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ABSTRACT

Simultaneous machine translation models start generating a target sequence be-
fore they have encoded the source sequence. Recent approaches for this task ei-
ther apply a fixed policy on a state-of-the art Transformer model, or a learnable
monotonic attention on a weaker recurrent neural network-based structure. In this
paper, we propose a new attention mechanism, Monotonic Multihead Attention
(MMA), which extends the monotonic attention mechanism to multihead atten-
tion. We also introduce two novel and interpretable approaches for latency con-
trol that are specifically designed for multiple attention heads. We apply MMA to
the simultaneous machine translation task and demonstrate better latency-quality
tradeoffs compared to MILK, the previous state-of-the-art approach. We analyze
how the latency controls affect the attention span and we study the relationship
between the speed of a head and the layer it belongs to. Finally, we motivate the
introduction of our model by analyzing the effect of the number of decoder layers
and heads on quality and latency!'|

1 INTRODUCTION

Simultaneous machine translation adds the capability of a live interpreter to machine translation:
a simultaneous model starts generating a translation before it has finished reading the entire source
sentence. Such models are useful in any situation where translation needs to be done in real time. For
example, simultaneous models can translate live video captions or facilitate conversations between
people speaking different languages. In a usual translation model, the encoder first reads the entire
sentence, then the decoder writes the target sentence. On the other hand, a simultaneous neural
machine translation model alternates between reading the input and writing the output using either
a fixed or learned policy.

Monotonic attention mechanisms fall into the flexible policy category, in which the policies are au-
tomatically learned from data. Recent work exploring monotonic attention variants for simultaneous
translation include: hard monotonic attention (Raffel et al., [2017), monotonic chunkwise attention
(MoChA) (Chiu & Raffel, |2018) and monotonic infinite lookback attention (MILk) (Arivazhagan
et al., 2019). MILK in particular has shown better quality/latency trade-offs than fixed policy ap-
proaches, such as wait-k (Ma et al., 2019) or wait-if-* (Cho & Esipoval [2016) policies. MILk also
outperforms hard monotonic attention and MoChA; while the other two monotonic attention mech-
anisms only consider a fixed window, MILk computes a softmax attention over all previous encoder
states, which may be the key to its improved latency-quality tradeoffs. These monotonic attention
approaches also provide a closed-form expression for the expected alignment between source and
target tokens.

However, monotonic attention-based models, including the state-of-the-art MILk, were built on top
of RNN-based models. RNN-based models have been outperformed by the recent state-of-the-art
Transformer model (Vaswani et al.,[2017)), which features multiple encoder-decoder attention layers
and multihead attention at each layer.

*Work conducted during an internship at Facebook
'"The code is available at |https://github.com/pytorch/fairseq/tree/master/
examples/simultaneous_translation
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We thus propose monotonic multihead attention (MMA), which combines the high translation qual-
ity from multilayer multihead attention and low latency from monotonic attention. We propose two
variants, Hard MMA (MMA-H) and Infinite Lookback MMA (MMA-IL). MMA-H is designed with
streaming systems in mind where the attention span must be limited. MMA-IL emphasizes the qual-
ity of the translation system. We also propose two novel latency regularization methods. The first
encourages the model to be faster by directly minimizing the average latency. The second encour-
ages the attention heads to maintain similar positions, preventing the latency from being dominated
by a single or a few heads.

The main contributions of this paper are: (1) A novel monotonic attention mechanism, monotonic
multihead attention, which enables the Transformer model to perform online decoding. This model
leverages the power of the Transformer and the efficiency of monotonic attention. (2) Better la-
tency/quality tradeoffs compared to the MILk model, the previous state-of-the-art, on two standard
translation benchmarks, IWSLT15 English-Vietnamese (En-Vi) and WMT15 German-English (De-
En). (3) Analyses on how our model is able to control the attention span and on the relationship
between the speed of a head and the layer it belongs to. We motivate the design of our model with
an ablation study on the number of decoder layers and the number of decoder heads.

2 MONOTONIC MULTIHEAD ATTENTION MODEL

In this section, we review the monotonic attention-based approaches in RNN-based encoder-decoder
models. We then introduce the two types of Monotonic Multihead Attention (MMA) for Transformer
models: MMA-H and MMA-IL. Finally, we introduce strategies to control latency and coverage.

