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Technical University of Munich, Germany
{shchur,bilos,guennemann}@in.tum.de

ABSTRACT

Temporal point processes are the dominant paradigm for modeling sequences of
events happening at irregular intervals. The standard way of learning in such mod-
els is by estimating the conditional intensity function. However, parameterizing
the intensity function usually incurs several trade-offs. We show how to overcome
the limitations of intensity-based approaches by directly modeling the conditional
distribution of inter-event times. We draw on the literature on normalizing flows
to design models that are flexible and efficient. We additionally propose a simple
mixture model that matches the flexibility of flow-based models, but also permits
sampling and computing moments in closed form. The proposed models achieve
state-of-the-art performance in standard prediction tasks and are suitable for novel
applications, such as learning sequence embeddings and imputing missing data.

1 INTRODUCTION

Visits to hospitals, purchases in e-commerce systems, financial transactions, posts in social media
— various forms of human activity can be represented as discrete events happening at irregular
intervals. The framework of temporal point processes is a natural choice for modeling such data.
By combining temporal point process models with deep learning, we can design algorithms able to
learn complex behavior from real-world data.

Designing such models, however, usually involves trade-offs along the following dimensions: flexi-
bility (can the model approximate any distribution?), efficiency (can the likelihood function be eval-
uated in closed form?), and ease of use (is sampling and computing summary statistics easy?).
Existing methods (Du et al., 2016; Mei & Eisner, 2017; Omi et al., 2019) that are defined in terms
of the conditional intensity function typically fall short in at least one of these categories.

Instead of modeling the intensity function, we suggest treating the problem of learning in temporal
point processes as an instance of conditional density estimation. By using tools from neural density
estimation (Bishop, 1994; Rezende & Mohamed, 2015), we can develop methods that have all of
the above properties. To summarize, our contributions are the following:

• We connect the fields of temporal point processes and neural density estimation. We show
how normalizing flows can be used to define flexible and theoretically sound models for
learning in temporal point processes.

• We propose a simple mixture model that performs on par with the state-of-the-art methods.
Thanks to its simplicity, the model permits closed-form sampling and moment computation.

• We show through a wide range of experiments how the proposed models can be used for
prediction, conditional generation, sequence embedding and training with missing data.

2 BACKGROUND

Definition. A temporal point process (TPP) is a random process whose realizations consist of a se-
quence of strictly increasing arrival times T = {t1, ..., tN}. A TPP can equivalently be represented
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Exponential
intensity

Neural
Hawkes Fully NN Normalizing

Flows
Mixture

Distribution

Closed-form likelihood 3 7 3 3 3
Flexible 7 3 3 3 3
Closed-form E[τ ] 7 7 7 7 3
Closed-form sampling 3 7 7 7 3

Table 1: Comparison of neural temporal point process models that encode history with an RNN.

as a sequence of strictly positive inter-event times τi = ti− ti−1 ∈ R+. Representations in terms of
ti and τi are isomorphic — we will use them interchangeably throughout the paper. The traditional
way of specifying the dependency of the next arrival time t on the history Ht = {tj ∈ T : tj < t}
is using the conditional intensity function λ∗(t) := λ(t|Ht). Here, the ∗ symbol reminds us of
dependence on Ht. Given the conditional intensity function, we can obtain the conditional proba-
bility density function (PDF) of the time τi until the next event by integration (Rasmussen, 2011) as
p∗(τi) := p(τi|Hti) = λ∗(ti−1 + τi) exp

(
−
∫ τi
0
λ∗(ti−1 + s)ds

)
.

Learning temporal point processes. Conditional intensity functions provide a convenient way to
specify point processes with a simple predefined behavior, such as self-exciting (Hawkes, 1971) and
self-correcting (Isham & Westcott, 1979) processes. Intensity parametrization is also commonly
used when learning a model from the data: Given a parametric intensity function λ∗θ(t) and a se-
quence of observations T , the parameters θ can be estimated by maximizing the log-likelihood:
θ∗ = arg maxθ

∑
i log p∗θ(τi) = arg maxθ

[∑
i log λ∗θ(ti)−

∫ tN
0

λ∗θ(s)ds
]
.

The main challenge of such intensity-based approaches lies in choosing a good parametric form for
λ∗θ(t). This usually involves the following trade-off: For a ”simple” intensity function (Du et al.,
2016; Huang et al., 2019), the integral Λ∗(τi) :=

∫ τi
0
λ∗(ti−1+s)ds has a closed form, which makes

the log-likelihood easy to compute. However, such models usually have limited expressiveness. A
more sophisticated intensity function (Mei & Eisner, 2017) can better capture the dynamics of the
system, but computing log-likelihood will require approximating the integral using Monte Carlo.

