to confidently predict boundaries of objects by providing strong signals of the
object’s extent and suppress those cells in their surround that represent spurious boundaries. A sam-
ple of the biologically realistic horizontal connections learned by V1Net while performing boundary
detection on natural images is presented in Fig. 6.

Figure 6: Horizontal connectivity patterns learned by V1Net. Top and bottom rows show learned
convolution kernels in V1Net (simple-cells). The middle row shows spatial layout of learned hor-
izontal connectivity patterns between the top and bottom cells (synaptic strength increases from
blue/green to red).

4.4 ZERO-SHOT GENERALIZATION TO STYLE-TRANSFERRED STIMULI

In a separate experiment, we tested how well our V1Net model trained on detecting boundaries from
natural images generalizes to style-transferred stimuli (top row in Fig. 7) from Stylized-Imagenet
(Geirhos et al., 2019). Results from this experiment suggested that indeed, V1Net was capable of
zero-shot generalizing to robustly detect object boundaries from Stylized-Imagenet. Since there
isn’t a way to quantitatively analyze this experiment (lack of ground-truth data), we have included
a sample of V1Net’s predictions on Stylized-Imagenet below. We hypothesize that V1Net’s long-
range horizontal connections enable it to learn global features that are spatially distant. Hence,
V1Net does not fail to detect boundaries, without explicit supervision, despite the texture of objects
being stylized.

Figure 7: Zero-shot generalization to Stylized-Imagenet boundary prediction. Middle row: Bound-
ary predictions without recurrent processing showing edges induced by fake-texture (low precision);
Bottom row: Predictions from V1Net post recurrent processing emphasizing the true object edges
over the added-texture edges (high precision).
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5 DISCUSSION

Horizontal connections have been a key interest to the field of visual neuroscience, owing to their
diverse functionality that gives rise to invariant visual representations. To this end, we develop a
neurally-inspired recurrent neural network model of long-range horizontal connections and demon-
strate its importance also to artificial vision systems for giving rise to robust visual representations
through a systematic comparison against parameter-matched control models on our proposed Tex-
turized challenge and the BSDS500 object boundary detection benchmark. We subsequently demon-
strate the emergence of biologically plausible horizontal connection patterns from V1Net suggesting
a strong representational similarity between V1Net and primate early visual areas. We also present
qualitative results of a V1Net model generalizing in a zero-shot fashion to images with stylized tex-
ture. Continuing in this direction of using inspiration from biological vision to advance artificial
vision, we are currently working on incorporating learned top-down feedback connections in a deep
convolutional network along with V1Net. We believe that such re-entrant connections along with
horizontal connections will allow smooth flow of information within- and across different spatial
resolutions of the feature hierarchy contributing to more robust and efficient semantic segmentation
models that generalize better than their feedforward counterparts. In parallel, we are actively work-
ing on quantitatively analyzing the match between V1Net’s internal representations and single-cell
experimental recordings collected from the primate visual cortex.
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A IMPLEMENTATION DETAILS

A.1 ABLATION STUDY ON BSDS500

The architecture we use to develop models for our experiments fits into a 3 layer hierarchical ar-
chitecture that we parallel with the early visual circuit from Retina to V1. While we refer to the
different layers in our model with early visual areas, the retina and LGN in our experiments are not
designed based on the working of their biological counterparts.

Figure 8: Architectural details from the ablation study on BSDS500

All the above four models have 3×3 2D-convolution layers in their Retina and 5×5 2-D convolution
layers in their LGN. Each model uses a different number of filters in their retina and LGN ranging
from 32 to 96 depending on the number of parameters in their V1 layer.

Our ConvLSTM models are implemented using TensorFlow’s built in ConvLSTM2D layer,
ConvLSTM-MedRF (Fig.8.a) utilizes 8×8 horizontal connection kernels, while ConvLSTM-
LargeRF (Fig.8.b) utilizes 15×15 convolution kernels. V1Net-Linear (Fig.8.c) and V1Net use
15×15 2-D convolutions for their horizontal excitation and 7×7 2-D convolutions for their hori-
zontal inhibition. The spatial dimensions are chosen to be larger for excitatory connections than for
inhibitory connections to facilitate short-range inhibitory and long-range excitatory connections. In
addition, the complete V1Net model (Fig.8.d) employes another set of 5×5 2-D convolutions for the
shunting horizontal connections.

Similar to Zamir et al. (2017), we set the recurrent inputXt to the feedforward convolutional feature
representation from the bottom layer. For eg., when a V1Net block is plugged between conv-2 and
conv-3, the activation map of conv-2 is used to set Xt,∀ t ∈ [0, T − 1].

We use the TensorFlow framework to implement all our models in this paper. We found t=6
timesteps to be suitable for our V1Net and ConvLSTM models to produce accurate object bound-
aries while also fitting in our device’s memory. We are currently evaluating whether a larger number
of timesteps than 6 is useful to improve performance further using higher end training resources.
Our hyperparameter choices include: minibatch size (6), learning rate (1e-4), optimization algo-
rithm (rmsprop), learning rate decay (divide by 10 after every 1000 iterations). For the BSDS500
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experiments with data augmentation (last row in Table 1, we used 5 different data augmentation tech-
niques to expand the BSDS training set. We utilized random brightness variation, random contrast
variation, random rotation between −π/4 to π/4, horizontal flipping and vertical flipping. All these
augmentation techniques were also applied to our Texturized challenge experiments. Our models
are trained on a single NVIDIA 2080 GPU.

A.2 TEXTURIZED CHALLENGE ARCHITECTURE DETAILS

The Retina in all three models had 2 3×3 convolution layers, and the LGN utilized 2 3×3 convo-
lutions followed by a max pooling layer of size 2 × 2 with stride 2. Since CIFAR-10 images are
much smaller in size than BSDS500 (10x smaller), we reduced the size of our convolution kernels in
the last layer, V1Net to 6×6 for Wexc and 4×4 for Winh and Wshunt respectively. For our control
ConvLSTM model, we set the size of the convolution kernels in the last layer to 6×6.

A.3 MORE SAMPLE PREDICTIONS OF V1NET ON BSDS500 TEST SET

Attached below is a set of boundary predictions from V1Net on the BSDS500 test set.

Figure 9: Sample boundary predictions from a V1Net model from the BSDS500 test set
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