2.1 MONOTONIC ATTENTION

The hard monotonic attention mechanism (Raffel et al.,2017) was first introduced in order to achieve
online linear time decoding for RNN-based encoder-decoder models. We denote the input sequence
as x = {x1,...,x7}, and the corresponding encoder states as m = {my,...,mr}, with T being
the length of the source sequence. The model generates a target sequence y = {y1, ..., yy } with
U being the length of the target sequence. At the ¢-th decoding step, the decoder only attends to
one encoder state m;, with ¢; = j. When generating a new target token y;, the decoder chooses
whether to move one step forward or to stay at the current position based on a Bernoulli selection
probability p; ;, so that t; > ?;_;. Denoting the decoder state at the i-th position, starting from
7 =ti—1,t;—1+ 1,t,—1 + 2, ..., this process can be calculated as follows: E]

ei; = MonotonicEnergy(s;_1,m;) (D
pi,; = Sigmoid (e; ;) 2)
zij ~ Bernoulli(p; ;) 3)

When z; ; = 1, we set t; = j and start generating a target token y;; otherwise, we set ¢; = j + 1 and
repeat the process. During training, an expected alignment « is introduced to replace the softmax

attention. It can be calculated in a recurrent manner, shown in
J j—1
@iy =pig > | @i [T (1= pia)
k=1 1=k

4)
Q51
=Dij ((1 —pij1) "+ O‘i—lu’)
Dij—1
Raffel et al.| (2017) also introduce a closed-form parallel solution for the recurrence relation in

Q—1,:
: 5
cumprod(l — pi,:)> )
where cumprod(z) = [1, 21, 2129, ..., rﬁlw_lll z;] and cumsum(z) = (21,21 + T2, ..., Z‘iill x].

a; . = p;.cumprod(l — p;.)cumsum (

In practice, the denominator in Equation is clamped into a range of [e, 1] to avoid numerical in-
stabilities introduced by cumprod. Although this monotonic attention mechanism achieves online

*Note that during training, to encourage discreteness, Raffel et al.|(2017)) added a zero mean, unit variance
pre-sigmoid noise to e;, ;.
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linear time decoding, the decoder can only attend to one encoder state. This limitation can diminish
translation quality as there may be insufficient information for reordering.

Moreover, the model lacks a mechanism to adjust latency based on different requirements at decod-
ing time. To address these issues, |Chiu & Raffel| (2018)) introduce Monotonic Chunkwise Attention
(MoChA), which allows the decoder to apply softmax attention to a fixed-length subsequence of
encoder states. Alternatively, Arivazhagan et al.|(2019) introduce Monotonic Infinite Lookback At-
tention (MILk) which allows the decoder to access encoder states from the beginning of the source
sequence. The expected attention for the MILk model is defined in[Equation 6]

||
Bii=). (ai”“exp(ui’j ) ) ©)

k
k=j > 1= exp(ui)

2.2 MONOTONIC MULTIHEAD ATTENTION

Previous monotonic attention approaches are based on RNN encoder-decoder models with a single
attention and haven’t explored the power of the Transformer model. [’| The Transformer architec-
ture (Vaswani et al.,|2017) has recently become the state-of-the-art for machine translation (Barrault
et al., [2019). An important feature of the Transformer is the use of a separate multihead attention
module at each layer. Thus, we propose a new approach, Monotonic Multihead Attention (MMA),
which combines the expressive power of multihead attention and the low latency of monotonic at-
tention.

Multihead attention allows each decoder layer to have multiple heads, where each head can com-
pute a different attention distribution. Given queries @, keys K and values V', multihead attention

MultiHead(Q, K, V) is defined in

MultiHead(Q, K, V) = Concat(heady, ..., head ;) W ©

. (7
where head, — Attention (QW,?, KWE vwY )
The attention function is the scaled dot-product attention, defined in|Equation §
. QKT
Attention(Q, K, V') = Softmax < 1% (8)
Vg

There are three applications of multihead attention in the Transformer model:

1. The Encoder contains self-attention layers where all of the queries, keys and values come
from previous layers.

2. The Decoder contains self-attention layers that allow each position in the decoder to attend
to all positions in the decoder up to and including that position.

