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Abstract

We propose that approximate Bayesian algorithms should optimize a new criterion, directly
derived from the loss, to calculate their approximate posterior which we refer to as pseudo-
posterior. Unlike standard variational inference which optimizes a lower bound on the
log marginal likelihood, the new algorithms can be analyzed to provide loss guarantees on
the predictions with the pseudo-posterior. Our criterion can be used to derive new sparse
Gaussian process algorithms that have error guarantees applicable to various likelihoods.

1. Introduction

Results in learning theory show that, under some general conditions, minimizing training
set loss, also known as empirical risk minimization (ERM), provides good solutions in the
sense that the true loss of such procedures is bounded relative to the best loss possible
in hindsight. Alternative algorithms such as structural risk minimization or regularized
loss minimization (RLM) have similar guarantees under more general conditions. On the
other hand, Bayesian approaches are, in a sense, prescriptive. Given prior and data, we
calculate a posterior distribution that compactly captures all our knowledge about the
problem. Then, given a prediction task with an associated loss for wrong predictions, we
pick the best prediction given our posterior. This is optimal when the model is correct
and the exact posterior is tractable. However, the algorithmic choices are less clear with
misspecified models or, even if the model is correct, when exact inference is not possible
and the learning algorithm can only return an approximation to the posterior. Since the
choices are often heuristically motivated we call such approximations pseudo-posteriors.
The question is how the pseudo-posterior should be calculated. In this paper we propose
to use learning theory to guide this process.

To motivate our approach consider the variational approximation which is one of the
most effective methods for approximate inference in Bayesian models. In lieu of finding the
exact posterior, variational inference maximizes the ELBO, a lower bound on the marginal
likelihood. It is well known that this can be seen alternatively as performing regularized
loss minimization. For example, in a model with parameters w, prior p(w), and data y
where p(y|w, x) =

∏
i p(yi|w, xi), we have

log p(y) ≥ ELBO , E
q(w)

[log p(y|w)]− dKL(q(w), p(w)) =
∑
i

E
q(w)

[log p(yi|w)]− dKL(q(w), p(w))
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where q(w) is the variational posterior and we have suppressed the dependence on x for vi-
sual clarity. Minimizing the negative ELBO, we have a loss term

∑
i Eq(w)[− log p(yi|w, xi)]

and a regularization term dKL(q(w), p(w)). The RLM viewpoint is attractive from the per-
spective of statistical learning theory because such algorithms are known to have good gener-
alization guarantees (under some conditions). However, the ELBO objective is not matched
to the intended use of Bayesian predictors: given a posterior q(w) and test example x∗, the
Bayesian predictor first calculates the predictive distribution p(y∗|x∗) = Eq(w)[p(y∗|x∗, w)]
and then, assuming we are interested in the log loss, suffers the loss − log p(y∗|x∗). In
other words, seen from the perspective of learning theory, variational inference optimizes
for LG =

∑
i Eq(w)[− log p(yi|w)], sometimes known as the Gibbs loss, instead of LB =∑

i− log Eq(w)[p(yi|xi, w)], which is the loss of the Bayesian predictor.
These observations immediately raise several questions: Should we design empirical risk

minimization (ERM) algorithms minimizing LB that produce pseudo-posteriors? Should
a regularization term, e.g., dKL, be added? Can we use standard analysis, that typically
handles frequentist models, to provide guarantees for such algorithms? We emphasize that
this differs from standard non-Bayesian algorithms that perform ERM or RLM to find the
best parameter w. Here, we propose to perform ERM or RLM to find the best pseudo-
posterior q(w) as given by the parameters that define it.

In this paper, we show that such an analysis can indeed be performed, and provide results
which are generally applicable to Bayesian predictors optimized using ERM. Then, we focus
on sparse Gaussian processes (sGP) for which we develop risk bounds for a smoothed variant
of log loss1 and any observation likelihood (the non-conjugate case). The significance of this
is conceptual, in that it points to a different principle for designing approximate inference
algorithms where we no longer aim to optimize the marginal likelihood (or ELBO), but
instead a criterion that is directly related to the loss — this diverges from current practice
in the literature.

The paper highlights sparse GP because it is an important model with significant recent
interest and work. But the approach and results are more generally applicable. To illustrate
this point the appendix shows how the results can be applied to the Correlated Topic Model
(CTM) of Blei and Lafferty (2006).

It is important to distinguish this work from two previous lines of work. Our earlier
work (Sheth and Khardon, 2017) made similar observations w.r.t. the mismatch between the
optimization criterion and the intended objective. However, the goal there was to analyze
existing algorithms where possible. More concretely we showed that optimizing a criterion
related to LG does have some risk guarantees, though these are weaker than the ones in this
paper. Here, we propose to explore new algorithms based on direct loss minimization with
stronger associated guarantees. In Alaoui and Mahoney (2015) and Burt et al. (2019), the
goal is to show that the sparse GP approximation can be chosen to be very close to the full
GP solution. Conditions on the kernel functions and on the algorithm to select inducing
input locations and variational distribution are given for this to be true. This is a very
strong result showing that nothing is lost by using the sparse approximation. However, in
many cases, the number of inducing inputs required is too large (e.g., for Matern kernels).

1. For technical reasons, our results hold for a smoothed variant of log loss which is a limitation. As
discussed below, it may be possible to remove this restriction with an alternative bound on Ψ().
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In contrast, our analysis aims at identifying the best sGP posterior in terms of the resulting
prediction performance, whether it is close to the full GP posterior or not. In other words,
we seek an “agnostic PAC guarantee” for the sparse GP posterior.

2. Technical Results

Due to space constraints, the main paper sketches the technical results with full details
given in Appendices A to E. In short, three different approaches to proving agnostic PAC
guarantees for learning with a Lipschitz loss under a bounded hypothesis space are provided.
The three results use slightly different variants of ERM as the optimization algorithm. All
three provide bounds if, in addition, the loss itself is bounded. Approach 1 (Appendix A)
uses this directly and proves bounds using a standard discretization argument. Approach 2
(Appendix B) requires a bounded loss but adapts results based on Rademacher complexity
(Meir and Zhang, 2003) to provide risk bounds that do not depend on the dimension of
the hypothesis space and, in this way, potentially improves on approach 1. Approach
3 (Appendix C), which we present below, is new and has the potential to provide bounds
with unbounded losses, although, for the application in this paper, we will be using bounded
loss functions. We stress, though, that any of these approaches can be utilized to obtain
guarantees under a Lipschitz loss and bounded hypothesis space. Appendices D and E
develop the details for sGP and CTM.