Recently, Omi et al. (2019) proposed fully neural network intensity function (FullyNN) — a flexi-
ble, yet computationally tractable model for TPPs. The key idea of their approach is to model the
cumulative conditional intensity function Λ∗(τi) using a neural network, which allows to efficiently
compute the log-likelihood. Still, in its current state, the model has downsides: it doesn’t define a
valid PDF, sampling is expensive, and the expectation cannot be computed in closed form1.

This work. We show that the drawbacks of the existing approaches can be remedied by looking at
the problem of learning in TPPs from a different angle. Instead of modeling the conditional intensity
λ∗(t), we suggest to directly learn the conditional distribution p∗(τ). Modeling distributions with
neural networks is a well-researched topic, that, surprisingly, is not usually discussed in the context
of TPPs. By adopting this alternative point of view, we are able to develop new theoretically sound
and effective methods (Section 3), as well as better understand the existing approaches (Section 4).

3 MODELS

We develop several approaches for modeling the distribution of inter-event times. First, we assume
for simplicity that each inter-event time τi is conditionally independent of the history, given the
model parameters (that is, p∗(τi) = p(τi)). In Section 3.1, we show how state-of-the-art neural den-
sity estimation methods based on normalizing flows can be used to model p(τi). Then in Section 3.2,
we propose a simple mixture model that can match the performance of the more sophisticated flow-
based models, while also addressing some of their shortcomings. Finally, we discuss how to make
p(τi) depend on the historyHti in Section 3.3.

1A more detailed discussion of the FullyNN model follows in Section 4 and Appendix C.
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3.1 MODELING p(τ) WITH NORMALIZING FLOWS

The core idea of normalizing flows (Tabak & Turner, 2013; Rezende & Mohamed, 2015) is to define
a flexible probability distribution by transforming a simple one. Assume that z has a PDF q(z). Let
x = g(z) for some differentiable invertible transformation g : Z → X (where Z,X ⊆ R)2. We can
obtain the PDF p(x) of x using the change of variables formula as p(x) = q(g−1(x))

∣∣ ∂
∂xg
−1(x)

∣∣.
By stacking multiple transformations g1, ..., gM , we obtain an expressive probability distribution
p(x). To draw a sample x ∼ p(x), we need to draw z ∼ q(z) and compute the forward transforma-
tion x = (gM ◦ · · · ◦ g1)(z). To get the density of an arbitrary point x, it is necessary to evaluate
the inverse transformation z = (g−11 ◦ · · · ◦ g−1M )(x) and compute q(z). Modern normalizing flows
architectures parametrize the transformations using extremely flexible functions fθ, such as polyno-
mials (Jaini et al., 2019) or neural networks (Krueger et al., 2018). The flexibility of these functions
comes at a cost — while the inverse f−1θ exists, it typically doesn’t have a closed form. That is, if
we use such a function to define one direction of the transformation in a flow model, the other di-
rection can only be approximated numerically using iterative root-finding methods (Ho et al., 2019).
In this work, we don’t consider invertible normalizing flows based on dimension splitting, such as
RealNVP (Dinh et al., 2017), since they are not applicable to 1D data.

In the context of TPPs, our goal is to model the distribution p(τ) of inter-event times. In order to be
able to learn the parameters of p(τ) using maximum likelihood, we need to be able to evaluate the
density at any point τ . For this we need to define the inverse transformation g−1 := (g−11 ◦· · ·◦g

−1
M ).

First, we set zM = g−1M (τ) = log τ to convert a positive τ ∈ R+ into zM ∈ R. Then, we stack
multiple layers of parametric functions fθ : R → R that can approximate any transformation. We
consider two choices for fθ: deep sigmoidal flow (DSF) from Krueger et al. (2018) and sum-of-
squares (SOS) polynomial flow from Jaini et al. (2019)

fDSF (x) = σ−1

(
K∑
k=1

wkσ

(
x− µk
sk

))
fSOS(x) = a0 +

K∑
k=1

R∑
p=0

R∑
q=0

ap,kaq,k
p+ q + 1

xp+q+1 (1)

where a,w, s,µ are the transformation parameters, K is the number of components, R is the poly-
nomial degree, and σ(x) = 1/(1 + e−x). We denote the two variants of the model based on fDSF
and fSOS building blocks as DSFlow and SOSFlow respectively. Finally, after stacking multiple
g−1m = fθm , we apply a sigmoid transformation g−11 = σ to convert z2 into z1 ∈ (0, 1).

