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Abstract

Classification systems typically act in isolation, meaning they are required to1

implicitly memorize the characteristics of all candidate classes in order to classify.2

The cost of this is increased memory usage and poor sample efficiency. We propose3

a model which instead verifies using reference images during the classification4

process, reducing the burden of memorization. The model uses iterative non-5

differentiable queries in order to classify an image. We demonstrate that such6

a model is feasible to train and can match baseline accuracy while being more7

parameter efficient. However, we show that finding the correct balance between8

image recognition and verification is essential to pushing the model towards desired9

behavior, suggesting that a pipeline of recognition followed by verification is a10

more promising approach towards designing more powerful networks with simpler11

architectures.12

1 Introduction13

Supervised classification is one of the most common problems in machine-learning, and is often14

addressed with a wholly recognition based approach [15]. Systems are expected to have memory,15

often implicit, of all possible candidate classes, and when an example is provided to the system, it is16

expected to leverage this memory in order to determine its class. However, this behavior may not17

always be suitable, in particular for cases in which there are a large number of candidate classes, or18

in situations with limited data. Consider a human tasked with classifying an uncommon breed of19

dog. A common action in this case to form a hypothesis about the breed, and then consult reference20

images for that breed to verify the hypothesis. This allows for more accurate classification and also21

relaxes the requirement of retaining high-fidelity memories of all classes. In this paper, we propose22

a framework, called Recognition-Verification Neural Network (RVNN), which uses this type of23

behavior to aid a neural network with classification. By reducing the memory requirement associated24

with wholly recognition based classification, we aim to show reductions in implicit memory (as25

measured by number of parameters), and better data-efficiency in training.26

Notably, our system uses non-differentiable queries for reference images in order to assist with its27

classification task. As shown in Figure. 1, our model is designed to iteratively query for support28

images in order to perform its classification task. Then at each subsequent time-step the model is29

given the image from its prior query, which it can compare with the task image in order to refine its30

hypothesis, before finally producing a prediction.31
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Figure 1: Overview of our hybrid model in contrast with two opposing approaches. (a) Recognition
network directly predicts the class given the input. (b) Verification network predicts binary output
indicating the amount of similarity or likelihood that they belong in the same class. The verification
network can be used to compare to all reference images from each class to produce the final class
prediction. (c) Our approach, RVNN, queries for reference image from a particular class at each time
step, and makes a class prediction at the last time step.

2 Related Works32

2.1 Verification Based Classification and Few-Shot Learning33

While recognition based classification is most common, verification based classification has been34

explored, primarily in the domain of few-shot classification. Siamese Networks use two Convolutional35

Neural Networks (CNN) with shared weights to compare if two images are from the same class36

[8]. Then to classify, the image is pair-wise compared with a support image from every class and37

image with the maximum similarity score is chosen. Matching networks extends the verification-38

based approach by outputting a prediction based on a weighted-sum of similarity across classes [18].39

Additionally the work introduces an episodic-training regime which encourages the model to better40

learn for the one-shot learning scenario. Prototypical Networks uses Euclidean Distance in embedding41

space as a verification metric rather than a learned metric, while maintaining the same training regime42

as Matching Networks to encourage different classes to have distant means in embedding space [16].43

One recent work outside of few-shot learning domain is the Retrieval-Augmented Convolutional44

Neural Networks (RaCNN) [21], which combines CNN recognition network with a retrieval engine45

for support images to help increase adversarial robustness.46

For all the above few shot learning approaches, verification with support images from all classes are47

required before a classification decision is made. Hence the classification decision is solely derived48

from verifications. RaCNN is closer to our approach, which uses a hybrid between verification49

and recognition. However, RaCNN simply retrieves the K closest support image neighbours in the50

embedding space, whereas our model is required to form a hypothesis as to which class to compare51

with. In cases in which there are a large number of classes, we expect our approach to excel. As well,52

this introduces a non-differentiable component in our model not present in previous work.53

2.2 Consulting External Knowledge Bases54

Prior work has also looked at the concept of incorporating external knowledge into the decision55

making process of neural networks, often with non-differentiable components. Buck et al. learn56

to formulate queries for a search engine in order to answer trivia questions [2]. The model must57

handle the non-differentiable component of interacting with an external environment, in this case a58

search engine. Another common source of external knowledge is a human, i.e. the human in the loop59

approach. For example, Ling et al. use non-differentiable instructions from a human teacher to better60

caption images and Thomaz et al. do the same for teaching an agent to navigate households [10] [17].61

Our paper shares a similarity in method to these works, as the model queries for external knowledge,62

in this case support images, in order to achieve its primary goal of classification. Notably, our model63

