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ABSTRACT

We propose a method to automatically compute the importance of features at
every observation in time series, by simulating counterfactual trajectories given
previous observations. We define the importance of each observation as the change
in the model output caused by replacing the observation with a generated one. Our
method can be applied to arbitrarily complex time series models. We compare the
generated feature importance to existing methods like sensitivity analyses, feature
occlusion, and other explanation baselines to show that our approach generates
more precise explanations and is less sensitive to noise in the input signals.

1 INTRODUCTION

Multi-variate time series data are ubiquitous in application domains such as healthcare, finance, and
others. In such high stakes applications, explaining the model outcome is crucial to build trust among
end–users. Finding the features that drive the output of time series models is a challenging task due
to complex non-linear temporal dependencies and cross-correlations in the data. The explainability
problem is significantly exacerbated when more complex models are used. Most of the current
work in time series settings focus on evaluating globally relevant features (Yang et al., 2005; Yoon
et al., 2005; Hmamouche et al., 2017). However, often global feature importance represents relevant
features for the entire population, that may not characterize local explanations for individual samples.
Therefore we focus our work on individualized feature importance in time series settings. In addition,
besides identifying relevant features, we also identify the relevant time instances for those specific
features, i.e., we identify the most relevant observations. To the best of our knowledge this is the
first sample–specific feature importance explanation benchmark at observation level for time series
models.

In this work, we propose a counterfactual based method to learn the importance of every observation
in a multivariate time series model. We assign importance by evaluating the expected change in model
prediction had an observation been different. We generate plausible counterfactual observations
based on signal history, to asses temporal changes in the underlying dynamics. The choice of the
counterfactual distribution affects the quality of the explanation. By generating counterfactuals based
on signal history, we ensure samples are realistic under individual dynamics, giving explanations that
are more reliable compared to other ad-hoc counterfactual methods.

2 METHOD: FEED-FORWARD COUNTERFACTUALS FOR TIME SERIES
EXPLANATION
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Figure 1: Illustration of Proposed Method

In this section we describe our method, Feed
Forward Counterfactual (FFC), for generating
explanation for time series models. A feature
is considered important if it affects the model
output the most. In time series, the dynamics of
the features also change over time, which may
impact model outcome. As such it is critical
to also identify the precise time points of such
changes.

In order to find important observations for high-
dimensional time series models, we propose to
use a counterfactual based method. Specifically,
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(a) Graphical model of the
conditional generator. ht

represents the hidden state
of an RNN cell at time t,
and zt is the latent represen-
tation of the history
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(b) FFC procedure: Counterfactual X̂t is generated using signal history.
We look into the difference of the original output yt and ŷ(i,t) where
observation x(i,t) is replaced with a counterfactual.

Figure 2: Components describing the proposed method.

we assign importance to an observation xi,t (feature i at time t) based on its effect on the model
output at time T (> t). We replace observation xi,t with a counterfactual x̂i,t, to evaluate this effect.
Figure 1 demonstrates how importance of a feature is characterized by replacing an observation with
a counterfactual.

2.1 NOTATION

Multi-variate time series data is available in the form of X(n) ∈ Rd×T (where d is the number
of features with T observations over time) for n ∈ [N ] samples. We are interested in black-box
estimators that receive observations up to time t, xt ∈ Rd, and generate output yt at every time point
t ∈ [T ]. F denotes the target black-box model we wish to explain through the proposed approach
called FFC. For exposition, throughout the paper, the index n over samples has been dropped for
notational clarity. We index features with subscript i. x−i,t indicates features at time t excluding
feature i. The notation used for exposition work is briefly summarized in Table 1.

Notation Description
[K] for integer K Set of indices [K] = {1, 2, . . . ,K}.
i, t, n Index for feature i in [d] , time step t and sample n in [N ] respectively
−i Set [d] \ i
Observations and Outcomes
xi,t Observation i at time t.
xt ∈ Rd Vector [x1,t, x2,t, · · · , xd,t]
X0:t ∈ Rd×t Matrix [x0,x1, · · · ,xt]

yt , F(X0:t) Observed outcome of the black-box model F , at time t
Generative Model and Estimator
Gi : Rd−1×m → R Conditional Generative Model sampling for feature i
zt ∈ Rm Latent encoding of history up to t

Table 1: Notation used in the paper.