For both models, we can evaluate the inverse transformations (g−11 ◦ · · · ◦ g−1M ), which means the
model can be efficiently trained via maximum likelihood. The density p(τ) defined by either DS-
Flow or SOSFlow model is extremely flexible and can approximate any distribution (Section 3.4).
However, for some use cases, this is not sufficient. For example, we may be interested in the expected
time until the next event, Ep[τ ]. In this case, flow-based models are not optimal, since for them Ep[τ ]
does not in general have a closed form. Moreover, the forward transformation (gM ◦ · · · ◦g1) cannot
be computed in closed form since the functions fDSF and fSOS cannot be inverted analytically.
Therefore, sampling from p(τ) is also problematic and requires iterative root finding.

This raises the question: Can we design a model for p(τ) that is as expressive as the flow-based
models, but in which sampling and computing moments is easy and can be done in closed form?

3.2 MODELING p(τ) WITH MIXTURE DISTRIBUTIONS

Model definition. While mixture models are commonly used for clustering, they can also be used
for density estimation. Mixtures work especially well in low dimensions (McLachlan & Peel, 2004),
which is the case in TPPs, where we model the distribution of one-dimensional inter-event times τ .
Since the inter-event times τ are positive, we choose to use a mixture of log-normal distributions to
model p(τ). The PDF of a log-normal mixture is defined as

p(τ |w,µ, s) =

K∑
k=1

wk
1

τsk
√

2π
exp

(
− (log τ − µk)2

2s2k

)
(2)

2All definitions can be extended to RD for D > 1. We consider the one-dimensional case since our goal is
to model the distribution of inter-event times τ ∈ R+.
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Figure 1: Model architecture. Parameters of p∗(τi|θi)
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Figure 2: Normalizing flows define a
flexible distribution via transformations.

where w are the mixture weights, µ are the mixture means, and s are the standard deviations.
Because of its simplicity, the log-normal mixture model has a number of attractive properties.

Moments. Since each component k has a finite mean, the mean of the entire distribution can be
computed as Ep[τ ] =

∑
k wk exp(µk+s2k/2), i.e., a weighted average of component means. Higher

moments can be computed based on the moments of each component (Frühwirth-Schnatter, 2006).

Sampling. While flow-based models from Section 3.1 require iterative root-finding algorithms to
generate samples, sampling from a mixture model can be done in closed form:

z ∼ Categorical(w) ε ∼ Normal(0, 1) τ = exp(sTz · ε+ µTz)

where z is a one-hot vector of size K. In some applications, such as reinforcement learning (Upad-
hyay et al., 2018), we might be interested in computing gradients of the samples w.r.t. the model
parameters. The samples τ drawn using the procedure above are differentiable with respect to the
means µ and scales s. By using the Gumbel-softmax trick (Jang et al., 2017) when sampling z, we
can obtain gradients w.r.t. all the model parameters (Appendix D.6). Such reparametrization gra-
dients have lower variance and are easier to implement than the score function estimators typically
used in other works (Mohamed et al., 2019). Other flexible models (such as multi-layer flow models
from Section 3.1) do not permit sampling through reparametrization, and thus are not well-suited for
the above-mentioned scenario. In Section 5.4, we show how reparametrization sampling can also be
used to train with missing data by performing imputation on the fly.

3.3 INCORPORATING THE CONDITIONAL INFORMATION

History. A crucial feature of temporal point processes is that the time τi = (ti− ti−1) until the next
event may be influenced by all the events that happened before. A standard way of capturing this
dependency is to process the event historyHti with a recurrent neural network (RNN) and embed it
into a fixed-dimensional vector hi ∈ RH (Du et al., 2016).

Conditioning on additional features. The distribution of the time until the next event might de-
pend on factors other than the history. For instance, distribution of arrival times of customers in a
restaurant depends on the day of the week. As another example, if we are modeling user behavior
in an online system, we can obtain a different distribution p∗(τ) for each user by conditioning on
their metadata. We denote such side information as a vector yi. Such information is different from
marks (Rasmussen, 2011), since (a) the metadata may be shared for the entire sequence and (b) yi
only influences the distribution p∗(τi|yi), not the objective function.

In some scenarios, we might be interested in learning from multiple event sequences. In such case,
we can assign each sequence Tj a learnable sequence embedding vector ej . By optimizing ej ,
the model can learn to distinguish between sequences that come from different distributions. The
learned embeddings can then be used for visualization, clustering or other downstream tasks.

Obtaining the parameters. We model the conditional dependence of the distribution p∗(τi) on all
of the above factors in the following way. The history embedding hi, metadata yi and sequence em-
bedding ej are concatenated into a context vector ci = [hi||yi||ej ]. Then, we obtain the parameters
of the distribution p∗(τi) as an affine function of ci. For example, for the mixture model we have

wi = softmax(Vwci + bw) si = exp(Vsci + bs) µi = Vµci + bµ (3)

where the softmax and exp transformations are applied to enforce the constraints on the distribution
parameters, and {Vw,Vs,Vµ, bw, bs, bµ} are learnable parameters. Such model resembles the
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mixture density network architecture (Bishop, 1994). The whole process is illustrated in Figure 1.
We obtain the parameters of the flow-based models in a similar way (see Appendix D).