2.1. Agnostic Learning with Randomized ERM

In the following, we consider a loss ` : Θ×(X,Y ) 7→ R over a hypothesis space Θ ⊂ RM and
example/label spaces X and Y . We assume that the hypothesis space is closed and bounded
w.r.t. infinity norm with supθ∈Θ ||θ||∞ ≤ B. We further assume that ` is L-Lipschitz in its
first argument w.r.t. the same norm, i.e., ∀θ, θ′ ∈ Θ, |`(θ)− `(θ′)| ≤ L||θ−θ′||. Let S denote
an i.i.d. sample {(xi, yi)}ni=1 from an unknown distribution D over X × Y .

The Randomized ERM Algorithm is as follows

θ̄ERM , arg min
θ̄∈Θ̄

1

n

n∑
i=1

E
qjit(θ|θ̄)

[
`(θ, (xi, yi))

]
,

where Θ̄ = [−B + M
3Lλ , B −

M
3Lλ ]M , qjit(θ|θ̄) =

∏M
m=1 U(θm|θ̄m − M

3Lλ , θ̄m + M
3Lλ), U denotes

the uniform distribution, and λ > 0 is a scalar. The algorithm averages2 the ERM objective
of random neighbors of the solution θ̄. We have:

Theorem 1 Let p(θ) be some sample-independent distribution over Θ. For all θ ∈ Θ,

E
S∼Dn

[
E

(x,y)∼D
`(θ̄ERM, (x, y))

]
≤ E

(x,y)∼D
`(θ, (x, y)) +

1

λ

[
M +M log

(3BLλ

M

)
+ Ψ(λ, n)

]
(1)

where

Ψ(λ, n) , log E
S∼Dn

[
E
p(θ)

exp
(
λ
(

E
(x,y)∼D

[
`(θ, (x, y))

]
− 1

n

n∑
i=1

`(θ, (xi, yi))
))]

.

2. Given the other approaches described in the appendix, it is reasonable to consider this an artifact of the
proof. In this case, ERM may be used directly.
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The proof (Appendix C) uses the compression lemma, Eq(θ) f(θ) ≤ KL(q(θ), p(θ)) +

log Ep(θ) e
f(θ), but applied to the variational parameters θ in contrast with Germain et al.

(2016) and Sheth and Khardon (2017) that applied it on w. This new approach is the source
of jitter in the randomized ERM objective. Specifically we apply the compression lemma
with q(θ) = qjit(θ|θERM) and f(θ) = λ[E(x,y)∼D `(θ, (x, y)) − 1

n

∑n
i=1 `(θ, (xi, yi))]. This

bounds the potential overfitting, expressed by 1
λf(θ), by a KL term that we can compute

explicitly and log Ep(θ) e
f(θ) which results in Ψ.

If the loss is bounded, i.e., |`| ≤ c, then, Ψ(λ, n) ≤ 2λ2c2

n (see Germain et al. (2016);
Sheth and Khardon (2017)) implying the following corollary showing that the expected risk
of Randomized ERM is bounded by the risk of any posterior in Θ plus a term that decays
at a rate of 1/

√
n. Ψ(λ, n) can be bounded under some conditions even if the loss is not

bounded3 but we leave further exploration of this for future work.

Corollary 2 If the loss is bounded, i.e., |`| ≤ c, then using λ =
√
n we have

E
S∼Dn

[
E

(x,y)∼D
`(θ̄ERM, (x, y))

]
≤ E

(x,y)∼D
`(θ, (x, y)) +

1√
n

[
M +M log

(3BL
√
n

M

)
+ 2c2

]
. (2)

2.2. Applications to Sparse GP

In the (zero-mean) sparse GP model of Titsias (2009), w represents the latent function at
the M inducing inputs U = (u1, u2, . . . , uM ), f(x) is the latent function at x, K(·, ·) is the
covariance function, and p(f |w) = N (f |KXUK

−1
UUw,KXX−KXUK

−1
UUKUX) where (KUU)kl ,

K(uk, ul), (KXU)ik , K(xi, uk), and KXU , K>UX for 1 ≤ i, j ≤ n and 1 ≤ k, l ≤M .
Here, the pseudo-posterior is given by q(w|θ) = N (w|m,C>C) and the parameter space

Θ includes both the mean and the Cholesky factor of the covariance of the pseudo-posterior,

i.e., θ ,

(
m

vec(C)

)
. Given q(w|θ), the induced distribution q(f |θ) ,

∫
w p(f |w)q(w)dw

can be calculated exactly from Gaussian identities. Then, the log loss of the Bayesian
prediction is `((m,C), (x∗, y∗)) = − log Eq(f∗|θ)[p(y∗|f∗)] where q(f∗|θ) = N (f∗|a>∗m, const+

a>∗ C
>Ca∗), a∗ , K−1

UUKU∗, and const signifies terms that do not depend on m or C.
To apply Corollary 2, we require a bounded loss function which is also Lipschitz w.r.t.

θ. To enable this, we define a “smoothed” log loss. Assume for now that p ≤ ξ < ∞. We
use a smoothing parameter α ∈ (0, 1) and define nlog(α)(p) , − log((1−α)p+α). Then, the
loss is bounded as |nlog(α)(p)|∞ ≤ max{| log(α)|, |nlog(α)(ξ)|}. We also have that nlog(α)(p)
is L(α)-Lipschitz w.r.t. p with L(α) = 1−α

α .
We show in Appendix D that Eq(f∗|θ)[p(y∗|f∗)] is Lipschitz w.r.t. θ and infinity norm

yielding that nlog(α)(Eq(f∗|θ)[p(y∗|f∗)]) is Lipschitz with constant L(α)(Lm + LC) where

Lm ,

√
M

λmin(KUU)
‖KU∗‖2 max

f∗

∣∣∣∣∣ d

df∗
p(y∗|f∗)

∣∣∣∣∣, (3)

LC ,
M3(M + 1)B

2(λmin(KUU))2
‖KU∗‖22 max

f∗

∣∣∣∣∣ d2

df2
∗
p(y∗|f∗)