2



is also required to perform multiple non-differentiable queries rather than a single non-differentiable64

step. As well, while tasks such as question-answering and captioning have used this approach, this65

paper introduces the approach to the setting of classification.66

2.3 Application of Gradient Estimators67

When optimizing non-differentiable components, gradients are often estimated with the REINFORCE68

algorithm [19]. However, due to the high variance of the method, training complex models is often69

time-consuming or not feasible. Recently, several new gradient estimators have been proposed70

to address this issue. The Gumbel-Softmax approach injects Gumbel noise to form a continuous71

relaxation of a discrete choice [6]. While, this approach biases the gradients, it has shown good72

empirical results. For this work we use this method in order to generate non-differentiable queries for73

support images.74

3 Model Description75
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Figure 2: Diagram of model architecture. At each time-step the original image along with the queried
image are passed into the CNN module. The output of this is passed into the RNN which then outputs
a query. This occurs for a fixed number of time-steps until the model outputs a prediction.

The model consists of three key components. First is a CNN-based module fcnn tasked with both76

recognition and verification. The module takes as input the task image t along with a support image s,77

and then outputs some feature vector v. This feature vector is then input to a recurrent module frnn78

tasked with tracking hypotheses and performing the high-level querying logic. The hidden state of the79

RNN h is then input to the final querying component fq which converts it to a discrete query q, and80

then returns a new support image corresponding to that query. The model is run for a fixed number of81

time steps N , and at the last time step the the hidden state of the RNN is fed into a function fp in82

order to produce a prediction C for the class. Figure 2 illustrates the full process.83

The subsequent sections detail the implementations of the three components as well as training84

considerations.85
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3.1 Verification Architecture fcnn86

Algorithm 1: Classification with References
Input: Task image T to be classified
Result: Predicted class C for the task image
S1 ← 0 h0 ← 0 // Initialize

support image and RNN state
for n in 1...N do

vn = fcnn(T,Sn)
hn = frnn(vn,hn−1)
Sn+1 = fq(hn)

end
C = fp(hN)
return C

We explored three possible implementations of the87

CNN-based module fcnn, which vary according to88

the layer at which information between the task im-89

age t and support image s are concatenated. The90

variants are illustrated in Figure 3. In general the91

architecture uses 2 convolutional layers and one fully92

connected layer. In the "Beginning Concatenate" (Fig.93

3a), the task image and support image are concate-94

nated along the channel dimension, then passed into95

the convolutional layers. In the "Middle Concate-96

nate" (Fig. 3b), the output feature maps from the first97

convolution layer from the task and support images98

are concatenated channel-wise. Similarity, the "End99

Concatenate" (Fig. 3c) concatenates the outputs from100

the second convolutional layers channel-wise. Note101

that the weights are tied between the corresponding102

convolution layers for the original and query images.103
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Figure 3: Various architecture choices for the CNN Verification Network fcnn

3.2 Recurrent Querying Model frnn104

The recurrent querying model frnn was implemented using a Gated Recurrent Unit (GRU) [3]. We105

also considered passing in additional information to frnn, such as the query that was used in the106

previous time steps.107

3.3 Implementing fq for Training108

We implemented fq as sampling a class based on the categorical probability given by the softmax of109

the logits from the frnn. Therefore, fq can be written as:110

pn = softmax(hn) (1)
fq(hn) = Sn+1 ∼ Categorical(pn) (2)

To sample Sn+1, we can use the Gumbel-Max trick [5, 12]:111

fq(hn) = one_hot
(
argmax

i
[gi + logpi]

)
(3)

where gi...gk are i.i.d samples drawn from Gumbel(0, 1) distribution. However, the argmax operator112

is not differentiable, so instead we explored two approaches during training.113

The first is to use the Gumbel-Softmax trick, also known as the Concrete estimator [7, 11]. We114

relaxed the argmax operator to a differentiable softmax function with temperature parameter τ :115
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Sni =
exp((gi + logpi)/τ)∑k

j=1 exp((gj + logpj)/τ)
for i = 1, . . . , k (4)

The τ parameter is annealed exponentially from τ = 1 to τ = 0.5 as the training iterations progresses.116

The second approach is to use simple Straight-Through estimator [1]. In the forward pass, we apply117

the Gumbel-Max trick to take discrete query choices. Then on the backward pass, we set the derivative118

of the query with respect to the softmax probabilities to be identity so that the out-going gradient119

from the argmax operator is equal to the incoming gradient during backpropagation:120

∂L
∂p

=
∂L
∂S

∂S

∂p
=
∂L
∂S

(5)