3.4 DISCUSSION

Universal approximation. The SOSFlow and DSFlow models can approximate any probability
density on R arbitrarily well (Jaini et al., 2019, Theorem 3), (Krueger et al., 2018, Theorem 4). It
turns out, a mixture model has the same universal approximation (UA) property.

Theorem 1 (DasGupta, 2008, Theorem 33.2). Let p(x) be a continuous density on R. If q(x) is any
density on R and is also continuous, then, given ε > 0 and a compact set S ⊂ R, there exist number
of componentsK ∈ N, mixture coefficientsw ∈ ∆K−1, locationsµ ∈ RK , and scales s ∈ RK+ such
that for the mixture distribution p̂(x) =

∑K
k=1 wk

1
sk
q(x−µksk

) it holds supx∈S |p(x)− p̂(x)| < ε.

This results shows that, in principle, the mixture distribution is as expressive as the flow-based
models. Since we are modeling the conditional density, we additionally need to assume for all of the
above models that the RNN can encode all the relevant information into the history embedding hi.
This can be accomplished by invoking the universal approximation theorems for RNNs (Siegelmann
& Sontag, 1992; Schäfer & Zimmermann, 2006).

Note that this result, like other UA theorems of this kind (Cybenko, 1989; Daniels & Velikova,
2010), does not provide any practical guarantees on the obtained approximation quality, and doesn’t
say how to learn the model parameters. Still, UA intuitively seems like a desirable property of
a distribution. This intuition is supported by experimental results. In Section 5.1, we show that
models with the UA property consistently outperform the less flexible ones.

Interestingly, Theorem 1 does not make any assumptions about the form of the base density q(x).
This means we could as well use a mixture of distribution other than log-normal. However, other
popular distributions on R+ have drawbacks: log-logistic does not always have defined moments
and gamma distribution doesn’t permit straightforward sampling with reparametrization.

Intensity function. For both flow-based and mixture models, the conditional cumulative distribution
function (CDF) F ∗(τ) and the PDF p∗(τ) are readily available. This means we can easily compute
the respective intensity functions (see Appendix A). However, we should still ask whether we lose
anything by modeling p∗(τ) instead of λ∗(t). The main arguments in favor of modeling the intensity
function in traditional models (e.g. self-exciting process) are that it’s intuitive, easy to specify and
reusable (Upadhyay & Rodriguez, 2019).

“Intensity function is intuitive, while the conditional density is not.” — While it’s true that in simple
models (e.g. in self-exciting or self-correcting processes) the dependence of λ∗(t) on the history is
intuitive and interpretable, modern RNN-based intensity functions (as in Du et al. (2016); Mei &
Eisner (2017); Omi et al. (2019)) cannot be easily understood by humans. In this sense, our proposed
models are as intuitive and interpretable as other existing intensity-based neural network models.

“λ∗(t) is easy to specify, since it only has to be positive. On the other hand, p∗(τ) must integrate to
one.” — As we saw, by using either normalizing flows or a mixture distribution, we automatically
enforce that the PDF integrates to one, without sacrificing the flexibility of our model.

“Reusability: If we merge two independent point processes with intensitites λ∗1(t) and λ∗2(t), the
merged process has intensity λ∗(t) = λ∗1(t) + λ∗2(t).” — An equivalent result exists for the CDFs
F ∗1 (τ) and F ∗2 (τ) of the two independent processes. The CDF of the merged process is obtained as
F ∗(τ) = F ∗1 (τ) + F ∗2 (τ)− F ∗1 (τ)F ∗2 (τ) (derivation in Appendix A).

As we just showed, modeling p∗(τ) instead of λ∗(t) does not impose any limitation on our approach.
Moreover, a mixture distribution is flexible, easy to sample from and has well-defined moments,
which favorably compares it to other intensity-based deep learning models.

4 RELATED WORK

Neural temporal point processes. Fitting simple TPP models (e.g. self-exciting (Hawkes, 1971)
or self-correcting (Isham & Westcott, 1979) processes) to real-world data may lead to poor results
because of model misspecification. Multiple recent works address this issue by proposing more

5



Published as a conference paper at ICLR 2020

flexible neural-network-based point process models. These neural models are usually defined in
terms of the conditional intensity function. For example, Mei & Eisner (2017) propose a novel RNN
architecture that can model sophisticated intensity functions. This flexibility comes at the cost of
inability to evaluate the likelihood in closed form, and thus requiring Monte Carlo integration.