3. The Encoder-Decoder attention contains multihead attention layers where queries come
from the previous decoder layer and the keys and values come from the output of the en-
coder. Every decoder layer has a separate encoder-decoder attention.

For MMA, we assign each head to operate as a separate monotonic attention in encoder-decoder
attention.

For a transformer with L decoder layers and H attention heads per layer, we define the selection
process of the h-th head encoder-decoder attention in the I-th decoder layer as

Lh m; Wz{%(siflwl?h)T ®)
3 \/@ 1,7
pi;' = Sigmoid(e; ;) no
zf? ~  Bernoulli(p; ;) .

SMILk was based on a strengthened RNN-based model called RNMT+. The original RNMT+ model (Chen
et al., 2018)) uses multihead attention, computes attention only once, and then concatenates that single attention
layer to the output of each decoder layer block. However, the RNMT+ model used for MILk in |Arivazhagan
et al.| (2019) only uses a single head.
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Figure 1: Monotonic Attention (Left) versus Monotonic Multihead Attention (Right).

where W, 5, is the input projection matrix, dj, is the dimension of the attention head. We make
the selection process independent for each head in each layer. We then investigate two types of
MMA, MMA-H(ard) and MMA-IL(infinite lookback). For MMA-H, we use[Equation 4]in order to
calculate the expected alignment for each layer each head, given pl h For MMA-IL, we calculate
the softmax energy for each head as follows:

(12)

Vi

and then use to calculate the expected attention. Each attention head in MMA-H hard-
attends to one encoder state. On the other hand, each attention head in MMA-IL can attend to all
previous encoder states. Thus, MMA-IL allows the model to leverage more information for transla-
tion, but MMA-H may be better suited for streaming systems with stricter efficiency requirements.
Finally, our models use unidirectional encoders: the encoder self-attention can only attend to previ-
ous states, which is also required for simultaneous translation.

K F7QNT
Lh ijl,h(Si—lvvl,h)
u;’; = SoftEnergy = (
7

At inference time, our decoding strategy is shown in[Algorithm 1] For each [, h, at decoding step i,
we apply the sampling processes discussed in [subsection 2.1|individually and set the encoder step
at ti’h. Then a hard alignment or partial softmax attention from encoder states, shown in Equation
[13] will be retrieved to feed into the decoder to generate the i-th token. The model will write a new
target token only after all the attentions have decided to write. In other words, the heads that have
decided to write must wait until the others have finished reading.

¢! = Concat(ci!, 2, ..., b

'L b
m,in MMA-H

t;
where ¢, = fcontext(h7 ti ) = P\ m; MMA-IL

2 T exp (u17)

Figure [T] illustrates a comparison between our model and the monotonic model with one attention
head. Compared with the monotonic model, the MMA model is able to set attention to different
positions so that it can still attend to previous states while reading each new token. Each head can
adjust its speed on-the-fly. Some heads read new inputs, while the others can stay in the past to
retain the source history information. Even with the hard alignment variant (MMA-H), the model
is still able to preserve the history information by setting heads to past states. In contrast, the hard
monotonic model, which only has one head, loses the previous information at the attention layer.

2.3 LATENCY CONTROL

Effective simultaneous machine translation must balance quality and latency. At a high level, latency
measures how many source tokens the model has read until a translation is generated. The model
we have introduced in [subsection 2.2is not able to control latency on its own. While MMA allows
simultaneous translation by having a read or write schedule for each head, the overall latency is
determined by the fastest head, i.e. the head that reads the most. It is possible that a head always
reads new input without producing output, which would result in the maximum possible latency.
Note that the attention behaviors in MMA-H and MMA-IL can be different. In MMA-IL, a head
reaching the end of the sentence will provide the model with maximum information about the source
sentence. On the other hand, in the case of MMA-H, reaching the end of sentence for a head only
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Algorithm 1 MMA monotonic decoding. Because each head is independent, we compute line 3 to
16 in parallel

Input: x = source tokens, h = encoder states, s = 1,5 = 1, té’h = 1, yo = StartOfSequence.
1: while y;_1 # EndOfSequence do