3.4 Comparison to Existing Work121

We highlight that our model differ from several existing networks in various aspects. In the models for122

few-shot learning, such as Matching Networks and Prototypical Networks, their approach is similar123

to the verification approach which performs verification between the input image and the support124

images from all classes. In the case of Matching Networks, they use cosine similarity between the125

embedding, while Prototypical networks use Euclidean distance as a measure of similarity. Our126

model aims to not compare support images from all classes, but rather iteratively query for the most127

promising class’s support images. We believe that this approach will be able to scale to larger number128

of classes.129

In comparison to RaCNN, we use a different retrieval engine and have the notion of memory (via the130

recurrent network frnn. RaCNN retrieves from its support set the K nearest neighbour to the input131

image in the embedding space (i.e. output from pretrained CNN feature extractor), and produces a132

combined single vector representation with respect to the input image using attention mechanism. In133

contrast, our query function samples an image given the class probabilities, which can viewed as a134

form of hard attention on a particular support image. The use of recurrent network to perform the135

next query can then be interpreted as a recurrent attention over the support set. RaCNN has only a136

single non-differentiable query, while ours perform multiple non differentiable queries.137

4 Experiments138

We perform experiments to assess both the overall performance of the model and to better understand139

its behavior. Based on our hypotheses, overall performance is judged via reduced parameter usage and140

sample efficiency. With regards to behavior, we focus on understanding the policy which the model141

learns, and how it can be influenced. To do so we run several ablated versions of our model, isolating142

the effect of each component. We also investigate the effects of decomposing the CNN-module into143

recognition and verification components, and the effects that they have on model behavior. All tests144

are conducted on the MNIST digit-classification dataset [9].145

4.1 Parameter and Sample Efficiency146

The performance of the model is assessed by both reduced parameter usage and sample efficiency.147

Reduced parameter usage is measured relative to a baseline model, in this case the CNN architecture148

from [13]. We look to see whether an identical level of accuracy can be achieved by our model,149

but with fewer parameters than the baseline. Sample efficiency is measured by taking models that150

achieved similar levels of accuracy by training on the full dataset, and then training them on a subset151

of the data and recording the loss in test accuracy. The model with a lesser reduction in accuracy152

would be considered more sample efficient. We test both smaller and larger versions of our model (as153

measured by number of parameters), against smaller and larger versions of the baseline model.154

4.2 Query Result Modification155

The performance of the model alone does not indicate whether our approach is functioning as intended.156

It is possible that the model may simply use the RNN as additional computational resources and157
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ignore all information from the queries. To test this, we experiment with modifying the query results158

during inference and observe their effect on model performance. We test supplying blank information159

or incorrect images as query results during inference. If the model is using the query information in a160

valuable way, we expect this to significantly harm model accuracy.161

4.3 Architectural Considerations and Hyper-parameters162

We also experiment with several small modifications to our architecture as well as a few hyper-163

parameters that are unique to our model. We list them here below.164

• Architectural Considerations165

– Query Memory (QM): The query from the past time step is passed to the RNN.166

– Weighted CNN Output (WC): In the case of non-straight-through gumbel a weighted-167

sum is required. This is either done in pixel space or in latent space (after the CNN168

module).169

– Separate RNN Heads (SH): The RNN output is split into two components, one for170

predicting and the other for querying, or both actions are derived from the same head.171

– CNN Module : The use of Concat Begin, Middle or End as defined in section 3.1172

• Hyper-parameters173

– Size of CNN as measured by number of channels174

– Size of RNN as measured by hidden size175

– Gumbel-Softmax anneal rate, and use of straight-through176

– Number of queries made by the RNN177

4.4 Decomposed CNN Modules and Query Policies178

Our model assumes that the CNN module will perform some hybrid form of recognition and179

verification, and that its output will be a unified representation of this computation to be provided180

to the RNN. In order to understand the impacts of the module’s ability to recognize and compare181

at a granular level, we also experiment with a decomposed version of the CNN module consisting182

of a pre-trained classifer and comparator. By varying the strength of these we are able to see how183

the RNN learns to adapt its policy to varying levels of accuracy, and see whether a better result can184

be achieved when they are used in tandem. We also experiment with fixing query policy to assess185

whether the RNN actually learns intelligent query behavior.186
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Figure 4: Decomposing CNN module into explicit pre-trained recognition and verification networks.
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Smaller Model Acc (%) Params (thousands) 10%-Data Acc (%) 1%-Data Acc (%)
Baseline 99.09 27.7 97.94 93.01

Ours 99.09 13.9 97.73 92.26
Larger Model Acc (%) Params (thousands) 10%-Data Acc (%) 1%-Data Acc (%)

Baseline 99.29 53.2 98.39 94.90
Ours 99.29 34.2 98.12 92.89

Table 1: Parameter usage and sample efficiency for baseline model vs ours. Best versions of our
model are reported against best versions of baseline

5 Results187

5.1 Parameter and Sample Efficiency188

From our overall performance metrics we observe that at both smaller and larger sizes of model, our189

architecture achieves the same accuracy as the baseline but with approximately half the parameter190

usage. This is in agreement with our hypotheses that our model would be more parameter efficient.191