Du et al. (2016) suggest using an RNN to encode the event history into a vector hi. The history
embedding hi is then used to define the conditional intensity, for example, using the constant in-
tensity model λ∗(ti) = exp(vThi + b) (Li et al., 2018; Huang et al., 2019) or the more flexible
exponential intensity model λ∗(ti) = exp(w(ti − ti−1) + vThi + b) (Du et al., 2016; Upadhyay
et al., 2018). By considering the conditional distribution p∗(τ) of the two models, we can better
understand their properties. Constant intensity corresponds to an exponential distribution, and expo-
nential intensity corresponds to a Gompertz distribution (see Appendix B). Clearly, these unimodal
distributions cannot match the flexibility of a mixture model (as can be seen in Figure 8).

Omi et al. (2019) introduce a flexible fully neural network (FullyNN) intensity model, where they
model the cumulative intensity function Λ∗(τ) with a neural net. The function Λ∗ converts τ into
an exponentially distributed random variable with unit rate (Rasmussen, 2011), similarly to how
normalizing flows model p∗(τ) by converting τ into a random variable with a simple distribution.
However, due to a suboptimal choice of the network architecture, the PDF of the FullyNN model
does not integrate to 1, and the model assigns non-zero probability to negative inter-event times
(see Appendix C). In contrast, SOSFlow and DSFlow always define a valid PDF on R+. Moreover,
similar to other flow-based models, sampling from the FullyNN model requires iterative root finding.

Several works used mixtures of kernels to parametrize the conditional intensity function (Taddy
et al., 2012; Tabibian et al., 2017; Okawa et al., 2019). Such models can only capture self-exciting
influence from past events. Moreover, these models do not permit computing expectation and draw-
ing samples in closed form. Recently, Biloš et al. (2019) and Türkmen et al. (2019) proposed neural
models for learning marked TPPs. These models focus on event type prediction and share the lim-
itations of other neural intensity-based approaches. Other recent works consider alternatives to the
maximum likelihood objective for training TPPs. Examples include noise-contrastive estimation
(Guo et al., 2018), Wasserstein distance (Xiao et al., 2017; 2018; Yan et al., 2018), and reinforce-
ment learning (Li et al., 2018; Upadhyay et al., 2018). This line of research is orthogonal to our
contribution, and the models proposed in our work can be combined with the above-mentioned
training procedures.

Neural density estimation. There exist two popular paradigms for learning flexible probability dis-
tributions using neural networks: In mixture density networks (Bishop, 1994), a neural net directly
produces the distribution parameters; in normalizing flows (Tabak & Turner, 2013; Rezende & Mo-
hamed, 2015), we obtain a complex distribution by transforming a simple one. Both mixture models
(Schuster, 2000; Eirola & Lendasse, 2013; Graves, 2013) and normalizing flows (Oord et al., 2016;
Ziegler & Rush, 2019) have been applied for modeling sequential data. However, surprisingly, none
of the existing works make the connection and consider these approaches in the context of TPPs.

5 EXPERIMENTS

We evaluate the proposed models on the established task of event time prediction (with and without
marks) in Sections 5.1 and 5.2. In the remaining experiments, we show how the log-normal mixture
model can be used for incorporating extra conditional information, training with missing data and
learning sequence embeddings. We use 6 real-world datasets containing event data from various
domains: Wikipedia (article edits), MOOC (user interaction with online course system), Reddit
(posts in social media) (Kumar et al., 2019), Stack Overflow (badges received by users), LastFM
(music playback) (Du et al., 2016), and Yelp (check-ins to restaurants). We also generate 5 synthetic
datasets (Poisson, Renewal, Self-correcting, Hawkes1, Hawkes2), as described in Omi et al. (2019).
Detailed descriptions and summary statistics of all the datasets are provided in Appendix E.

5.1 EVENT TIME PREDICTION USING HISTORY

Setup. We consider two normalizing flow models, SOSFlow and DSFlow (Equation 1), as well
a log-normal mixture model (Equation 2), denoted as LogNormMix. As baselines, we consider
RMTPP (i.e. Gompertz distribution / exponential intensity from Du et al. (2016)) and FullyNN
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Figure 3: NLL loss for event time prediction without marks (left) and with marks (right). NLL
of each model is standardized by subtracting the score of LogNormMix. Lower score is better.
Despite its simplicity, LogNormMix consistently achieves excellent loss values.

model by Omi et al. (2019). Additionally, we use a single log-normal distribution (denoted Log-
Normal) to highlight the benefits of the mixture model. For all models, an RNN encodes the history
into a vector hi. The parameters of p∗(τ) are then obtained using hi (Equation 3). We exclude
the NeuralHawkes model from our comparison, since it is known to be inferior to RMTPP in time
prediction (Mei & Eisner, 2017), and, unlike other models, doesn’t have a closed-form likelihood.