2.2 EXPOSITION

We assign importance score to each observation xi,t for t ∈ [T ] and i ∈ [d], following the definition:

Definition 1. Feature Importance: The importance of the observation i at time t, denoted by
Imp(i, t) is defined as Ep(x̂i,t|X0:t−1)[|F(X0:t) − F(X0:t−1,x−i,t, x̂i,t)|], where | · | denotes the
absolute value and x̂i,t is the counterfactual sample.

That is, the importance of an observation for feature i at time t is defined as the change in model
output when the observation is replaced by a generated counterfactual. The counterfactual observation
can come from any distribution, however the quality of the counterfactual random variable directly
affects the quality of the explanation. We generate the counterfactual sample conditioned on signal
history up to time t by sampling from the distribution p(xi,t|X0:t−1). Using a conditional generator
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guarantees that our counterfactuals are sampled not only within domain but also specifically likely
under the individual sample X(n), as opposed to having a generator that models data across population.
Conditioning on the history also allows us to learn the dynamics of the signal and therefore generate
a plausible counterfactual given the past observations.

p(xt|X0:t−1) represents the distribution at time t, if there were no change in the dynamics of the
signals. The counterfactual x̂i,t is sampled from the marginal distribution p(bxi,t|X0:t−1), obtained
from p(xt|X0:t−1). Let F(X0:t−1,x−i,t, x̂i,t) be the output of the model at time T , when xi,t
is replaced by the generated counterfactual x̂i,t. We estimate feature importance Imp(i, t) as
Ep(x̂i,t|X0:t−1)[|F(X0:t)−F(X0:t−1,x−i,t, x̂i,t)|], summarized in figure 2(b).

2.3 PROPERTIES

Our proposed method has the following compelling properties in explaining the estimator F :

Time Importance (TI) For every time series, highlighting relevant time events for different features
is important for actionability of the explanations. For instance in a clinical setting, just knowing a
feature like heart rate is relevant, is not sufficient to intervene - it is also important to know when a
deterioration had happened. With FFC, the most eventful time instances can be obtained as:

arg maxt∈[T ]{Imp(i, t)∀i ∈ [d]} (1)
We can thus rank time instances in order of importance. That is, time t1 4 t2, if
maxi∈[d]{Imp(i, t1)} ≥ maxi∈[d]{Imp(i, t2)}.
Feature Importance (FI) At any time instance t, our method assigns importance to every feature

of xi,t.

The magnitude of our importance function reflects relative importance. Comparing the importance
values across features gives the flexibility to report a subset of important features at each time point t
and also reflects the correlation between various features of the time series.

2.4 GENERATOR MODEL FOR CONDITIONAL DISTRIBUTION p(xt|X0:t−1)

We approximate the conditional distribution of p(xt|X0:t−1) using a recurrent latent variable genera-
tor model G, introduced in Chung et al. (2015). The architecture we use is provided in Figure 2(a).
The conditional generator G models p(xt|zt−1) where zt−1 ∈ Rk is the latent representation of
history of the time series up to time t. The latent representation is a continuous random variable,
modeling the distribution parameters. We only use past information in the time series to reflect
temporal dependencies. Using the recurrent structure allows us to model a non-stationary generative
model that can also handle varying length of observations. Implementation details of the generator
are in the Appendix.

Our counterfactuals are not derived by looking at future values which could be done for reliable
imputation. Counterfactuals should represent the past dynamics. Note that our derived feature
importance is limited by the quality of imputation that may have been utilized by the black–box risk
predictor. For experimental evaluation on the effect of generator specifications on counterfactuals
and the quality of explanations, see Section 4.1.

2.5 FEATURE IMPORTANCE ASSIGNMENT ALGORITHM

The proposed procedure is summarized in Algorithm 1. We assume that we are given a trained block
box model F , and the data (without labels) it had been trained on. Using the training data, we first
train the generator that generates the conditional distribution, (denoted by G). In our implementation
we model x as a multivariate Gaussian with full covariance to model all existing correlation between
features. The counterfactual x̂i,t is then sampled from G and passed to the black-box model to
evaluate the effect on the black-box outcome.

3 RELATED WORK

A common method of explaining model performance, in time–series deep learning, is via visualization
of activations of latent layers (Strobelt et al., 2018; Siddiqui et al., 2019; Ming et al., 2017) or via
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Algorithm 1 FFC
Input: F: Trained Black-box predictor model, X0:T , where T is the max time and S: Number
of Monte-Carlo samples

1: Train G
2: for all t ∈ [T ] and i ∈ [d] do
3: yT = F(X0:t)
4: p(xt|X0:t) ∼ G(X0:t−1)
5: for all s ∈ [S] do
6: Sample x̂(s)

i,t ∼ p(xi,t|X0:t−1)

7: ŷ
(s)
T = F(X0:t,x−i,t, x̂

(s)
i,t )

8: imp
(S)
T = |yT − ŷ(s)

T |
9: Importance_Matrix(i, t) =

ΣS
s=0imp

(S)
T

S
10: Return Importance_Matrix

sensitivity analysis (Bach et al., 2015; Yang et al., 2018). Understanding latent representations,
sensitivity and its relationship to overall model behavior is useful for model debugging. However,
these but are too refined to be useful to the end users like clinicians.