However, with regards to sample efficiency, our model performs worse than the baseline, going192

against our initial hypotheses. This suggests that our model may not have learned the behavior we193

expected it to.194

The results of the architecture/hyper-parameter search support this conclusion as well. Performance195

of the model was largely unaffected by parameters related to querying, such as gumbel-temperature,196

anneal rates and number of queries. Architectural modifications such as query memory or separate197

heads also had little effect on performance. The only key varying components were the CNN and198

RNN sizes, of which, the best model (for a fixed number of parameters) had the largest possible199

CNN with the smallest possible RNN. As the model is unaffected by parameters related to querying200

it appears as though the model does not rely on queries to classify, and instead works as a standard201

classifier (hence the performance gains from a large CNN and small RNN). The underlying behavior202

of the model is discussed further in the next sections.203

5.2 Query Result Modification204

Query Result Accuracy (%)
Standard 99.29

Blank 97.44
Mistaken 98.02

Table 2: Inference accuracy for modi-
fied query results

Replacing the queries with either blank or incorrect queries205

had limited effect on the model’s performance. This sup-206

ports the notion that the model is not actually using the207

queries to classify. Instead it is simply acting as a classifier208

with an RNN component. This is also the likely reason for209

the reduced parameter usage. As the model has the ability210

to do multiple iterations of computation via the RNN, it is211

possible that this results in a trade-off between parameter212

usage and computation steps.213

5.3 Decomposed CNN Modules and Query Policies214

Figure 5b shows the model’s ability to classify when there is no recognition component present215

but only a verification component. In this case the comparator used is an oracle comparator, which216

allows us to isolate whether the RNN is actually capable of learning a reasonable query policy. The217

RNN’s learned policy is compared against a random query policy and the optimal query policy (never218

repeating a query). From the figure we see that the model is able to conduct a better than random219

query policy, but is not able to achieve optimal performance. We also observed that performance220

increases with a higher RNN size up to 200. This suggests that the model is in some part able to track221

previously unsuccessful queries and remember if there was a match. However, its memory is not222

perfect and it cannot achieve optimal performance.223

Figure 5a reports the results when the output of a weak classifier (86.87% accuracy) is concatenated224

with the result of the comparator. The weakest baselines is a no-query model which runs the RNN for225

the same number of steps as other models but does not receive information from a query. Stronger226

baselines include a random query policy with no repeats and a top-k query policy which queries all227

top-k classes from the recognition network. The informed-query model learns to use the predictions228
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Figure 5: (a) Results from combining different recognition and comparator networks. OC indicates
an oracle comparator while RC indicates a real (pre-trained network) comparator. Top-K indicates a
query policy of performing verifications with all of the top-k predictions of the recognition network.
(b) Results of RNN with oracle comparator. Random and optimal query results are theoretical rather
than empirical.

from the recognition network to output a query. For this model we experimented with both an oracle229

and a real (neural network) comparator.230

Of the query-based models, informed queries performed the best over random and no query models.231

This demonstrates that the RNN controller is able to learn a policy that takes advantage of the232

recognition model’s predictions and performs better than random. Between the oracle and real233

comparator models, there was small drop in performance as expected. Interestingly the informed234

model achieves greater performance up to two queries versus the top-k model.235

6 Limitations and Future Work236

From the experiments we can conclude that the model can be pushed to learn a query-like behavior237

as originally hypothesized. However this only occurred in the case in which the recognition model238

and comparator models were separated rather than as a unified component. Simply concatenating239

channels was not a sufficient approach to encourage verification behavior. This suggests that a more240

appropriate pipeline for our model is to perform a recognition operation which is then followed by241

verification, rather than perform them simultaneously.242

This new pipeline would also imply that our model may be less well suited for the one-shot learning243

task than initially believed, as a reasonably-well trained recognition module is required as the first244

step. Instead future work should focus on using this pattern of recognition-then-verification for245

challenging classifications such as datasets with similar looking images, or fine-tuning accuracy on246

standard datasets.247

That said, the paradigm does have potential in the few-shot learning space, however would need to248

be tested on datasets with a larger number of classes such as mini-Imagenet [14] or WebFace [20].249

In this scenario, the recognition module would narrow the number of classes and the verification250

network would select the correct class. We could experiment with models and training regimes better251

suited for verification such as prototypical networks. In this way, we could extend few-shot learning252

to a large number of classes.253

7 Conclusion254

We demonstrated that it is possible to train a model to intelligently use both recognition and veri-255

fications capabilities to classify images. Notably, this was achieved using a recurrent-model with256

non-differentiable queries. This signals the potential for models to use non-differentiable compo-257

nents as aids. This opens the door for not only improved classification, but even for translation,258

question-answering, and any other challenging tasks in which external information or computation259

could provide a benefit. A key component of an intelligent agent is the ability to use tools, hence260

tasks of this form are pre-requisite if neural-network models are considered to be as such [4].261
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