∣∣∣∣∣, (4)

3. Note, however, that prior results on linear regression in Germain et al. (2016) are not valid.
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and λmin(KUU) denotes the minimum eigenvalue of KUU .
Therefore, to apply Corollary 2 to any non-conjugate sparse GP model with smoothed

log loss, all we need is to (i) verify that ∃ξ s.t. Eq(f∗|θ)[p(y∗|f∗)] < ξ and (ii) calculate bounds

on
∣∣∣ d

df∗
p(y∗|f∗)

∣∣∣ and
∣∣∣ d2

df2∗
p(y∗|f∗)

∣∣∣. Condition (i) is easily achieved when Y is discrete, e.g.,

for binary classification and count regression. For standard regression, we can guarantee this
by lower bounding the noise variance σ2

Y and upper bounding the range of X,Y . Bounds on
the first and second derivatives (condition (ii)) are easily derived for the same likelihoods.

Corollary 3 Randomized ERM using smoothed log loss with the sparse GP predictive
distribution enjoys the bounds of Corollary 2 for regression, binary classification, Poisson
regression.

3. DLM for Other Loss Functions

We have shown that ERM-type algorithms performing direct minimization of log loss have
strong performance guarantees for the Bayesian predictor, and we applied these results to
the non-conjugate sparse GP model under a smoothed log loss. However, in some scenarios,
we may want to minimize a different loss function requiring an explicit prediction. In this
case, given a posterior q(w) and example x with label ytrue, the Bayesian predictor first
identifies the optimal prediction ŷ = ŷq(w)(x) = arg miny∈Y Eq(w)p(y′|x,w)[`(y, y

′)] and then
suffers the loss `(q(w), (x, ytrue)) = `(ŷq(w)(x), ytrue). Therefore, the natural loss term for
optimization is LB =

∑
i `(ŷq(w)(xi), yi). We note that LG from the introduction, which

implicitly uses the Gibbs log loss, is even less directly related to the learning goal in this
case. On the other hand, the results of this paper do potentially apply to this more general
setting as long as the conditions for the theorem hold.

Our theory does not directly apply to the square loss (ŷ − y)2 because of the need for
smoothing. However, it is interesting to consider the use of DLM for square loss and the
resulting algorithms. In this case, sGP uses the standard regression model with Gaussian
noise for prediction, that is, for calculating ŷ. It is well known that for the square loss the
optimal predictor is the mean of the predictive distribution. As discussed above, for sGP
the mean of the predictive distribution on example i is equal to a>i m where ai = K−1

UUKUi.
Therefore the ERM algorithm will minimize

∑
i(a
>
i m−yi)2 and similarly for the randomized

ERM. We therefore see that, if we do not use regularization, the optimization criterion does
not depend on the covariance of w and the optimization simplifies into a sparse variant
of kernel least squares. The role of the posterior covariance, might become apparent with
regularization, which might also be helpful to reduce some of the conditions in our theorem.
We leave the derivation of DLM algorithms and performance guarantees for other loss
functions to future work.

4. Conclusion

The paper points out the potential of DLM to yield a new type of approximate pseudo-
Bayesian algorithm. In this paper we focused on the analysis of ERM and application to
sparse GP. There are many important questions for future work including analysis for RLM,
analysis for hyperparameter selection, removing the need for bounded or smoothed loss in
our theorem, and investigating empirical properties of these algorithmic variants.
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Appendix A. Discretization

This straightforward proof shows that having a Lipschitz condition and bounded loss are
sufficiently strong to make the problem simple by essentially learning on a grid. We include
it here in order to put the other proofs and their potential improvements in context.

Let Θ ⊂ RM and || · || denote the infinity norm. Recall that we assume a bounded loss
for the application of the discretization approach, i.e., |`| ≤ c. Since Θ is assumed bounded,
there exists a finite ρ-cover of Θ, Θ̇, i.e., ∀θ ∈ Θ, ∃θ̇ ∈ Θ̇ s.t. ||θ − θ̇|| ≤ ρ. Let

θERM , arg min
θ∈Θ

1

n

n∑
i=1

`(θ, (xi, yi)).

For an arbitrary θ ∈ Θ, let θ̇ denote the closest point in Θ̇ to θ. Since the loss is assumed
to be L-Lipschitz in the hypothesis parameter, we have that

∀(x, y) ∈ X × Y, |`(θ, (x, y))− `(θ̇, (x, y))| < Lρ (5)

∀S ∈ (X × Y )n,

∣∣∣∣∣ 1n
n∑
i=1

`(θ, (xi, yi))−
1

n

n∑
i=1

`(θ̇, (xi, yi))

∣∣∣∣∣ < Lρ. (6)

In addition, by combining the union bound and Hoeffding’s bound for bounded loss |`| ≤ c
we have that, with probability ≥ 1− δ over the choice of sample S, for all θ ∈ Θ̇:∣∣∣∣∣ E

(x,y)∼D
`(θ, (x, y))− 1

n

n∑
i=1

`(θ, (xi, yi))

∣∣∣∣∣ ≤ c
√

2 log(2|Θ̇|/δ)
n

. (7)

Let θ be any competitor for the posterior parameters. With probability ≥ 1− δ we have

E
(x,y)∼D

`(θERM, (x, y))
(5)

≤ E
(x,y)∼D

`(θ̇ERM, (x, y)) + Lρ

(7)

≤ 1

n

n∑
i=1

`(θ̇ERM, (xi, yi)) + c

√
2 log(2|Θ̇|/δ)

n
+ Lρ

(6)

≤ 1

n

n∑
i=1

`(θERM, (xi, yi)) + c

√
2 log(2|Θ̇|/δ)

n
+ 2Lρ

(e)

≤ 1

n

n∑
i=1

`(θ̇, (xi, yi)) + c

√
2 log(2|Θ̇|/δ)

n
+ 2Lρ

(7)

≤ E
(x,y)∼D

`(θ̇, (x, y)) + 2c

√
2 log(2|Θ̇|/δ)

n
+ 2Lρ

(5)

≤ E
(x,y)∼D

`(θ, (x, y)) + 2c

√
2 log(2|Θ̇|/δ)

n
+ 3Lρ (8)
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where (e) follows because ERM minimizes training set loss. With |Θ̇| ≤
(

2B
ρ

)M
, the terms

on the RHS of (8) depending on ρ are given by

2c

√
2 log(2/δ) + 2M log(2B

ρ )

n
+ 3Lρ ≤ 2c√

n

(
2 log(2/δ) + 2M log

(2B

ρ

))
+ 3Lρ

≤ const− 4cM√
n

log ρ+ 3Lρ.