Attention models (Vaswani et al., 2017; Vinayavekhin et al., 2018; Xu et al., 2018) are the most
commonly known explanation mechanisms for sequential data. However, because of the complex
mappings to latent space in recurrent models, attention weights cannot be directly attributed to
individual observations of the time series (Guo et al., 2018). To resolve this issue to some extent, Choi
et al. (2016) propose an attention model for mortality prediction of ICU patients based on clinical
visits. However attention weights may not be consistent as explanations (Jain and Wallace, 2019).

In vision, prior works tackle explainability from the counterfactual perspective, finding regions of the
image that affect model prediction the most. Fong and Vedaldi (2017) assumes higher importance
for inputs that when replaced by an uninformative reference value, maximally change the classifier
output. A criticism to such methods is that they may generate out-of-distribution counterfactuals,
leading to unreliable explanations. Chang et al. (2019) address this issue for images using conditional
generative models for inpainting regions with realistic counterfactuals.

Evaluating sample based feature importance remains largely unstudied for time series models. While
more widely studied for image classification, (Bach et al., 2015; Fong and Vedaldi, 2017) these
methods cannot be directly extended to time series models due to complex time-series dynamics. Most
efforts in this domain focus on population level feature importance (Tyralis and Papacharalampous,
2017). Suresh et al. (2017) is one of the few methods addressing sample based feature importance and
use a method similar to Fong and Vedaldi (2017), called "feature occlusion". They replace each time
series observation by a sample from uniform noise to evaluate its effect on model outcome to attribute
feature importance. We argue that carefully choosing the counterfactual selection policy is necessary
for derive reliable importances. Specifically, replacing observations with noisy out-of-domain samples
can lead to arbitrary changes to model output that are not reflective of systematic behavior in the
domain. Even if an observation is sampled from the domain distribution, it does not characterize
temporal dynamics and dependencies well enough, potentially highlighting features that only reflect
global model behavior, as opposed to sample specific feature importance. We therefore model the
data–distribution in order to generate reliable counterfactuals. We demonstrate the implications of
the choice of the generator (and hence the counterfactuals) on the quality of explanation.

4 EVALUATION

We evaluate our explainability method for finding important features in time series on 2 simulated
datasets and 2 real datasets. Our goal is two-fold a) comparison to existing feature importance
baselines in time series and b) evaluating the choice of generators on the quality of counterfactuals
and explanations.

We compare to existing feature importance baselines described below:
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1. Feature Occlusion (FO) (Suresh et al., 2017): Method introduced in Suresh et al. (2017). This
method is an ad-hoc approach for generating counterfactuals. When replacing xi,t with a random
sample from the uniform distribution, the change in model output defines the importance for xi,t.

2. Augmented feature occlusion (AFO): We augment the method introduced in Suresh et al. (2017)
by sampling counterfactuals from the bootstrapped distribution over each feature. This avoids
generating out-of-distribution samples.

3. Sensitivity Analysis (SA): This method evaluates the sensitivity of the output to every observation,
by taking the derivative of yt with respect to xi,t, at every time point.

4. LIME (Ribeiro et al., 2016): One of the most commonly used explainabilty methods that assigns
local importance to features. Although LIME does not assign temporal importance, for this baseline,
we use LIME at every time point to generate feature importances.

4.1 SIMULATED DATA I

feature 0 feature 1 feature 2 Risk score

(a) (b)

Figure 3: Two samples showing performance on simulated data. Top row are the original sampled
signals (one per subfigure). FFC and AFO assign importance at the time of spike. Additional samples
are in Appendix A.1.

Evaluating the quality of explanations is challenging due to the lack of a gold standard/ground truth
for the explanations. Additionally, explanations are reflective of model behavior, therefore such
evaluations are tightly linked to the reliability of the model itself. Therefore we created the simulated
environment in order to test our method.

