
The Role of Embedding Complexity in Domain-invariant Representations

Ching-Yao Chuang 1 Antonio Torralba 1 Stefanie Jegelka 1

Abstract
Unsupervised domain adaptation aims to general-
ize the hypothesis trained in a source domain to an
unlabeled target domain. One popular approach
to this problem is to learn a domain-invariant rep-
resentation for both domains. In this work, we
study, theoretically and empirically, the explicit
effect of the embedding on generalization to the
target domain. In particular, the complexity of the
class of embeddings affects an upper bound on
the target domain’s risk. This is reflected in our
experiments, too.

1. Introduction
Domain adaptation is critical in many applications where
collecting large-scale supervised data is prohibitively ex-
pensive or intractable, or conditions at prediction time can
change. For instance, self-driving cars must be robust to
various conditions such as different weather, change of land-
scape and traffic. In such cases, the model learned from
limited source data should ideally generalize to different tar-
get domains. Specifically, unsupervised domain adaptation
aims to transfer knowledge learned from a labeled source
domain to similar but completely unlabeled target domains.

One popular approach to unsupervised domain adaptation is
to learn domain-invariant representations (Ben-David et al.,
2007; Long et al., 2015; Ganin et al., 2016), by minimizing a
divergence between the representations of source and target
domains. The prediction function is learned on the latent
space, with the aim of making it domain-independent. A
series of theoretical works justifies this idea (Ben-David
et al., 2007; Mansour et al., 2009; Ben-David et al., 2010;
Cortes & Mohri, 2011).

Despite the empirical success of domain-invariant represen-
tations, exactly matching the representations of source and
target distribution can sometimes fail to achieve domain
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adaptation. For example, Wu et al. (2019) show that exact
matching may increase target error if label distributions are
different between source and target domain, and propose a
new divergence metric to overcome this limitation. Zhao
et al. (2019) establish lower and upper bounds on the risk
when label distributions between source and target domains
differ. Johansson et al. (2019) point out the information
lost in non-invertible embeddings, and propose different
generalization bounds based on the overlap of the supports
of source and target distribution.

In contrast to previous analyses that focus on changes in
the label distributions or on joint support, we here study the
effect of the complexity of the joint representation. In partic-
ular, we show a general bound on the target risk that reflects
a tradeoff between the embedding complexity and the diver-
gence of source and target in the latent representation space.
In particular, a too powerful class of embedding functions
can result in overfitting the source data and the distribution
matching, leading to arbitrarily high target risk. Hence, a
restriction (taking into account assumptions about corre-
spondences and invariances) is needed. Our experiments
reflect these trends empirically, too.

2. Unsupervised Domain Adaptation
For simplicity, we consider binary classification with input
space X ✓ Rn and output space Y = {0, 1}. Define H to
be the hypothesis class from X to Y . The learning algorithm
obtains two datasets: labeled source data XS with distribu-
tion pS , and unlabeled target data XT with distribution pT .
We will use pS and pT to denote the joint distribution on
data and labels X,Y and the marginals, i.e., pS(X) and
pS(Y ). Unsupervised domain adaptation seeks a hypoth-
esis h 2 H that minimizes the risk in the target domain
measured by a loss function ` (here, zero-one loss):

RT (h) = Ex,y⇠pT [`(h(x), y)]. (1)

We will not assume common support in source and target
domain, in line with standard benchmarks for domain adap-
tation such as adapting from MNIST to M-MNIST.

2.1. Domain-invariant Representations

A common approach to domain adaptation is to learn a joint
embedding of source and target data (Ganin et al., 2016;
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Tzeng et al., 2017). The idea is that aligning source and
target distributions in this latent space Z results in a domain-
invariant representation, and hence a subsequent classifier
f from the embedding to Y will generalize from source to
target. Formally, this results in the following objective func-
tion on the hypothesis h = fg := f �g, where G is the class
of embedding functions to Z , and we minimize a divergence
d between the distributions pS(Zg) = pS(g(X)), pT (Zg)
of source and target after mapping to Z:

min
f2F,g2G

RS(fg) + ↵d(pS(Zg), pT (Zg)). (2)

The divergence d could be, e.g., the Jensen-Shannon (Ganin
et al., 2016) or Wasserstein distance (Shen et al., 2017).

2.2. Upper bounds on the target risk

Ben-David et al. (2007) introduced the H�H-divergence
to bound the worst-case loss from extrapolating between
domains. Let RD(h, h0) = Ex⇠D[`(h(x), h0(x))] be the
expected disagreement between two hypotheses, then the
H�H-divergence is defined as follows.
Definition 1. (H�H-divergence) Given two domain distri-
butions pS and pT over X , and a hypothesis class H, the
H�H-divergence between pS and pT is

dH�H(pS , pT ) = sup
h,h02H

|RS(h, h
0)�RT (h, h

0)|.