The last expression is optimized when ρ = 4cM
3
√
nL

. Hence, we have that, with probability

≥ 1− δ over the choice of S, ∀θ ∈ Θ,

E
(x,y)∼D

`(θERM, (x, y)) ≤ E
(x,y)∼D

`(θ, (x, y)) + 2c

√√√√2 log(2/δ) + 2M log
(

3BL
√
n

2cM

)
n

+
4cM√
n
.

(9)

Appendix B. Rademacher complexity

In this section, we show how the result of Meir and Zhang (2003) can be adapted to han-
dle Bayesian predictors. Meir and Zhang (2003) assume a set of parameterized predic-
tors h(x;w) : X 7→ Y and, in addition, assume that predictions can be averaged so that
Eq(w|θ)[h(x;w)] is a meaningful prediction. One can then apply the loss `(y,Eq(w|θ)[h(x;w)]).
For Bayesian predictors, we average the probabilities in p̂ = Eq(w|θ)[p(y|x,w)] but not the
predictions themselves. Nonetheless, the same proof technique can be adapted to yield a
result for some loss functions, specifically the smoothed log loss discussed in the main paper.

We next develop the details. Note that, although the results of Meir and Zhang (2003)
are for unbounded losses, their conditions are complex and it is not clear how to apply these
results directly for Bayesian predictors such as the sparse GP discussed in this paper.

Assuming a family of distributions Q over w and an upper bound p(y|x,w) ≤ py|w (where
py|w is a constant), uniform convergence for the averaged predictor Eq(w)[p(y|x,w)] under

the smoothed log loss nlog(α)() will be shown. From Theorem 26.5.1 of Shalev-Shwartz and
Ben-David (2014)4, for all q ∈ Q, the following holds with probability 1− δ over the choice
of S:∣∣∣∣∣ E

(x,y)∼D

[
nlog(α)

(
E
q(w)

[p(y|w, x)]
)]
− 1

n

n∑
i=1

nlog(α)
(

E
q(w)

[p(yi|w, xi)]
)∣∣∣∣∣

≤ 2 E
S′∼Dn

Rn(` ◦ H ◦ S′) + c

√
2 log(2/δ)

n
, (10)

where H , {Eq(w)[p(·;w, ·)] : q ∈ Q}, ◦ stands for function composition,

Rn(` ◦ H ◦ S) , E
σ

[
sup
q∈Q

1

n

n∑
i=1

σi nlog(α)
(

E
q(w)

[p(yi|w, xi)]
)]

4. See also Corollary 4 of Meir and Zhang (2003). These results give one-sided bounds but can be easily
adapted to give the two sided bound shown here.

8



Pseudo-Bayesian Learning via Direct Loss Minimization

for Rademacher variables σ, and c = max{| log(α)|, |nlog(α)(py|w)|}. Since nlog(α)(·) is

L(α)-Lipschitz, by Theorem 7 of Meir and Zhang (2003), we have

Rn(` ◦ H ◦ S) ≤ L(α) E
σ

[
sup
q∈Q

1

n

n∑
i=1

σi E
q(w)

[p(yi|w, xi)]
]
.

Next, we slightly adapt the argument outlined in Sections 5 and 6.1 of Meir and Zhang
(2003). Fix some constant λ ∈ (0,∞) and sample-independent distribution p(w) over w.

By applying the compression lemma (Banerjee, 2006) to Eq(w)

(
λ
n

∑n
i=1 σip(yi|w, xi)

)
, we

have

Rn(` ◦ H ◦ S) ≤ L(α)

λ
E
σ

[
sup
q∈Q

(
KL(q(w), p(w)) + log E

p(w)
exp

(
λ

n

n∑
i=1

σip(yi|w, xi)

))]

=
L(α)

λ

(
sup
q∈Q

KL(q(w), p(w)) + E
σ

[
log E

p(w)
exp

(
λ

n

n∑
i=1

σip(yi|w, xi)

)])

≤ L(α)

λ

(
sup
q∈Q

KL(q(w), p(w)) + log E
σ

[
E
p(w)

exp

(
λ

n

n∑
i=1

σip(yi|w, xi)

)])

=
L(α)

λ

(
sup
q∈Q

KL(q(w), p(w)) + log E
p(w)

[
E
σ

exp

(
λ

n

n∑
i=1

σip(yi|w, xi)

)])

≤ L(α)

λ

(
sup
q∈Q

KL(q(w), p(w)) + log E
p(w)

[
exp

(
λ2

2n2

n∑
i=1

(p(yi|w, xi))2

)])
(11)

≤ L(α)

λ

(
sup
q∈Q

KL(q(w), p(w)) + log E
p(w)

[
exp

(
λ2

2n
p2
y|w

)])

=
L(α)

λ

(
A+

λ2

2n
p2
y|w

)
, (12)

where (11) follows from the inequality Eσi exp(σiai) ≤ exp(a2
i /2) (Lemma A.6 of Shalev-

Shwartz and Ben-David (2014)), and we have defined A , supq∈Q KL(q(w), p(w)). Opti-

mizing (12) w.r.t. λ yields λ? =
√

2An
py|w

. Substituting this value in (12) results in

Rn(` ◦ H ◦ S) ≤ L
√
Apy|w(1 + py|w)

2n
. (13)

Utilizing (13) in (10), we have that with probability 1−δ over the choice of S, for all q ∈ Q,∣∣∣∣∣ E
(x,y)∼D

[
nlog(α)

(
E
q(w)

p(y|w, x)
)]
− 1

n

n∑
i=1

nlog(α)
(

E
q(w)

p(yi|w, xi)
)∣∣∣∣∣

≤ L(α)

√
Apy|w(1 + py|w)