In this experiment, we simulate a time series data such that only one feature determines the outcome.
Specifically, the outcome (label) changes to 1 as soon as a spike is observed in the relevant feature.
We keep the task fairly simple for two main reasons: 1) to ensure that the black-box classifier can
indeed learn the right relation between the important feature and the outcome, which allows us to
focus on evaluating the quality of the explanations without worrying about the quality of the classifier.
2) to have a gold standard for the explanations since the exact important event predictive of the
outcome are known. We expect the explanations to assign importance only to the one relevant feature,
at the exact time of spike, even in the presence of spikes in other non-relevant features.

To simulate these data, we generate d = 3 (independent) sequences as a standard non–linear
auto-regressive moving average (NARMA) time series of the form: x(t + 1) = 0.5x(t) +

0.5x(t)
∑l−1

i=0 x(t − l) + 1.5u(t − (l − 1))u(t) + 0.5 for t ∈ [80], where the order is 2 and
u ∼ Normal(0, 0.01). We add linear trends to the features and introduce random spikes over
time for every feature. Note that since spikes are not correlated over time, no of the generators (used
in FFC, AFO, FO) will learn to predict it. The important feature in this setting is feature 1. The
complete procedure is described in Appendix A.2.1. We train an RNN-based black-box model on
this data, resulting in AUC= 0.99 on the test set.

Figure 7 demonstrates explanations of each of the compared approaches on simulated data for 2
test samples. As shown in Figure 7(a), Sensitivity analysis does not pick up on the importance of
the spike. Feature occlusion gives false positive importance to spikes that happen in non-important
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signals as well as the important one. Augmented feature occlusion resolves this problem since it
samples the counterfactuals from the data distribution, however, it generates noisier results as it
samples from the bootstrap distribution. The proposed method (FFC) only assigns importance to the
first feature at the time of spike. Hence, FFC generates fewer false relevance scores.

Note that all baseline methods provide an importance for evry sample at every time point. The true
explanation should highlight feature 1 at time points of spike. Using this ground truth, we evaluate
the AUROC and AUPRC of the generated explanations denoted by (exp). Table 2 summarizes the
results for simulated data.

Simulated Data I Simulated Data II

Method AUROC (exp) AUPRC (exp) AUROC (exp) AUPRC (exp) Log-probabilities
(counterfactuals)

FFC 0.9995 0.8859 0.9548 (0.0057) 0.2599 (0.0057) -5106586.33
AFO 0.9901 0.3768 0.724 (0.012) 0.0374 (0.0028) -5134432.65
FO 0.7557 0.003 0.734 (0.0091) 0.0376 (0.0031) -5149629.32
SA 0.4329 0.0052 0.7122 (0.011) 0.0428 (0.0013) N/A
LIME 0.3331 0.0011 0.4214 (0.0803) 0.0181 (0.0008) N/A

Table 2: Simulated Data I & II - Explanation performance compared to ground–truth. For Simulated Data
II, we also show in the third column that the log–probabilities of our counterfactuals are higher under the true
distribution.

4.2 SIMULATED DATA II

The first simulation does not necessarily evaluate feature importance under complex state dynamics as
is common in applications. In this simulation, we create a dataset with complex dynamics with known
ground truth explanations. The dataset consists of multivariate time series signals with 3 features.
A Hidden Markov Model with 2 latent states, with linear transition matrix and multivariate normal
emission probabilities is used to simulate observations. The the outcome y is a random variable,
which, in state 1, is only affected by feature 1 and in state 2, only affected by feature 2. Also, we add
non-stationarity to the time series by modeling the state transition probabilities as a function of time.

The ground truth explanation for output at time T is the observation xi,t where i is the feature that
drives the output in the current state and t indicates when feature i became important. In a time series
setting, a full explanation for outcome at t = T should include the most important feature variable as
well as the time point of importance (here state change).

Figure 4 demonstrates assigned importance for a time series sample. The shaded regions indicate the
top 5 important observations (xi,t) for each method, the color indicating the corresponding feature i.
AFO, FO and FFC are able to learn the state dynamics and are able to find the important feature of
each state. However, the top importance values in AFO and FO do not correspond to the important
time points. Only in FFC, the top important observations are indicative of state changes. Table 2
shows the performance compared to ground-truth explanations for this data.