This divergence allows to bound the risk on the target do-
main:
Theorem 1. (Ben-David et al., 2010) For all hypotheses
h 2 H, the target risk is bounded as

RT (h)  RS(h) + dH�H(pS , pT ) + �H,

where �H is the best joint risk

�H := inf
h2H

[RS(h) +RT (h)]

Similar results have been obtained for continuous labels
(Cortes & Mohri, 2011; Mansour et al., 2009).

Theorem 1 is an influential theoretical result in unsupervised
domain adaptation, and motivated work on domain invariant
representations. For example, recent work (Ganin et al.
(2016); Johansson et al. (2019)) applied Theorem 1 to the
hypothesis space F that maps the representation space Z

induced by an encoder g to the output space:

RT (fg)  RS(fg) + dF�F (pS(Zg), pT (Zg)) + �F (g)
(3)

where �F (g) is the best hypothesis risk with fixed g, i.e.,
�F (g) := inff2F [RS(fg) + RT (fg)]. The F�F diver-
gence implicitly depends on the fixed g and can be small if

Figure 1. Illustrative example in 2D. The 1D representation space
is illustrated as a dotted line and the arrows represent the embed-
ding from 2D to 1D. (a) Optimal representations when G is the
class of linear functions from 2D to 1D. (b) Optimal representa-
tion with a complex nonlinear function class with zero source and
divergence loss; this representation destroys label consistency and
leads to maximal target risk.

g provides a suitable representation. However, if g induces
a wrong alignment, then the best hypothesis risk �F (g) is
large with any function class F . The following example
will illustrate such a situation, motivating to explicitly take
the class of embeddings into account when bounding the
target risk.

3. Influence of the representation
We begin with an illustrative toy example. Figure 1 shows a
binary classification problem in 2D with disjoint support and
a slight shift in the label distributions from source to target:
pS(y = 1) = pT (y = 1) + 2✏. Assume the representation
space is one dimensional, so the embedding g is a function
from 2D to 1D. If we allow arbitrary, nonlinear embeddings,
then, for instance, the embedding shown in Figure 1(b),
together with an optimal predictor, achieves zero source loss
and a zero divergence, and is hence optimal according to the
objective (2). However, the target risk of this combination
of embedding and predictor is maximal: RT (fg) = 1.

If we restrict the class G of embeddings to linear maps
g(x) = Wx where W 2 IR1⇥2, then the embeddings that
are optimal with respect to the objective (2) are of the form
W =

⇥
a, 0

⇤
. Together with an optimal source classifier f ,

they achieve a non-zero value of 2✏ for objective (2) due to
the shift in class distributions. However, these embeddings
retain label correspondences, and can lead to a zero target
risk.

This example illustrates that a too rich class of embeddings
can “overfit” the alignment, and hence lead to arbitrarily bad
solutions. Hence, the complexity of the encoder class plays
an important role in learning domain invariant representation
too.



The Role of Embedding Complexity in Domain-invariant Representations

3.1. Bounds for Domain-invariant Representations

Motivated by the above example, we next expose how the
bound on the target risk depends on the complexity of the
embedding class. To do so, we apply Theorem 1 to the
hypothesis h = fg:

RT (fg)  RS(fg) + dFG�FG(pS , pT ) + �FG . (4)

Comparing the bound (4) to the previous bound (3), we
notice two differences: the best in-class joint risk now mini-
mizes over both F and G, i.e.,

�FG := inf
f2F,g2G

[RS(fg) +RT (fg)], (5)

which is smaller than �Fg and reflects the fact that we
are learning both f and g. In return, the divergence term
dFG�FG(pS , pT ) becomes larger than the one in bound (3).
To better understand these tradeoffs, we derive a more in-
terpetable form of the bound on the target risk. Before
presenting the bound, we define an extended version of
H�H:
Definition 2. (FG�G-divergence) For two domain distribu-
tions pS and pT over X , an encoder class G, and predictor
class F , the FG�G-divergence between pS and pT is

dFG�G (pS , pT ) = sup
f2F

g,g0
2G

|RS(fg, fg
0)�RT (fg, fg

0)|.