Each dataset consists of multiple sequences of event times. The task is to predict the time τi until the
next event given the history Hti . For each dataset, we use 60% of the sequences for training, 20%
for validation and 20% for testing. We train all models by minimizing the negative log-likelihood
(NLL) of the inter-event times in the training set. To ensure a fair comparison, we try multiple
hyperparameter configurations for each model and select the best configuration using the validation
set. Finally, we report the NLL loss of each model on the test set. All results are averaged over 10
train/validation/test splits. Details about the implementation, training process and hyperparameter
ranges are provided in Appendix D. For each real-world dataset, we report the difference between the
NLL loss of each method and the LogNormMix model (Figure 3). We report the differences, since
scores of all models can be shifted arbitrarily by scaling the data. Absolute scores (not differences)
in a tabular format, as well as results for synthetic datasets are provided in Appendix F.1.

Results. Simple unimodal distributions (Gompertz/RMTPP, LogNormal) are always dominated by
the more flexible models with the universal approximation property (LogNormMix, DSFlow, SOS-
Flow, FullyNN). Among the simple models, LogNormal provides a much better fit to the data than
RMTPP/Gompertz. The distribution of inter-event times in real-world data often has heavy tails, and
the Gompertz distributions fails to capture this behavior. We observe that the two proposed models,
LogNormMix and DSFlow consistently achieve the best loss values.

5.2 LEARNING WITH MARKS

Setup. We apply the models for learning in marked temporal point processes. Marks are known
to improve performance of simpler models (Du et al., 2016), we want to establish whether our
proposed models work well in this setting. We use the same setup as in the previous section, except
for two differences. The RNN takes a tuple (τi,mi) as input at each time step, where mi is the
mark. Moreover, the loss function now includes a term for predicting the next mark: L(θ) =
−
∑
i [log p∗θ(τi) + log p∗θ(mi)] (implementation details in Appendix F.2).

Results. Figure 3 (right) shows the time NLL loss (i.e. −
∑
i log p∗(τi)) for Reddit and MOOC

datasets. LogNormMix shows dominant performance in the marked case, just like in the previous
experiment. Like before, we provide the results in tabular format, as well as report the marks NLL
loss in Appendix F.

5.3 LEARNING WITH ADDITIONAL CONDITIONAL INFORMATION

Setup. We investigate whether the additional conditional information (Section 3.3) can improve
performance of the model. In the Yelp dataset, the task is predict the time τ until the next check-in
for a given restaurant. We postulate that the distribution p∗(τ) is different, depending on whether it’s
a weekday and whether it’s an evening hour, and encode this information as a vector yi. We consider
4 variants of the LogNormMix model, that either use or don’t use yi and the history embedding hi.
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Figure 4: By sampling the missing values from p∗(τ) during training, LogNormMix learns the true
underlying data distribution. Other imputation strategies overfit the partially observed sequence.

Results. Figure 5 shows the test set loss for 4 variants of the model. We see that additional condi-
tional information boosts performance of the LogNormMix model, regardless of whether the history
embedding is used.

5.4 MISSING DATA IMPUTATION

In practical scenarios, one often has to deal with missing data. For example, we may know that
records were not kept for a period of time, or that the data is unusable for some reason. Since TPPs
are a generative model, they provide a principled way to handle the missing data through imputation.

Setup. We are given several sequences generated by a Hawkes process, where some parts are known
to be missing. We consider 3 strategies for learning from such a partially observed sequence: (a)
ignore the gaps, maximize log-likelihood of observed inter-event times (b) fill the gaps with the
average τ estimated from observed data, maximize log-likelihood of observed data, and (c) fill the
gaps with samples generated by the model, maximize the expected log-likelihood of the observed
points. The setup is demonstrated in Figure 4. Note that in case (c) the expected value depends
on the parameters of the distribution, hence we need to perform sampling with reparametrization to
optimize such loss. A more detailed description of the setup is given in Appendix F.4.

Results. The 3 model variants are trained on the partially-observed sequence. Figure 4 shows the
NLL of the fully observed sequence (not seen by any model at training time) produced by each
strategy. We see that strategies (a) and (b) overfit the partially observed sequence. In contrast,
strategy (c) generalizes and learns the true underlying distribution. The ability of the LogNormMix
model to draw samples with reparametrization was crucial to enable such training procedure.
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5.5 SEQUENCE EMBEDDING

Different sequences in the dataset might be generated by different processes, and exhibit different
distribution of inter-event times. We can ”help” the model distinguish between them by assigning a
trainable embedding vector ej to each sequence j in the dataset. It seems intuitive that embedding
vectors learned this way should capture some notion of similarity between sequences.