2n
+ c

√
2 log(2/δ)

n
. (14)
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Defining QA , {q ∈ Q s.t. KL(q, p) ≤ A}, and the ERM hypothesis as

qERM(w) , arg min
q∈QA

1

n

n∑
i=1

nlog(α)
(

E
q(w)

p(yi|w, xi)
)
,

we can use the above with the standard argument for ERM to get that, with probability
1− δ over the choice of S, for all q ∈ QA,

E
(x,y)∼D

[
nlog(α)

(
E

qERM(w)
p(y|w, x)

)]
≤ E

(x,y)∼D

[
nlog(α)

(
E
q(w)

p(y|w, x)
)]

+ L(α)

√
2Apy|w(1 + py|w)

n
+ c

√
8 log(2/δ)

n
. (15)

Applications of this results to sparse GP are possible as outlined in the main paper.
Comparing this result to the discretization proof and randomization proof (below), we
see that the requirements for Lipschitz constants are weaker. Here, we only need L(α)

whereas other proofs require a Lipschitz condition w.r.t. the parameter θ. This proof can
potentially yield bounds that do not depend on the dimension M . Note that, applied to
Gaussian distributions, A implicitly depends on M , so a direct application does include such
a dependence. But Meir and Zhang (2003) show how to use structural risk minimization to
get around this dimension dependence through data-dependent bounds.

Appendix C. Randomized ERM

Let Θ̄ denote some known subset of Θ, i.e., Θ̄ ⊂ Θ, and let {qjit(θ|θ̄)} denote a family of
distributions over Θ parameterized by members of the subset Θ̄. The members of the family
are as yet unspecified, but represent “jitter” distributions which will be defined shortly. Let

θ̄ERM , arg min
θ̄∈Θ̄

1

n

n∑
i=1

E
qjit(θ|θ̄)

[
`(θ, (xi, yi))

]
.

Note, where we exchange order of expectations in the following development, we assume
the conditions of Fubini’s theorem are met. The following lemma is standard (see Shalev-
Shwartz and Ben-David (2014)):

Lemma 1. For all θ̄ ∈ Θ̄,

E
S∼Dn

[
E

(x,y)∼D

[
E

qjit(θ|θ̄ERM)

[
`(θ, (x, y))

]]]

≤ E
(x,y)∼D

[
E

qjit(θ|θ̄)

[
`(θ, (x, y))

]]

+ E
S∼Dn

[
E

(x,y)∼D

[
E

qjit(θ|θ̄ERM)

[
`(θ, (x, y))

]]

− 1

n

n∑
i=1

[
E

qjit(θ|θ̄ERM)

[
`(θ, (xi, yi))

]]]
. (16)

10
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Proof It is sufficient to prove that

E
S∼Dn

[
1

n

n∑
i=1

E
qjit(θ|θ̄ERM)

[
`(θ, (xi, yi))

]]
≤ E

(x,y)∼D

[
E

qjit(θ|θ̄)

[
`(θ, (x, y))

]]

holds for all θ̄ ∈ Θ̄: Since θ̄ERM is the ERM hypothesis, it follows that ∀θ̄ ∈ Θ̄,

1

n

n∑
i=1

E
qjit(θ|θ̄ERM)

[
`(θ, (xi, yi))

]
≤ 1

n

n∑
i=1

E
qjit(θ|θ̄)

[
`(θ, (xi, yi))

]
.

Taking expectations of both sides w.r.t. Dn yields the result.

The following lemma uses a technique from Germain et al. (2016) and Sheth and
Khardon (2017). The novelty, however, is to apply the compression lemma at a level higher
than previous work. Here, we use it at the level of parameters θ defining the posterior
distribution, which requires us to introduce the jitter, whereas previous work applied it at
the level of base parameter w. This gives a qualitatively different result.

Lemma 2. Let p(θ) be any sample-independent distribution over Θ and define

Ψ(λ, n) , log E
S∼Dn

[
E
p(θ)

exp
(
λ
(

E
(x,y)∼D

[
`(θ, (x, y))

]
− 1

n

n∑
i=1

`(θ, (xi, yi))
))]

.

Then, ∀θ̄ ∈ Θ̄,

E
S∼Dn

[
E

(x,y)∼D

[
E

qjit(θ|θ̄ERM)

[
`(θ, (x, y))

]]]

≤ E
(x,y)∼D

[
E

qjit(θ|θ̄)

[
`(θ, (x, y))

]]

+
1

λ

[
E

S∼Dn

[
KL(qjit(θ|θ̄ERM), p(θ))

]
+ Ψ(λ, n)

]
, (17)

Proof First, apply Fubini’s theorem to change the order of expectations of

E
(x,y)∼D

[
E

qjit(θ|θ̄ERM)

[
`(θ, (x, y))

]]

in (16). Then, apply the compression lemma, Eq(θ) f(θ) ≤ KL(q(θ), p(θ)) + log Ep(θ) e
f(θ),

with q(θ) = qjit(θ|θ̄ERM) and f(θ) = λ
(

E(x,y)∼D `(θ, (x, y)) − 1
n

∑n
i=1 `(θ, (xi, yi))

)
to the

resulting expression within the expectation w.r.t. S ∼ Dn. Finally, take the expectation
w.r.t. S ∼ Dn and note that ES∼Dn log(·) ≤ log ES∼Dn(·) by Jensen’s inequality to yield
the statement of the lemma.

11
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Lemma 3. Let some norm || · || over Θ be given. For an L-Lipschitz function `(θ) w.r.t.
|| · ||, we have that ∀θ̄ ∈ Θ̄, ∀θ′ ∈ Θ,

`(θ′, (x, y))−L E
qjit(θ|θ̄)

[
||θ−θ′||

]
≤ E

qjit(θ|θ̄)
`(θ, (x, y)) ≤ `(θ′, (x, y))+L E

qjit(θ|θ̄)

[
||θ−θ′||

]
.

(18)

Proof If `(θ) is L-Lipschitz w.r.t. || · ||, then ∀θ, θ′ ∈ Θ, |`(θ) − `(θ′)| ≤ L||θ − θ′||, or,
`(θ′)−L||θ− θ′|| ≤ `(θ) ≤ `(θ′) +L||θ− θ′||. Since this holds for all values of θ (given some
θ′), it also holds in expectation over any distribution in θ, specifically qjit(θ|θ̄).