Note that the FG�G-divergence is strictly smaller than the
FG�FG-divergence, since the two hypotheses in the supre-
mum, fg and fg0, share the same predictor f . We are ready
to state the following result.
Theorem 2. For all f 2 F and g 2 G,

RT (fg)  RS(fg) + dF�F (pS(Zg), pT (Zg))| {z }
i Latent Divergence

(6)

+ dFG�G (pS , pT ) + �FG(g)| {z }
ii Complexity Trade-off

.

where �FG(g) is the best in-class joint risk defined as

�FG(g) = inf
f 02F,g02G

2RS(f
0g) +RS(f

0g0) +RT (f
0g0).

A detailed proof of the theorem may be found in the Ap-
pendix. The first term of the bound is the source risk. The
second term i is the F�F -divergence between the distri-
butions pS(Zg) and pT (Zg) in the representation space; this
also appears in the previous bound (3). The first term in ii
measure the FG�G-divergence between source and target
distribution, which may decrease as the complexity of the
encoder decreases. However, a less complex encoder class

G can lead to increasing the best hypothesis risk �FG(g).
Therefore, ii makes a trade-off explicit between the diver-
gence and the model complexity. Note that, as opposed to
different �FG , �FG(g) also measures the correctness of the
encoder in the source domain. If the encoder fails to provide
informative representations in the source domain, then first
term in �FG(g) can be large.

The last two terms in Theorem 1 express a similar com-
plexity trade-off as ii , but this time with repect to the
hypothesis class H, which here combines the encoder and
predictor. Hence, directly applying Theorem 1 to the com-
position (Equation (4)) treats both jointly and does not make
the role of the embedding as explicit as Theorem 2. For ex-
ample, Theorem 2 shows that we can also make the bound
tighter by minimizing the divergence between the corre-
sponding distributions in the embedding space, as long as
the encoder provides useful representations in the source do-
main. If i is sufficiently small, the FG�FG-divergence
reduces to the FG�G-divergence, which is strictly smaller
than the FG�FG-divergence.

Comparing to the previous bound in Equation (3), which
assumes a fixed g, we do not assume a known encoder and
instead quantify the effect of the encoder family. Moreover,
the term �F (g) in bound (3) involves the source and tar-
get risk, whereas in �FG(g) the encoder g only affects the
source risk, which can be estimated empirically.

Importantly, without restricting the complexity of the en-
coder or embedding, the FG�G-divergence can be large,
indicating that the target risk may be large too. This sug-
gests that restricting the model complexity of the embedding
is crucial for domain invariant representation learning.

3.2. Practical Implications

To reduce the worst case divergence i , we need to restrict
the encoder family to those that can approximately minimize

i , in coordination with the predictor class F . Practically,
we can optimize the original objective of domain invariant
representations in Equation 2 to align the latent distributions.
Term ii implies that we should choose the minimal com-
plexity encoder class G that is is still expressive enough to
encode the data from both domains. Practically, this can be
done by regularizing the encoder, e.g., restricting Lipschitz
constants or norms of weight matrices. More explicitly,
one may limit the number of layers of a neural network, or
apply inductive biases via selecting network architectures.
For instance, comparing to fully connected networks (FCs),
convolutional neural networks (CNNs) restrict the output to
be spatially consistent with respect to the input.
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Figure 2. Experiment Results on MNIST ! M-MNIST. (a) (b): Target error with respect to number of encoder’s layers. Complexities
of encoders have a direct impact on the target errors in CNN case. However, without inductive biases, DANNs with MLP encoder
consistently perform worse than hypotheses only trained in source domain. (c) (d): t-SNE projections of representations with different
inductive biases. CNN encoders result in target representations that are well align with those in source domain. However, MLP encoders
lose label-consistency while minimizing the latent divergence between domains.

4. Experiments
Next, we empirically test Theorem 2 via one example of
domain-invariant representations: Domain-Adversarial Neu-
ral Networks (DANN) (Ganin et al., 2016), which measure
the latent divergence via a domain discriminator (Jensen-
Shannon divergence). We use the standard benchmark
MNIST ! MNIST-M (Ganin & Lempitsky (2014)), where
the task is to classify unlabeled handwritten digits overlayed
with random photographs (MNIST-M) based on labeled im-
ages of digits alone (MNIST). We consider two categories
of complexity: number of layers and inductive bias (CNN).

4.1. Number of Layers of Encoder

To analyze the effect of the encoder’s complexity, we aug-
ment the original two-layer CNN encoders with 1 to 5 ad-
ditional CNN layers, leaving other settings unchanged. We
retrain each model for 5 times and plot the mean and stan-
dard deviation of target error with respect to the number of
layers in Figure 2(a): Initially, the target error decreases, and
then increases when more layers are added. This corrobo-
rates our theory: the CNN encoder without additional layers
does not have enough expressive power. As a consequence,
the best hypothesis risk term �FG is larger. However, when
more layers are added, the complexity increases and subse-
quently makes the disagreements larger.