4.2.1 EFFECT OF GENERATOR SPECIFICATION

As mentioned earlier, the quality of explanations rely on the quality of the counterfactuals. The coun-
terfactuals should reflect the underlying latent dynamics for an individual sample. Counterfactuals
under the marginal (as used by AFO) need not be likely for a specific sample. The conditional distri-
bution we use, on the other hand, models the underlying characteristic of an individual sample, while
the marginal is an average over the population. Counterfactuals unlikely under an individual patient’s
dynamics can result in inaccurate importance assignments since they can potentially overestimate
the change in model outcome significantly. We demonstrate this by evaluating the log probability of
the counterfactual under the true generator distribution p∗(xt|X0:t−1). Results are summarized in
Table 2, Column 3. Since we simulate data using an HMM, we can analytically derive the distribution
p∗(xi,t|X0:t−1). Details of the derivation are included in Appendix A.2.1.
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feature 0 feature 1 feature 2 Risk score

Figure 4: Simulated Data II: The top plot shows the time series signals and the output risk of the
black-box model. States are shaded in green and yellow. Plots below show the reported importance
of all features over time for baseline methods. Shaded regions in these plots represent the top 5
important observations reported by each method.

4.3 MIMIC MORTALITY

Explaining models based on feature importance is critical for clinical settings. Most of clinical data
come in form of time series therefore, in is important to find critical time points in patients’ trajectories
along with important features. We evaluate our method on a benchmark mortality prediction task
based on the Intensive Care Unit (ICU) time series data from MIMIC. The MIMIC-III dataset consists
of de-identified EHRs for ∼ 40, 000 ICU patients at the Beth Isreal Deaconess Medical Center,
Boston, MA. The dataset has time series measurements such as vitals and lab results over patients
ICU stay (Johnson et al., 2016). We use an RNN-based mortality predictor model as a black-box for
evaluation. The model is trained on 14, 712 adult ICU admissions and reaches a classification AUC
of 0.7939(0.007), using 8 vital and 20 lab measurements, as well as patient static data. More details
on the model and data used are in Appendix A.3.

Following the procedure in Algorithm 1, we train a conditional generators for non-static time series
features. We compare results across all four existing methods by visualizing importance scores over
time. Figure 5 shows an example trajectory of a patient and the predicted outcome. We plot the
importance score over time for top 3 signals, selected by each method. Shaded regions in bottom four
rows indicate the most important observations, color representing the feature. As shown in Figure
5, counterfactual based methods mostly agree and pick the same signals as important features. We
further evaluate this by looking into accordance scores among methods, indicating the percentage
of agreement. This analysis is provided in the Appendix A.3, and the heat map in Figure 10
demonstrates the average score across test samples. However, the methods don’t agree on the exact
time importance. As we observe in Figure 5 and other patient trajectories, FFC assigns importance
to observations at the precise times of signal change. This is exactly as expected from the method.
The FFC counterfactual is conditioned on patient history and thus the counterfactual represents an
observation assuming a patient had not change state.

4.3.1 EVALUATION USING CLINICAL ANNOTATIONS

Since evaluation of explanations can be subjective, we also use intervention information present
in patient records to evaluate clinical applicability across baselines. Clinicians intervene with a
medication or procedure when there is a notable, adverse change in patient trajectory. Therefore,
picking up the most relevant features before an intervention onset is indicative of clinical validity of
the method. While we cannot directly associate an intervention with a specific cause (observation),
we look at the overall distribution of signals considered important by each of the methods, prior to
intervention onset. Figure 6 shows these histograms for a number of interventions. We see consistent
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Figure 5: The top row shows the output risk of the prediction model (black dashed line), and
normalized time series signals. Shaded regions in the top row represent specific clinical interventions.
The four bottom rows correspond to importance scores generated by each of the methods. The error
bars indicate the standard deviation of the importance value. Hatched regions in bottom four rows
indicate the top most important observations.

assignment of importance across all methods. This means they associate the same influential signals
to the same medical intervention.
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Figure 6: Top four features assigned to be important for each intervention across compared methods.

4.4 GREENHOUSE GAS (GHG) OBSERVING NETWORK DATA SET

This experiment evaluates the utility of our method for attributing importance to GHG tracers across
different locations in California. The GHG data consists of 15 time series signals from 2921 grid cells.
A target time series is a synthetic signal of GHG concentrations. We use an RNN model to estimate
GHG concentrations using all tracers. Evaluating which tracers are most useful in reconstructing this
synthetic signal can be posed as a feature importance problem for weather modeling over time.