Lemma 4. Let p(θ) be any sample-independent distribution over Θ and `(θ, (x, y)) be
L-Lipschitz in its first argument. Then, ∀θ′ ∈ Θ,

E
S∼Dn

[
E

(x,y)∼D

[
`(θ̄ERM, (x, y))

]]

≤ E
(x,y)∼D

[
`(θ′, (x, y))

]
+ 2Lmax

θ̄∈Θ̄
E

qjit(θ|θ̄)

[
||θ − θ̄||

]
+ LD

+
1

λ

[
max
θ̄∈Θ̄

[
KL(qjit(θ|θ̄), p(θ))

]
+ Ψ(λ, n)

]
, (19)

where D , maxθ′∈Θ\Θ̄ minθ̄∈Θ̄ ||θ̄ − θ′|| and Ψ(λ, n) is defined in Lemma 2.

Proof Following from the left inequality of (18) with θ̄ = θ′ = θ̄ERM, we have

E
S∼Dn

[
E

(x,y)∼D

[
`(θ̄ERM, (x, y))

]
− L E

qjit(θ|θ̄ERM)

[
||θ − θ̄ERM||

]]

≤ E
S∼Dn

[
E

(x,y)∼D

[
E

qjit(θ|θ̄ERM)
`(θ, (x, y))

]]
. (20)

Utilizing (20) in (17) yields that, ∀θ̄ ∈ Θ̄,

E
S∼Dn

[
E

(x,y)∼D

[
`(θ̄ERM, (x, y))

]]

≤ E
(x,y)∼D

[
E

qjit(θ|θ̄)

[
`(θ, (x, y))

]]

+ L E
S∼Dn

[
E

qjit(θ|θ̄ERM)

[
||θ − θ̄ERM||

]]

+
1

λ

[
E

S∼Dn

[
KL(qjit(θ|θ̄ERM), p(θ))

]
+ Ψ(λ, n)

]
. (21)
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Following from the right inequality of (18), we have that, ∀θ̄ ∈ Θ̄,∀θ′ ∈ Θ,

E
(x,y)∼D

[
E

qjit(θ|θ̄)
`(θ, (x, y))

]
≤ E

(x,y)∼D

[
`(θ′, (x, y))

]
+ L E

qjit(θ|θ̄)

[
||θ − θ′||

]
. (22)

Utilizing (22) in (21) yields that, ∀θ̄ ∈ Θ̄, θ′ ∈ Θ,

E
S∼Dn

[
E

(x,y)∼D

[
`(θ̄ERM, (x, y))

]]

≤ E
(x,y)∼D

[
`(θ′, (x, y))

]

+ L E
S∼Dn

[
E

qjit(θ|θ̄ERM)

[
||θ − θ̄ERM||

]]
+ L E

qjit(θ|θ̄)

[
||θ − θ′||

]
+

1

λ

[
E

S∼Dn

[
KL(qjit(θ|θ̄ERM), p(θ))

]
+ Ψ(λ, n)

]
. (23)

Next, we develop a uniform bound over θ′ for the term Eqjit(θ|θ̄)

[
||θ − θ′||

]
. Since (23)

holds for all θ̄ ∈ Θ̄, we consider how θ̄ can be selected per θ′ ∈ Θ. First, note that

E
qjit(θ|θ̄)

[
||θ − θ′||

]
= E

qjit(θ|θ̄)

[
||θ − θ̄ + θ̄ − θ′||

]
≤ E

qjit(θ|θ̄)

[
||θ − θ̄||+ ||θ̄ − θ′||

]
= E

qjit(θ|θ̄)

[
||θ − θ̄||

]
+ ||θ̄ − θ′||. (24)

Now, when θ′ ∈ Θ̄, a uniform bound over θ̄ for Eqjit(θ|θ̄)

[
||θ − θ̄||

]
translates to a uniform

bound over θ′ for Eqjit(θ|θ̄)

[
||θ − θ′||

]
since it is possible to select θ̄ = θ′ in (24). When

θ′ ∈ Θ\Θ̄, the distance to the “closest” point in Θ̄ to θ′ is minθ̄∈Θ̄ ||θ̄ − θ′||. Then, the
second term of (24) is uniformly upper-bounded over θ′ by D , maxθ′∈Θ\Θ̄ minθ̄∈Θ̄ ||θ̄−θ′||.
Combining the two cases yields the lemma.

Jitter distributions. First, we define Θ parametrically as a function of some ρ > 0 and
relative to Θ̄. Assume Θ̄ is a subset of some space T (equipped with norm || · ||), and define
Θ as the set {θ ∈ T s.t. minθ̄∈Θ̄ ||θ − θ̄|| ≤ ρ}. Then, Θ̄ ⊂ Θ, and D ≤ ρ. The ρ-ball
centered at θ̄ ∈ Θ̄ is denoted Bρ(θ̄) , {θ ∈ Θ s.t. ||θ − θ̄|| ≤ ρ}. Let the jitter distribution
qjit(θ|θ̄) be defined as the following uniform density with support in Θ:

qjit(θ|θ̄) =

{
1

vol(Bρ(θ̄))
, θ ∈ Bρ(θ̄),

0, else.
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Letting supp(qjit(θ|θ̄)) , Bρ(θ̄), we have

E
qjit(θ|θ̄)

[
||θ − θ̄||

]
=

∫
supp(qjit(θ|θ̄))

1

vol(supp(qjit(θ|θ̄)))
||θ − θ̄||dθ

≤
∫

supp(qjit(θ|θ̄))

1

vol(supp(qjit(θ|θ̄)))
ρdθ

= ρ.

For

p(θ) =

{
1

vol(Θ) , θ ∈ Θ,

0, else,

the KL divergence KL(qjit(θ|θ̄), p(θ)) is given by

KL(qjit(θ|θ̄), p(θ)) =

∫
qjit(θ|θ̄) log

qjit(θ|θ̄)
p(θ)

dθ

=

∫
supp(qjit(θ|θ̄))

1

vol(supp(qjit(θ|θ̄)))
log

vol(Θ)

vol(supp(qjit(θ|θ̄)))
dθ

= log
vol(Θ)

vol(supp(qjit(θ|θ̄)))
. (25)

For this choice of jitter distribution and prior, (19) becomes

E
S∼Dn

[
E

(x,y)∼D

[
`(θ̄ERM, (x, y))

]]

≤ E
(x,y)∼D

[
`(θ′, (x, y))

]
+ 3Lρ+

1

λ

[
max
θ̄∈Θ̄

[
− log vol(Bρ(θ̄))

]
+ log vol(Θ) + Ψ(λ, n)

]
.