Learned sequence embeddings. We learn a sequence embedding for each of the sequences in the
synthetic datasets (along with other model parameters). We visualize the learned embeddings using
t-SNE (Maaten & Hinton, 2008) in Figure 7 colored by the true class. As we see, the model learns
to differentiate between sequences from different distributions in a completely unsupervised way.
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Generation. We fit the LogNormMix model to two sequences (from self-correcting and renewal
processes), and, respectively, learn two embedding vectors eSC and eRN . After training, we gen-
erate 3 sequences from the model, using eSC , 1/2(eSC + eRN ) and eRN as sequence embeddings.
Additionally, we plot the learned conditional intensity function of our model for each generated se-
quence (Figure 6). The model learns to map the sequence embeddings to very different distributions.

6 CONCLUSIONS

We use tools from neural density estimation to design new models for learning in TPPs. We show
that a simple mixture model is competitive with state-of-the-art normalizing flows methods, as well
as convincingly outperforms other existing approaches. By looking at learning in TPPs from a dif-
ferent perspective, we were able to address the shortcomings of existing intensity-based approaches,
such as insufficient flexibility, lack of closed-form likelihoods and inability to generate samples
analytically. We hope this alternative viewpoint will inspire new developments in the field of TPPs.
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A INTENSITY FUNCTION OF FLOW AND MIXTURE MODELS

CDF and conditional intensity function of proposed models. The cumulative distribution func-
tion (CDF) of a normalizing flow model can be obtained in the following way. If z has a CDF Q(z)
and τ = g(z), then the CDF F (τ) of τ is obtained as

F (τ) = Q(g−1(τ))

Since for both SOSFlow and DSFlow we can evaluate g−1 in closed form, F (τ) is easy to compute.

For the log-normal mixture model, CDF is by definition equal to

F (τ) =

K∑
k=1

wkΦ

(
log τ − µk

sk

)
where Φ(·) is the CDF of a standard normal distribution.

Given the conditional PDF and CDF, we can compute the conditional intensity λ∗(t) and the cumu-
lative intensity Λ∗(τ) for each model as

λ∗(t) =
p∗(t− ti−1)

1− F ∗(t− ti−1)
Λ∗(τi) :=

∫ τi

0

λ∗(ti−1 + s)ds = − log(1− F ∗(τi))

where ti−1 is the arrival time of most recent event before t (Rasmussen, 2011).

Merging two independent processes. We replicate the setup from Upadhyay & Rodriguez (2019)
and consider what happens if we merge two independent TPPs with intensity functions λ∗1(t) and
λ∗2(t) (and respectively, cumulative intensity functions Λ∗1(τ) and Λ∗2(τ)). According to Upadhyay
& Rodriguez (2019), the intensity function of the new process is λ∗(t) = λ∗1(t) + λ∗2(t). Therefore,
the cumulative intensity function of the new process is

Λ∗(τ) =

∫ τ

0

λ∗(ti−1 + s)ds

=

∫ τ

0

λ∗1(ti−1 + s)ds+

∫ τ

0

λ∗2(ti−1 + s)ds

= Λ∗1(τ) + Λ∗2(τ)

Using the previous result, we can obtain the CDF of the merged process as

F ∗(τ) = 1− exp(−Λ∗(τ))

= 1− exp(−Λ∗1(τ)− Λ∗2(τ))

= 1− exp(log(1− F ∗1 (τ)) + log(1− F ∗2 (τ)))

= 1− (1 + F ∗1 (τ)F ∗2 (τ)− F ∗1 (τ)− F ∗2 (τ))

= F ∗1 (τ) + F ∗2 (τ)− F ∗1 (τ)F ∗2 (τ)

The PDF of the merged process is obtained by simply differentiating the CDF w.r.t. τ .

This means that by using either normalizing flows or mixture distributions, and thus directly model-
ing PDF / CDF, we are not losing any benefits of the intensity parametrization.

B DISCUSSION OF CONSTANT & EXPONENTIAL INTENSITY MODELS

Constant intensity model as exponential distribution. The conditional intensity function of the
constant intensity model (Upadhyay et al., 2018) is defined as λ∗(ti) = exp(vThi+ b), where hi ∈
RH is the history embedding produced by an RNN, and b ∈ R is a learnable parameter. By setting
c = exp(vThi+ b), it’s easy to see that the PDF of the constant intensity model p∗(τ) = c exp(−c)
corresponds to an exponential distribution.