In order to quantitatively evaluate the proposed method on real data, we evaluate how well the
method performs at selecting globally relevant methods as a proxy. We aggregate the importance
of all features over time (and training samples) and retrain the black–box by i) removing top 10
relevant features as indicated by each method ii) using top 3 relevant features only . The performance
summary is provided in Table 3 suggesting that among methods that derive instance wise feature
importance over time, FFC also generates reasonable global relevance of features. Results for both
MIMIC-III and GHG datasets are summarized in Table 3.
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MIMIC GHG

Method
AUROC -model
w/o top 10
(lower is better)

AUROC -model
w/ top 3 only
(higher is better)

MSE -model
w/o top 10
(higher is better)

MSE -model
w/ top 3 only
(lower is better)

FFC 0.7807 (0.0025) 0.7213 (0.0014) 4546.460 4537.188
AFO 0.7861 (0.0055) 0.7208 (0.002) 4544.163 4532.027
FO 0.0.7861 (0.0026) 0.72 (0.0021) 4538.940 4537.044
SA 0.7788 (0.004) 0.6939 (0.0011) 4532.440 4552.386
LIME 0.7798 (0.0031) 0.6795 (0.0004) 4536.328 4551.874

Table 3: Real Data - Global Importance.

Data Randomization Test Model Randomization Test
Method ∆ AUROC ∆ AUPRC ∆ AUROC ∆ AUPRC
FFC -0.2888 -0.2129 -0.2351 -0.2202
AFO -0.2060 -0.0184 -0.1662 -0.0174
FO -0.2070 -0.0176 -0.1565 -0.0172
SA -0.2252 -0.0258 -0.3501 -0.0253

Table 4: Sanity Check Test Results for Simulated Data II. For all measures higher difference is better.

4.5 SANITY CHECK TEST FOR EXPLANATIONS

We additionally evaluate the quality of the proposed FFC method using the randomization tests
proposed as ‘Sanity Checks’ in Adebayo et al. (2018). Two randomization tests are designed to test
for sensitivity of the explanations to i) the black–box model parameters using a model parameter
randomization test, and ii) sensitivity to data labels using a using a data randomization test. We
conduct this evaluation for Simulation Data II.

1. Data Parameter Randomization Test: This test evaluates how different explanations are when
the black–box model is trained on permuted labels (breaking the correlation between features and
output label). If explanations truly rely on the output labels, as suggested in our definition, then the
explanation quality should differ significantly when a model trains on permuted labels. We evaluate
the drop in the AUROC and AUPRC of the generated explanations compared to the ground truth.

2. Model Parameter Randomization Test: This test evaluates how different explanation quality
is when the parameters of the model are arbitrarily shuffled. Significant differences in generated
explanations suggests the proposed method is sensitive to black-box model parameters. In Adebayo
et al. (2018), these tests are conducted for saliency map methods for images by evaluating the distance
between saliency maps for different randomizations. The results are included for Simulated Data II,
measured with AUROC and AUPRC as ground–truth explanations are available.

The results of both tests are included in Table 4. They indicate the drops in explanation performance
for both randomization tests. The performance of the model used for model randomization test
drops to 0.52 AUROC as opposed to 0.95 for the original trained model on this simulated task
(Simulation Data II). For data randomization, performance of the model drops to 0.62 from 0.95 in
terms of AUROC. AUROCs and AUPRCs for FFC drop the most, suggesting the FFC explanation
method is sensitive to perturbations in output labels (as tested by the data randomization test) and to
randomization in model parameters. Significant deterioration compared to explanation performance
in Table 2 (for Simulation Data II) indicates that the proposed method passes the sanity checks.

5 DISCUSSION

We propose a new definition for obtaining sample-based feature importance for high-dimensional
time series data. We evaluate the importance of each feature at every time point, to locate highly
important observations. We define important observations as those that cause the biggest change in
model output had they been different from the actual observation. This counterfactual observation is
generated by modeling the conditional distribution of the underlying data dynamics. We propose a
generative model to sample such counterfactuals. We evaluate and compare the proposed definition
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and algorithm to several existing approaches. We show that our method is better at localizing
important observations over time. This is one of the first methods that provides individual feature
importance over time. Future extension to this work will include analysis on real datasets annotated
with feature importance explanations. The method will also be extended to evaluate change in risk
based on most relevant subsets of observations.
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A APPENDIX

A.1 SIMULATED DATA I

To simulate these data, we generate d = 3 (independent) sequences as a standard non–linear auto-
regressive moving average (NARMA) time series. Note also that we add linear trends to features 1

and 2 of the form: x(t+ 1) = 0.5x(t) + 0.5x(t)
∑l−1

i=0 x(t− l) + 1.5u(t− (l− 1))u(t) + 0.5 +αdt
for t ∈ [80], α > 0 (0.065 for feature 2 and 0.003 for feature 1), and where the order l = 2,
u ∼ Normal(0, 0.03). We additionally add linear trends to features. We add spikes to each sample
(uniformly at random over time) and for every feature d following the procedure below:

yd ∼ Bernoulli(0.5);