2: tmax = 1

3 h = empty sequence

4 for ! <— 1to L do

5: for h < 1to H do

6: for j + té;hl to |z| do

7 p;" = Sigmoid (MonotonicEnergy(s;—1,m,))

8 if p;"' > 0.5 then

9: thh = j

10: Cé'h = fconlexl(hyt?h)

11: Break

12: else

13: if j > tmax then

14: Read token x;

15: Calculate state h; and append to h
16: tmax = J

17: = Concat(cﬁ’l,ci’Q, ...,ci’H)

18: st = DecoderLayer' (s}.;_1, sllfiil, )

19: yi = Output(sF)
20: 1=14+1

gives a hard alignment to the end-of-sentence token, which provides very little information to the
decoder. Furthermore, it is possible that an MMA-H attention head stays at the beginning of sentence
without moving forward. Such a head would not cause latency issues but would degrade the model
quality since the decoder would not have any information about the input. In addition, this behavior
is not suited for streaming systems.

To address these issues, we introduce two latency control methods. The first one is weighted average

latency, shown in[Equation T4}
Lh
gV = exp(g;"™) glﬁh
i T L H Lhy i
211 2n—1¢xp(g;")
where gﬁ’h = Zl?c L «;, ;. Then we calculate the latency loss with a differentiable latency metric C.

7=1
Lowg = C(g") (15)

Like |Arivazhagan et al.| (2019), we use the Differentiable Average Lagging. It is important to note
that, unlike the original latency augmented training in|[Arivazhagan et al.| (2019), is not
the expected latency metric given C, but weighted average C on all the attentions. The real expected
latency is g = max; p, gl’h) instead of g, but using this directly would only affect the speed of the
fastest head. can control every head in a way that the faster heads will be automatically
assigned to larger weights and slower heads will also be moderately regularized. For MMA-H
models, we found that the latency of are mainly due to outliers that skip almost every token. The
weighted average latency loss is not sufficient to control the outliers. We therefore introduce the
head divergence loss, the average variance of expected delays at each step, defined in

1 L H 2
Lo = 7523 (" ~3) (16)

(14)

1=1 h=1
where g; = ﬁ > g:; The final objective function is presented in [Equation 17
L(G) = - IOg(y | T, '9) + Aangavg + )\'uaerar (17)

where Agyg, Avar are hyperparameters that control both losses. Intuitively, while A4, controls the
overall speed, A\, controls the divergence of the heads. Combining these two losses, we are able to
dynamically control the range of attention heads so that we can control the latency and the reading
buffer. For MMA-IL model, we only use L,4; for MMA-H we only use L.
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3 EXPERIMENTAL SETUP

3.1 EVALUATION METRICS

We evaluate our model using quality and latency. For translation quality, we use tokenized BLEUE]
for IWSLT15 En-Vi and detokenized BLEU with SacreBLEU (Post, [2018) for WMT15 De-En. For
latency, we use three different recent metrics, Average Proportion (AP) (Cho & Esipoval [2016),
Average Lagging (AL) (Ma et al.,2019) and Differentiable Average Lagging (DAL) (Arivazhagan
et al.,2019) | We remind the reader of the metric definitions in Appendix

3.2 DATASETS

Dataset Train  Validation  Test

IWSLT15 En-Vi 133k 1268 1553
WMT15 De-En  4.5M 3000 2169

Table 1: Number of sentences in each split.

Dataset RNN Transformer
IWSLT15 En-Vi 25.6F] 28.7
WMT15 De-En 28.4 (Arivazhagan et al.,[2019) 32.3

Table 2: Offline model performance with unidirectional encoder and greedy decoding.

Dataset Beam Search  Bidirectional Encoder  Unidirectional Encoder
1 32.6 32.3
WMTIS De-En 4 33.0 33.0
. 1 28.7 29.4
IWSLT15 En-Vi 10 288 295

Table 3: Effect of using a unidirectional encoder and greedy decoding to BLEU score.

We evaluate our method on two standard machine translation datasets, IWSLT14 En-Vi and WMT15
De-En. Statistics of the datasets can be found in For each dataset, we apply tokenization
with the Moses (Koehn et al.,[2007) tokenizer and preserve casing.