(26)

If vol(Bρ(θ̄)) = κρM for some constants κ,M , then the RHS of (26) is minimized for
ρ = M

3Lλ , and we have that, ∀θ′ ∈ Θ,

E
S∼Dn

[
E

(x,y)∼D

[
`(θ̄ERM, (x, y))

]]

≤ E
(x,y)∼D

[
`(θ′, (x, y))

]
+

1

λ

[
M +M log

(3Lλ

M

)
+ log

1

κ
+ log vol(Θ) + Ψ(λ, n)

]
. (27)

C.1. Applications

M-dimensional parameter. Let T = RM , || · || = || · ||∞, and Θ̄ = [−B + ρ,B − ρ]M .
Then, Θ = [−B,B]M , vol(Bρ(θ̄)) = 2MρM , vol(Θ) = 2MBM , and the last term of (27) is
equal to

1

λ

[
M +M log

(3BLλ

M

)
+ Ψ(λ, n)

]
.
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This completes the proof of Theorem 1 from the main paper. Next to prove Corollary 2,
recall that, for bounded loss |`| ≤ c, Ψ(λ, n) ≤ 2λ2c2

n . Setting λ =
√
n, we have that,

∀θ′ ∈ Θ,

E
S∼Dn

[
E

(x,y)∼D

[
`(θ̄ERM, (x, y))

]]
≤ E

(x,y)∼D

[
`(θ′, (x, y))

]
+

1√
n

[
M+M log

(3BL
√
n

M

)
+2c2

]
.

(28)

This bound holds when using the randomized ERM learning rule with the class

qjit(θ|θ̄) =
M∏
m=1

U(θm|θ̄m −
M

3L
√
n
, θ̄m +

M

3L
√
n

)

for θ̄ ∈ [−B + M
3L
√
n
, B − M

3L
√
n

]M .

Product spaces. Let T = T1 × T2 = RM1 × RM2 , ‖ · ‖T = ‖ · ‖T1,∞ + ‖ · ‖T2,∞ and
Θ̄ = Θ̄1 × Θ̄2 = [−B1 + ρ1, B1 − ρ1]M1 × [−B2 + ρ2, B2 − ρ2]M2 . Then, Θ = Θ1 × Θ2 =
[−B1, B1]M1× [−B2, B2]M2 and vol(Bρ(θ̄)) = 2M1ρM1

1 2M2ρM2
2 , vol(Θ) = 2M1B1

M12M2B2
M2 .

In this case, the RHS of (26) is optimized for ρ?1 = M1
3Lλ and ρ?2 = M2

3Lλ . Assuming the same
value L of Lipschitz constant for both spaces Θ1 and Θ2, we have that ∀θ′ ∈ Θ,

E
S∼Dn

[
E

(x,y)∼D

[
`(θ̄ERM, (x, y))

]]

≤ E
(x,y)∼D

[
`(θ′, (x, y))

]

+
1

λ

[
M1 +M2 +M1 log

(3B1Lλ

M1

)
+M2 log

(3B2Lλ

M2

)
+ Ψ(λ, n)

]
. (29)

This bound holds when using the randomized ERM learning rule with the class

qjit(θ|θ̄) =

M1∏
m1=1

U(θm1 |θ̄m1 − ρ?1, θ̄m1 + ρ?1)

M2∏
m2=1

U(θm2 |θ̄m2 − ρ?2, θ̄m2 + ρ?2)

for θ̄ ∈ [−B1 + ρ?1, B1 − ρ?1]M1 × [−B2 + ρ?2, B2 − ρ?2]M2 .

Appendix D. Sparse GPs

To show that the smoothed log loss of the pseudo-Bayesian prediction nlog(α) Eq(f∗|θ) p(y∗|f∗)
is Lipschitz, we use the fact that the composition of Lipschitz functions is Lipschitz, and

focus on determining a Lipschitz constant of Eq(f∗|θ)[p(y∗|f∗)] w.r.t. θ =

(
m

vec(C)

)
and

infinity norm. For a differentiable function, a Lipschitz constant is given by the maximum
of the dual norm of its gradient5. Since we use infinity norm on Θ, the dual norm will

5. This fact follows from the multivariate mean value theorem and Holder’s inequality.
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be the 1-norm. Following standard Gaussian (see e.g., Rezende et al. (2014)) and matrix
derivative identities (see e.g., Petersen et al. (2008)), the gradient w.r.t. m is

a∗

∫
f∗

( d

df∗
p(y∗|f∗)

)
q(f∗)df∗.

The 1-norm of this is quantity is upper-bounded by

‖a∗‖1 max
f∗

∣∣∣∣∣ d

df∗
p(y∗|f∗)

∣∣∣∣∣ ≤ √M‖a∗‖2 max
f∗

∣∣∣∣∣ d

df∗
p(y∗|f∗)

∣∣∣∣∣
≤
√
Mλmax(K−1

UU )‖KU∗‖2 max
f∗

∣∣∣∣∣ d

df∗
p(y∗|f∗)

∣∣∣∣∣
=

√
M

λmin(KUU)
‖KU∗‖2 max

f∗

∣∣∣∣∣ d

df∗
p(y∗|f∗)

∣∣∣∣∣,
where the first inequality follows from ‖ · ‖1 ≤

√
M‖ · ‖2, the second inequality follows from

‖Ax‖2 ≤ ‖A‖2‖x‖2, and λmin(KUU) denotes the minimum eigenvalue of KUU . The Lipschitz
constant of Eq(f∗)[p(y∗|f∗)] w.r.t. m and infinity norm is, therefore, bounded by

√
M

λmin(KUU)
‖KU∗‖2 max

f∗

∣∣∣∣∣ d

df∗
p(y∗|f∗)

∣∣∣∣∣. (30)

Similarly, the gradient of nlog(α)(Eq(f∗|θ)[p(y∗|f∗)]) w.r.t. the vectorized Cholesky factor
of the variational covariance6 is given by

[(a∗a
>
∗ )⊗ I]vec(C)

∫
f∗

( d2

df∗
2 p(y∗|f∗)

)
q(f∗)df∗.