4.2. Inductive Bias of Encoder

To investigate the importance of inductive bias in domain
invariant representations, we replace the CNN encoder with
an MLP encoder. The experimental results are shown in
2(b). Comparing the target error between (a) and (b) in
Figure 2, we can see that the target error with an MLP
encoder is significantly higher than with a CNN encoder.
Comparing to CNNs, which encode invariance via pooling
and learned filters, MLPs do not have any inductive bias

and lead to worse performance. In fact, the target error with
MLP-based domain adaptation is higher than just training on
the source, suggesting that, without an appropriate inductive
bias, learning domain invariant representations can even
worsen the performance. To gain deeper insight, we use
t-SNE (Maaten & Hinton, 2008) to visualize source and
target embedding distributions in Figure 2(c),(d). With the
inductive bias of CNNs, the representations of the target
domain aligns well with those of source domain. In contrast,
the MLP encoder results in a strong label mismatch.

4.3. Discussion

The experiments show that the complexity of the encoder
can have a direct effect on the target error. A more complex
encoder class leads to larger theoretical bound on the target
error, and, indeed, aligned with the theory, we see a signifi-
cant performance drop in target domain. Moreover, the ex-
periments suggest that inductive bias is important too. With
a suitable inductive bias such as CNNs, DANN achieves
higher performance than the with the MLP encoder, even
if the CNN encoder has twice the number of layers. CNNs
are standard for many vision tasks, such as digit recognition.
However, explicit supervision may be required to identify
the encoder class when we have less prior knowledge about
the task (Motiian et al., 2017; Chen & Chien, 2015).

5. Conclusion
In this work, we study the role of embedding complexity
for domain-invariant representations. We theoretically and
empirically show that restricting the encoder is necessary
for successful adaptation, a fact that has mostly been over-
looked by previous work. In fact, without carefully selecting
the encoder class, learning domain invariant representations
might even harm the performance. Our observations mo-
tivate future research on identifying eappropriate encoder
classes for various tasks.
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Proofs
Theorem 2. For all f 2 F and g 2 G,

RT (fg)  RS(fg) + dF�F (pS(Zg), pT (Zg)) + dFG�G (pS , pT ) + �FG(g).

where �FG(g) is the best in-class joint risk defined as

�FG(g) = inf
f 02F,g02G

2RS(f
0g) +RS(f

0g0) +RT (f
0g0) (1)

Proof. We first define the optimal composition hypothesis f?g? with respect to an encoder g to be the hypothesis which

minimizes the following error

f?g? = argmin
f 02F,g02G

2RS(f
0g) +RS(f

0g0) +RT (f
0g0) (2)

By the triangle inequality for classification error (Ben-David et al. (2007)),

RT (fg)  RT (f
?g?) +RT (fg, f

?g?) (3)

 RT (f
?g?) +RT (fg, f

?g) +RT (f
?g, f?g?) (4)

The second term in the R.H.S of Eq. 4 can be bounded as

RT (fg, f
?g)  RS(fg, f

?g) + |RS(fg, f
?g)�RT (fg, f

?g)| (5)

 RS(fg, f
?g) + sup

f,f 02F
|RS(fg, f

0g)�RT (fg, f
0g)| (6)

= RS(fg, f
?g) + dF�F (pS(Zg), pT (Zg)) (7)

 RS(fg) +RS(f
?g) + dF�F (pS(Zg), pT (Zg)) (8)

The third term in the R.H.S of Eq. 4 can be bounded as

RT (f
?g, f?g?)  RS(f

?g, f?g?) + |RS(f
?g, f?g?)�RT (f

?g, f?g?)| (9)

 RS(f
?g, f?g?) + sup

f2F,g,g02G
|RS(f

0g, f 0g0)�RT (f
0g, f 0g0)| (10)

= RS(f
?g, f?g?) + dFG�G (pS(X), pT (X)) (11)

 RS(f
?g) +RS(f

?g?) + dFG�G (pS(X), pT (X)) (12)

Combine the above bounds, we have

RT (fg)  RS(fg) + dF�F (pS(Zg), pT (Zg)) + dFG�G (pS(X), pT (X)) + �FG(g) (13)

where

�FG(g) = 2RS(f
?g) +RS(f

?g?) +RT (f
?g?) (14)

= inf
f 02F,g02G

2RS(f
0g) +RS(f

0g0) +RT (f
0g0) (15)
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