IWSLT1S English-Vietnamese TED talks from IWSLT 2015 Evaluation Campaign (Cettolo et al.,
2016). We follow the settings from |Luong & Manning| (2015) and Raffel et al.| (2017). We replace
words with frequency less than 5 by <unk>. We use tst2012 as a validation set tst2013 as a test set.

WMT1S5 German-English We follow the setting from |Arivazhagan et al.[(2019). We apply byte
pair encoding (BPE) (Sennrich et al.| [2016) jointly on the source and target to construct a shared
vocabulary with 32K symbols. We use newstest2013 as validation set and newstest2015 as test set.

3.3 MODELS

We evaluate MMA-H and MMA-IL models on both datasets. The MILK model we evaluate on
IWSLT15 En-Vi is based on|Luong et al.|(2015) rather than RNMT+ (Chen et al.,2018). In general,
our offline models use unidirectional encoders, i.e. the encoder self-attention can only attend to
previous states, and greedy decoding. We report offline model performance in[Table 2]and the effect
of using unidirectional encoders and greedy decoding in For MMA models, we replace
the encoder-decoder layers with MMA and keep other hyperparameter settings the same as the
offline model. Detailed hyperparameter settings can be found in We use the Fairseq
library (Ott et al., 2019) for our implementation.

*We acquire the data from https:/nlp.stanford.edu/projects/nmt/, which is tokenized. We do not have the
tokenizer which processed this data, thus we report tokenize d BLEU for IWSLT15

SLatency metrics are computed on BPE tokens for WMT15 De-En — consistent with |Arivazhagan et al.
(2019) — and on word tokens for IWSLT15 En-Vi.

°|Luong & Manning|(2015) report a BLEU score of 23.0 but they didn’t mention what type of BLEU score
they used. This score is from our implementation on the data aquired from https://nlp.stanford.edu/projects/nmt/
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4 RESULTS

In this section, we present the main results of our model in terms of latency-quality tradeoffs, abla-
tion studies and analyses. In the first study, we analyze the effect of the variance loss on the attention
span. Then, we study the effect of the number of decoder layers and decoder heads on quality and
latency. We also provide a case study for the behavior of attention heads in an example. Finally, we
study the relationship between the rank of an attention head and the layer it belongs to.

IWSLT15 English-Vietnamese
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Figure 2: Latency-quality tradeoffs for MILk (Arivazhagan et al., 2019) and MMA on IWSLT15 En-Vi and
WMT15 De-En. Black dashed line indicates the unidirectional offline transformer model with greedy search.

4.1 LATENCY-QUALITY TRADEOFFS

We plot the quality-latency curves for MMA-H and MMA-IL in The BLEU and latency
scores on the test sets are generated by setting a latency range and selecting the checkpoint with
best BLEU score on the validation set. We use differentiable average lagging (Arivazhagan et al.|
2019) when setting the latency range. We find that for a given latency, our models obtain a better
translation quality. While MMA-IL tends to have a decrease in quality as the latency decreases,
MMA-H has a small gain in quality as latency decreases: a larger latency does not necessarily mean
an increase in source information available to the model. In fact, the large latency is from the outlier
attention heads, which skip the entire source sentence and point to the end of the sentence. The
outliers not only increase the latency but they also do not provide useful information. We introduce
the attention variance loss to eliminate the outliers, as such a loss makes the attention heads focus
on the current context for translating the new target token.

It is interesting to observe that MMA-H has a better latency-quality tradeoff than MILkE] even though
each head only attends to only one state. Although MMA-H is not yet able to handle an arbitrarily
long input (without resorting to segmenting the input), since both encoder and decoder self-attention
have an infinite lookback, that model represents a good step in that direction.