ηd =

{
Poisson(λ = 2) if 1(yd == 1)

0 otherwise

gd ∼ Sample([T ], ηd); xd,t = xd,t + κ∀t ∈ gd

(2)

where κ > 0 indicates the additive spike. The label yt = 1∀t > t1, where t1 = min gd, i.e. the label
changes to 1 when a spike is encountered in the first feature and is 0 otherwise.

We sample our time series using the python TimeSynth1 package. Number of samples generated:
10000 (80%,20% split).

A.1.1 ADDITIONAL SAMPLES

feature 0 feature 1 feature 2 Risk score
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Figure 7: Two samples showing performance on simulated data I. Top row are the original sampled
signals (one per subfigure).

A.2 SIMULATED DATA II

This simulated data is a two state HMM (2 states) with initial state π = [0.5, 0.5]. Transition
probability T being:

T =

[
0.1 0.9
0.1 0.9

]
The emission probability in each state is a multivariate Gaussian: N (µ1,Σ1) and N (µ1,Σ1) where
µ1 = [1.2, 1.5, 0.8] and µ2 = [−1.2,−0.8,−1.5]. Marginal variance for all features in each state is
0.8 with only features 1 and 2 being correlated (Σ12 = Σ21 = 0.01) in state 1 and only 0 and 2 om
state 2 (Σ02 = Σ20 = 0.01). In state 1, the label y only depends on feature 1 and in state 2, label
depends only on feature 2.

1https://github.com/TimeSynth/TimeSynth
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The output yt at every step is assigned using the logit in 3. Depending on the hidden state at time t,
only one of the features contribute to the output and is deemed influential to the output.

pt =

{
1

1+e−x1,t
st = 0

1
1+e−x2,t

st = 1

yt ∼ Bernoulli(pt)
(3)

A.2.1 DERIVATION OF p∗(xi,t|X0:t−1)

The true conditional distribution can be derived using the forward algorithm (Bishop, 2006) as
follows:

p∗(xi,t|X0:t−1) =
∑

st∈{0,1}

p(xi,t|st)p(st|X0:t−1) (4)

where,

p(st|X0:t−1) =
∑

st−1∈{0,1}

p(st|st−1)p(st−1|X0:t−1) (5)

where p(st−1|X0:t−1) is estimated using the forward algorithm.

JOINT CONDITIONAL GENERATIVE MODEL

Our generator Gi is trained using an RNN (GRU). We model the latent state zt with a multivariate
Gaussian with diagonal covariance and observations with a multivariate Gaussian with full covariance.
Parameter setting of the generator for each of the experiments are shown in tables below.

Setting value
RNN cell GRU

Loss MSE
Optimizer Adam

Table 5: General generator Setting

Software used: Python 3.7.3 , Pytorch 1.0.1.post2

GPU Info: Quadro 400

CPU Info: Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz

The counterfactual for observation i at time t can now be sampled by marginalizing over other
features at time t. i.e, xi,t ∼

∑
x−i

p(x̂|X0:t−1).

A.3 MIMIC-III MORTALITY EXPERIMENT

Feature selection and data processing: For this experiment, we select adult ICU admission data
from the MIMIC dataset. We use static patients’ static, vital measurements and lab result for the
analysis. The task is to predict 48 hour mortality based on 48 hours of clinical data, therefor we
remove samples with less than 48 hours of data. Table 6 presents a full list of clinical measurements
used in this experiment.

The predictor model takes in new measurements every hour, and updates the mortality risk. We
quantize the time series data to hour blocks by averaging existing measurements within each hour
block. We use 2 approches for imputing missing values: 1) Mean imputatiopn for vital signals using
the sklearn SimpleImputer 2, 2) forward imputation for lab results, where we keep the value of the last

2https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
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lab measurement until a new value is evaluated. We also removed patients who had all 48 quantized
measurements missing for a specific feature. Overall, 22,988 ICU admissions were extracted and
training process was on a 65%,15%,20% train, validation, test set respectively.