The 1-norm of [(a∗a
>
∗ )⊗ I]vec(C) is given by

‖[(a∗a>∗ )⊗ I]vec(C)‖1 ≤ ‖[(a∗a>∗ )⊗ I]‖1‖vec(C)‖1
= M‖a∗a>∗ ‖1‖vec(C)‖1
≤M‖a∗‖21‖vec(C)‖1

≤ 1

2
M2(M + 1)B‖a∗‖21,

where the last inequality follows from the infinity-norm bound on the hypothesis space,
‖vec(C)‖∞ ≤ B, and the fact that only 1

2M(M + 1) entries of the Cholesky factor are
non-zero. Hence, the Lipschitz constant of Eq(f∗|θ)[p(y∗|f∗)] w.r.t. vec(C) and infinity norm
is bounded by

M3(M + 1)B

2(λmin(KUU))2
‖KU∗‖22 max

f∗

∣∣∣∣∣ d2

df2
∗
p(y∗|f∗)

∣∣∣∣∣. (31)

The total Lipschitz constant of Eq(f∗|θ)[p(y∗|f∗)] w.r.t.

(
m

vec(C)

)
and infinity norm is

bounded by the sum of (30) and (31).

6. Recall vec(AXB) = (B> ⊗A)vec(X).
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Appendix E. Correlated topic model

The correlated topic model (CTM) of Blei and Lafferty (2006) is a generative model for
documents. For each document, CTM first draws w ∼ N (µ,Σ), w ∈ RM where {µ,Σ}
are model parameters, and then maps this vector to the (M + 1)-simplex with the logistic

transformation, φ = h(w). The function h(w) is given by hk(w) = exp(wk)

1+
∑M
`=1 exp(w`)

for

k < M + 1 and hM+1(w) = 1
1+

∑M
`=1 exp(w`)

. For each position i in the document, the latent

topic variable, fi, is drawn from Discrete(φ), and the word yi is drawn from a Discrete(βfi,·)
where β denotes the M + 1 topics and is treated as a parameter of the model. In this
case p(f |w) can be integrated out analytically and p(y|w) =

∑M+1
k=1 βk,yhk(w). See further

discussion of these details in Sheth and Khardon (2017). Here we assume that the parameter
β is constrained to be smoothed, that is, ∀k, y, βk,y ≥ γ > 0.

First, we derive the Lipschitz constant w.r.t. the mean of the approximate posterior.
Following standard Gaussian identites (Rezende et al., 2014), we have

∂

∂mj
log
(

E
q(w|(m,vec(C)))

[p(y|w)]
)

=
1

Eq(w)[p(y|w)]
E
q(w)

[ ∂

∂wj
p(y|w)

]
.

Letting δ(·) denote the delta function, we have ∂hk(w)
∂wj

= (−hk(w) + δ(k − j))hj(w) for

k < M + 1 and
∂hM+1(w)

∂wj
= −hM+1(w)hj(w). Since hk(w) ≤ 1,

∣∣∣∂hk(w)
∂wj

∣∣∣ ≤ 1, and therefore∣∣∣ ∂
∂wj

p(y|w)
∣∣∣ =

∣∣∣∑M+1
k=1 βk,y

∂hk(w)
∂wj

∣∣∣ ≤M + 1. Hence,∣∣∣∣∣ ∂

∂mj
log
(

E
q(w|(m,vec(C)))

[p(y|w)]
)∣∣∣∣∣ ≤ M + 1

Eq(w)[p(y|w)]
,

and ∥∥∥∥∥∇m log
(

E
q(w|(m,vec(C)))

p(y|w)
)∥∥∥∥∥

1

≤ (M + 1)M

Eq(w)[p(y|w)]
≤ (M + 1)M

γ
. (32)

To derive the Lipschitz constant w.r.t. Cholesky factor C of the covariance V , we proceed
by bounding the entries of the derivative. For a scalar-valued function g of the covariance

V = C>C, we have7 ∂g(C>C)
∂Crs

= 2
∑

t≤r Crt
∂g
∂Vts

where r, s range over the entries of the

Cholesky factor. For g(V ) = log
(

Eq(w|(m,V ))[p(y|w)]
)
, from Rezende et al. (2014) we have

∂

∂Vts
log
(

E
q(w|(m,V ))

[p(y|w)]
)

=
1

2

1

Eq(w)[p(y|w)]
E
q(w)

[ ∂2

∂wt∂ws
p(y|w)

]
.

The second derivative ∂2

∂wt∂ws
hk(w) = −hs(w)(−hk(w) + δ(k − t))ht(w) + (−hk(w) + δ(k −

s))(−hs(w) + δ(s− t))ht(w) has entries bounded as
∣∣∣ ∂2

∂wt∂ws
hk(w)

∣∣∣ ≤ 2. Therefore,∣∣∣ ∂2

∂wt∂ws
p(y|w)

∣∣∣ ≤ 2(M + 1), and∣∣∣∣∣ ∂

∂Vts
log
(

E
q(w|(m,V ))

[p(y|w)]
)∣∣∣∣∣ ≤ M + 1

Eq(w)[p(y|w)]
.

7. The matrix identity is ∂g(C>C)
∂C

= 2triu
(
C ∂g
∂V

)
where triu(·) is the matrix-valued operation that zeros

the input matrix above the diagonal.
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As a crude bound, we therefore have∣∣∣∣∣ ∂

∂Crs
log
(

E
q(w|(m,C>C))

[p(y|w)]
)∣∣∣∣∣ ≤ 2B(M + 1)r

Eq(w)[p(y|w)]
.

Row r of the Cholesky factor has r entries, so

r∑
s=1

∣∣∣∣∣ ∂

∂Crs
log
(

E
q(w|(m,C>C))

[p(y|w)]
)∣∣∣∣∣ ≤ 2B(M + 1)r2

Eq(w)[p(y|w)]
,

and summing over r ∈ {1, . . . ,M + 1} yields∥∥∥∥∥∇vec(C) log
(

E
q(w|(m,vec(C)))

p(y|w)
)∥∥∥∥∥

1

≤ BM(M + 1)2(2M + 1)

3 Eq(w)[p(y|w)]
≤ BM(M + 1)2(2M + 1)

3γ
.

(33)
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