4.2 ATTENTION SPAN

In we introduced the attention variance loss to MMA-H in order to prevent out-
lier attention heads from increasing the latency or increasing the attention span. We have already
evaluated the effectiveness of this method on latency in We also want to measure
the difference between the fastest and slowest heads at each decoding step. We define the average

"The numbers of MILk on WMT15 De-En are from Arivazhagan et al.|(2019)
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attention span in

S=— ma; t,lfh — minth"? 18
|y - l,hX ¢ Lh ° (18)

It estimates the reading buffer we need for streaming translation. We show the relation between the
average attention span versus Ay, in As expected, the average attention span is reduced
as we increase A,

IWSLT15 En-Vi WMT15 De-En
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Figure 3: Effect of A4 on the average attention span. The variance loss works as intended by reducing the
span with higher weights.

4.3 EFFECT ON NUMBER OF LAYERS AND NUMBER OF HEADS

One motivation to introduce MMA is to adapt the Transformer, which is the current state-of-the-art
model for machine translation, to online decoding. Important features of the Transformer architec-
ture include having a separate attention layer for each decoder layer block and multihead attention.
In this section, we test the effect of these two components on the offline, MMA-H, and MMA-IL
models from a quality and latency perspective. We report quality as measured by detokenized BLEU
and latency as measured by DAL on the WMT13 validation set in [Figure 4 We set Aq,y = 0.2 for
MMA-IL and A4, = 0.2 for MMA-H.

The offline model benefits from having more than one decoder layer. In the case of 1 decoder layer,
increasing the number of attention heads is beneficial but in the case of 3 and 6 decoder layers, we
do not see much benefit from using more than 2 heads. The best performance is obtained for 3 layers
and 2 heads (6 effective heads). The MMA-IL model behaves similarly to the offline model, and
the best performance is observed with 6 layers and 4 heads (24 effective heads). For MMA-H, with
1 layer, performance improves with more heads. With 3 layers, the single-head setting is the most
effective (3 effective heads). Finally, with 6 layers, the best performance is reached with 16 heads
(96 effective heads).

The general trend we observe is that performance improves as we increase the number of effective
heads, either from multiple layers or multihead attention, up to a certain point, then either plateaus
or degrades. This motivates the introduction of the MMA model.

We also note that latency increases with the number of effective attention heads. This is due to
having fixed loss weights: when more heads are involved, we should increase Ayqr OF Aguq to better
control latency.

4.4 ATTENTION BEHAVIORS

We characterize attention behaviors by providing a running example of MMA-H and MMA-IL,
shown in Each curve represents the path that an attention head goes through at inference
time. For MMA-H, shown in we found that when the source and target tokens have the
same order, the attention heads behave linearly and the distance between fastest head and slowest
head is small. For example, this can be observed from partial sentence pair “I also didn’t know that”
and target tokens “Toi ciing khong biét rang”, which have the same order. However, when the source
tokens and target tokens have different orders, such as “the second step” and “budc (step) thu hai
(second)”, the model will generate “budc (step)” first and some heads will stay in the past to retain
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Figure 4: Effect of the number of decoder attention heads and the number of decoder attention layers on quality
and latency, reported on the WMT13 validation set.

the information for later reordered translation “thu hai (second)”. We can also see that the attention
heads have a near-diagonal trajectory, which is appropriate for streaming inputs.

The behavior of the heads in MMA-IL models is shown in Notice that we remove the
partial softmax alignment in this figure. We don’t expect streaming capability for MMA-IL: some
heads stop at early position of the source sentence to retain the history information. Moreover,
because MMA-IL has more information when generating a new target token, it tends to produce
translations with better quality. In this example, the MMA-IL model has a better translation on
“isolate the victim” than MMA-H (“la c6 1ap nan nhan” vs “la tdch biét nan nhan”)

N

o @é, & ‘}@(\o PRI \f@ & 4«5\\0 . VST @@‘ & 46’“0 K e © \f& & 4«0\\0 . &
(@) MMA-H, Lyar = 1.0 (b) MMA-IL, Loy = 0.2

Figure 5: Running examples on IWSLT15 English-Vietnamese dataset

4.5 RANK OF THE HEADS

In we calculate the average and standard deviation of rank of each head when generating
every target token. For MMA-IL, we find that heads in lower layers tend to have higher rank and
are thus slower. However, in MMA-H, the difference of the average rank are smaller. Furthermore,
the standard deviation is very large which means that the order of the heads in MMA-H changes
frequently over the inference process.
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Figure 6: The average rank of attention heads during inference on IWSLT15 En-Vi. Error bars indicate the
standard deviation. L indicates the layer number and H indicates the head number.