Data class Name
Static measurements Age, Gender, Ethnicity, first time admitted to the ICU?
Lab measurements LACTATE, MAGNESIUM, PHOSPHATE, PLATELET,

POTASSIUM, PTT, INR, PT, SODIUM, BUN, WBC
Vital measurements HeartRate, DiasBP, SysBP, MeanBP,

RespRate, SpO2, Glucose, Temp

Table 6: List of clinical features for the risk predictor model

Parameter Settings for mortality risk predictor model: The risk predictor model is a recurrent
network with GRU cells. All features are scaled to 0 mean, unit variance and the target is a probability
score ranging [0, 1]. The model achieves 0.7939(0.007) AUC on test set classification task. Detailed
specification of the model are presented in Table 7.

Setting value
epochs 80
Model GRU

batch size 100
Encoding size (m) 150

Loss MSE
Regressor Activation Sigmoid
Batch Normalization True

Dropout True
Gradient Algorithm Adam (learning rate = 0.001, β1 = 0.9, β2 = 0.999, weight decay = 0)

Table 7: Mortality risk predictor model features
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Parameter Settings for conditional Generator: The recurrent network with specifications show
in 8 learns a hidden latent vector ht representing the history. ht is then concatenated with x−i,t and
fed into a non-linear 1-layer MLP to model the conditional distribution p(xi, t|X0:t−1).

Additional importance plots are provided in Figure 9.
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Setting value
epochs 150

RNN cell GRU
batch normalization True

batch size 100
RNN encoding size (m) 80

Regressor encoding size (m) 300
Loss MSE

Gradient Algorithm Adam (learning rate = 0.0001, β1 = 0.9, β2 = 0.999, weight decay = 0)

Table 8: Training Settings for Feature Generators for MIMIC-III Data
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Figure 9: Additional patient trajectories and feature importance assignment with all baseline methods

Accordance testing: For this test we look into how much different baselines agree on important
feature assignment. As we observed from the experiments, counterfactual methods mostly agree on
the most important features for individual samples. We define accordance score between 2 methods
as the percentage of top n signals both identified as important. A score of 80 means on average over
the test data, 80 of the assignments were similar. This is depicted in Figure 10.
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Figure 10: Heat map showing the accordance score between pairs of methods for the most important
6 signals out of 31 clinical features

A.4 RUN-TIME ANALYSIS

In this section we compare the run-time across multiple baselines. Table 9 shows inference runtime
for all the baseline methods on a machine with Quadro 400 GPU and Intel(R) Xeon(R) CPU E5-1620
v4 @ 3.50GHz CPU. The runtime for the counterfactual approaches (FFC, FO and AFO) depends
only on the length of the time series. It is also the case for FFC since the conditional generator models
the joint distribution of all features. This is an advantage, over approaches like LIME, the runtime
depends both on the length of the signal as well as the number of features.

Overall, FFC performs reasonably compared to ad-hoc counterfactual approaches, since inference on
the RNN conditional generator is efficient. This is one of the reasons that the RNN generator model
is used to approximate the conditional distribution.

Method Simulation data MIMIC data
t = 100, d = 3 t = 48, d = 27

FFC 0.99 0.36
AFO 1.64 0.62
FO 2.09 0.84

LIME 2.23 8.72
Sensitivity Analysis 0.212 0.055

Table 9: Run-time results for simulated data and MIMIC experiment.

A.5 GHG NETWORK DATA

Parameter Settings for Generator: The settings are provided in Table 10.

Setting value
epochs 200

RNN cell GRU
batch size 100

Encoding size (m) 100
Loss MSE

Gradient Algorithm Adam (learning rate = 0.0001, β1 = 0.9, β2 = 0.999, weight decay = 0)

Table 10: Training Settings for Feature Generators for GHG Data

Parameter Settings for Black-Box: This black box regresses d = 15 tracer time signals to the
target synthetic GHG time series for t = 327 time points. This model is trained using a 65%,15%,20%
train, validation, test set respectively. All features are scaled to 0 mean unit variance and the target
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Figure 11: Left: Generator Loss for ghg data. Right: (Scaled) Regresser MSE loss

is scaled time series is scaled in the range [−1, 1]. The regressor is an RNN model with the
parameter settings given in Table 11. Figure 11 (a) shows the generator loss for all trained conditional

Setting value
epochs 200
Model RNN

batch size 100
Encoding size (m) 100

Loss MSE
Regressor Activation Linear
Gradient Algorithm Adam (learning rate = 0.001, β1 = 0.9, β2 = 0.999, weight decay = 0)

Table 11: Training Settings for Regressor for GHG Data

(counterfactual) generators, while Figure 11 shows the training loss of black-box that was used to
present feature important results in Section 4.4.
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