5 RELATED WORK

Recent work on simultaneous machine translation falls into three categories. In the first one, models
use a rule-based policy for reading input and writing output. [Cho & Esipoval (2016) propose a Wait-
If-* policy to enable an offline model to decode simultaneously. |[Ma et al.| (2019) propose a wait-k
policy where the model first reads k tokens, then alternates between read and write actions.
propose an incremental decoding method, also based on a rule-based schedule. In the
second category, a flexible policy is learnt from data. [Grissom I et al (2014) introduce a Markov
chain to phrase-based machine translation models for simultaneous machine translation, in which
they apply reinforcement learning to learn the read-write policy based on states.
introduce an agent which learns to make decisions on when to translate from the interaction with
a pre-trained offline neural machine translation model. [Luo et al.| (2017) used continuous rewards
policy gradient for online alignments for speech recognition. |[Lawson et al. proposed a hard
alignment with variational inference for online decoding. [Alinejad et al. propose a new
operation “predict” which predicts future source tokens. [Zheng et al.| (2019b)) introduce a restricted
dynamic oracle and restricted imitation learning for simultaneous translation. [Zheng et al.| (20194)
train the agent with an action sequence from labels that are generated based on the rank of the
gold target word given partial input. Models from the last category leverage monotonic attention
and replace the softmax attention with an expected attention calculated from a stepwise Bernoulli
selection probability. |Raffel et al.|(2017) first introduce the concept of monotonic attention for online
linear time decoding, where the attention only attends to one encoder state at a time. (Chiu & Raffel
2018)) extended that work to let the model attend to a chunk of encoder state. |Arivazhagan et al.
2019) also make use of the monotonic attention but introduce an infinite lookback to improve the
translation quality.

6 CONCLUSION

In this paper, we propose two variants of the monotonic multihead attention model for simultaneous
machine translation. By introducing two new targeted loss terms which allow us to control both
latency and attention span, we are able to leverage the power of the Transformer architecture to
achieve better quality-latency trade-offs than the previous state-of-the-art model. We also present
detailed ablation studies demonstrating the efficacy and rationale of our approach. By introducing
these stronger simultaneous sequence-to-sequence models, we hope to facilitate important applica-
tions, such as high-quality real-time interpretation between human speakers.
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A APPENDIX

A.1 HYPERPARAMETERS

The hyperparameters we used for offline and monotonic transformer models are defined in[Table 4

A.2 LATENCY METRICS DEFINITIONS

Given the delays g = {g1, g2, ..., g|y| } of generating each target token, AP, AL and DAL are defined
in[Table 3|
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Hyperparameter WMT15 German-English  IWSLT English-Vietnamese
encoder embed dim 1024 512
encoder ffn embed dim 4096 1024
encoder attention heads 16 4
encoder layers 6

decoder embed dim 1024 512
decoder ffn embed dim 4096 1024
decoder attention heads 16 4
decoder layers 6

dropout 0.3

optimizer adam

adam-{3 (0.9,0.98)

clip-norm 0.0

Ir 0.0005

Ir scheduler inverse sqrt
warmup-updates 4000
warmup-init-lr le-07
label-smoothing 0.1

max tokens 3584 X 8 x 8 x 2 16000

Table 4: Offline and monotonic models hyperparameters.

Latency Metric Calculation
1 lyl
Average Proportion Z Gi
@lly| 2=
1< i—1
Average Lagging T ; 9= ly|/|z|
where 7 = arg max;(g; = |x|)
lvl .
1 , 1—1
il —
- WX i
Differentiable Average Lagging - i i=0
i =
where g, = .
%7 max(gi.gfy + é‘) <0

Table 5: The calculation of latency metrics, given source x, target y and delays g

A.3 DETAILED RESULTS

We provide the detailed results in [Figure 2] as[Table 6|and [Table 7]

A.4 THRESHOLD OF READING ACTION

We explore a simple method that can adjust system’s latency at inference time without training new
models. In[Algorithm T|line 8, 0.5 was used as an threshold. One can set different threshold p during
the inference time to control the latency. We run the pilot experiments on IWSLT15 En-Vi dataset
and the results are shown as Although this method doesn’t require training new model, it
dramatically hurts the translation quality.
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BLEU AP AL DAL
Aavg MMA-IL

005 307 078 1091 12.64
0.1 305 070 742  8.82
0.2 30,1 063 517 641
0.3 303 0.60 4.18 535
0.4 29.2 059 375 490
0.5 267 059 3.69 483
075 255 058 340 446
1.0 25.1 056 3.00 4.03

Avar MMA-H

0.1 285 074 894 10.83
0.2 289 0.69 682 8.622
0.3 292 064 545 7.03
0.4 28,5 059 390 521
0.5 285 059 388 519
0.6 29.6 056 3.13 432
0.7 29.1 056 293 410

Table 6: Detailed results for MMA-H and MMA-IL on WMT15 DeEn

BLEU AP AL DAL
A MILk

0.1 2462 071 593 7.19
02 2468 067 490 597
03 2431 065 445 543
04 2373 064 428 524

Aavg MMA-IL

0.02 2828 0.76 7.09 8.29
0.04 2833 0.70 544 6.57
0.1 2842 0.67 4.63 5.65
02 2847 063 357 4.44
0.3 279 059 298 3.81
04 2773 058 268 3.46

Nvar MMA-H

0.02 2726 077 752 871
0.1 2768 069 522 6.31
02 2806 063 381 4.84
04 2779 062 357 459
0.8 2795 060 322 4.19

Table 7: Detailed results for MILk, MMA-H and MMA-IL on IWSLT15 En-Vi

A.5 AVERAGE LOSS FOR MMA-H

We explore applying a simple average instead of a weighted average loss to MMA-H. The results
are shown in [Figure 7| and [Table 9} We find that even with very large weights, we are unable to
reduce the overall latency. In addition, we find that the weighted average loss severely affects the
translation quality negatively. On the other hand, the divergence loss we propose in[Equation 16]can
efficiently reduce the latency while retaining relatively good translation quality for MMA-H models.
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Reading Threshold Weighted Average Latency Loss
p  BLEU AP AL DAL \ Lqvwg BLEU AP AL DAL
0.5 25.5 0.792387 7.13673 8.27187 | 0.02 25.5 0.792387 7.13673 8.27187
04 2525 0.73749  5.72003 6.85812 | 0.04 25.68 0.728107 5.52856 6.61744
03 23.06 0.697398 4.88087 6.03342 | 0.3 24.9 0.602703 2.90054 3.68039
0.2 1837 0.678298 4.71099 5.94636 | 0.2 25.3 0.636914 3.54577 4.38623
0.1 8.73 0.696452  5.5225  7.20439 0.1 2548 0.684424 4.57901 5.54102

Table 8: Comparison between setting threshold for reading action and weighted average latency loss.
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Figure 7: Effect average loss, weighted average loss and variance loss on MMA-H on WMT15 DeEn develop-
ment set.

BLEU AP AL DAL
Aavg Average
0.05 28.5 0.862581 14.3847 17.3702
0.1 27.8  0.855435 13.974 17.02
0.2 28 0.835324 12.8531 15.908
0.4 28.1 0.819408 11.9816 14.9763
1.0 28.2  0.810609 11.7528 14.6695
2.0 28.1 0.800258 11.1763 14.0761
8.0 284  0.806439 11.5289 14.6431
Aavg Weighted Average
0.02 2824 0.773922 10.2109 12.2274
0.04 2435 0.685834 7.06716 8.64069
0.06 7.80  0.875825 16.2046 19.0892
0.08 9.51 0.57372 3.92011 6.1421
0.1 9.78 0.556585 3.3007 5.46142
Avar Divergence
0.1 27.35 0.736025 8.70968 10.5253
0.2 27.64 0.681491 6.63914 8.3856
0.3 27.37 0.6623 6.04902 7.71922
0.4 27.62 0.638188 5.31672 6.86834
0.5 27.50 0.625759 4.93044 6.38998
1.0 27.1 0.582194 3.64864 4.90997

Table 9: Detailed numbers on average loss, weighted average loss and head divergence loss on WMT15 De-En
development set
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