Exponential intensity model as Gompertz distribution. PDF of a Gompertz distribution
(Wienke, 2010) is defined as

p(τ |α, β) = α exp

(
βτ − α

β
exp(βt) +

α

β

)
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Figure 8: Different choices for modeling p(τ): exponential distribution (left), Gompertz distribution
(center), log-normal mixture (right). Mixture distribution can approximate any density while being
tractable and easy to sample from.

for α, β > 0. The two parameters α and β define its shape and rate, respectively. For any choice
of its parameters, Gompertz distribution is unimodal and light-tailed. The mean of the Gompertz
distribution can be computed as E[τ ] = 1

β exp
(
α
β

)
Ei(−αβ ), where Ei(z) =

∫∞
−z

exp(−v)/v dv is the
exponential integral function (that can be approximated numerically).

The conditional intensity function of the exponential intensity model (Du et al., 2016) is defined as
λ∗(ti) = exp(w(ti − ti−1) + vThi + b), where hi ∈ RH is the history embedding produced by an
RNN, and v ∈ RH , b ∈ R, w ∈ R+ are learnable parameters. By defining d = vThi + b, we obtain
the PDF of the exponential intensity model (Du et al., 2016, Equation 12) as

p(τ |w, d) = exp

(
wτ + d− 1

w
exp(wτ + d) +

1

w
exp(d)

)
By setting α = exp(d) and β = w we see that the exponential intensity model is equivalent to a
Gompertz distribution.

Discussion. Figure 8 shows densities that can be represented by exponential and Gompertz distribu-
tions. Even though the history embeddinghi produced by an RNN may capture rich information, the
resulting distribution p∗(τi) for both models has very limited flexibility, is unimodal and light-tailed.
In contrast, a flow-based or a mixture model is significantly more flexible and can approximate any
density.

C DISCUSSION OF THE FULLYNN MODEL

Summary The main idea of the approach by Omi et al. (2019) is to model the integrated condi-
tional intensity function

Λ∗(τ) =

∫ τ

0

λ∗(ti−1 + s)ds

using a feedforward neural network with non-negative weights

Λ∗(τ) := f(τ) = softplus(W (3) tanh(W (2) tanh(W (1)τ + b̃(1)) + b(2)) + b(3)) (4)

where b̃(1) = V h + b(0), h ∈ RH is the history embedding, W (1) ∈ RD×1+ , W (2) ∈ RD×D+ ,
W (3) ∈ R1×D

+ are non-negative weight matrices, and V ∈ RD×H , b(0) ∈ RD, b(2) ∈ RD,
b(3) ∈ R are the remaining model parameters.

FullyNN as a normalizing flow Let z ∼ Exponential(1), that is

F (z) = 1− exp(−z) p(z) = exp(−z)

We can view f : R+ → R+ as a transformation that maps τ to z

z = f(τ) ⇐⇒ τ = f−1(z)

We can now use the change of variables formula to obtain the conditional CDF and PDF of τ .
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Alternatively, we can obtain the conditional intensity as

λ∗(τ) =
∂

∂τ
Λ∗(τ) =

∂

∂τ
f(τ)

and use the fact that p∗(τi) = λ∗(ti−1 + τi) exp
(
−
∫ τi
0
λ∗(ti−1 + s)ds

)
.

Both approaches lead to the same conclusion

F ∗(τ) = 1− exp(−f(τ)) p∗(τ) = exp(−f(τ))
∂

∂τ
f(τ)

However, the first approach also provides intuition on how to draw samples τ̃ from the resulting
distribution p∗(τ) — an approach known as the inverse method (Rasmussen, 2011)

1. Sample z̃ ∼ Exponential(1)

2. Obtain τ̃ by solving f(τ)− z̃ = 0 for τ (using e.g. bisection method)

Similarly to other flow-based models, sampling from the FullyNN model cannot be done exactly
and requires a numerical approximation.

Shortcomings of the FullyNN model

1. The PDF defined by the FullyNN model doesn’t integrate to 1.

By definition of the CDF, the condition that the PDF integrates to 1 is equivalent to
limτ→∞ F ∗(τ) = 1, which in turn is equivalent to limτ→∞ Λ∗(τ) = ∞. However, be-
cause of saturation of tanh activations (i.e. supx∈R | tanh(x)| = 1) in Equation 4

lim
τ→∞

Λ∗(τ) = lim
τ→∞

f(τ) < softplus

(
D∑
d=1

|w(3)
d |+ b(3)

)
<∞

Therefore, the PDF doesn’t integrate to 1.
2. The FullyNN model assigns a non-zero amount of probability mass to the (−∞, 0) interval,

which violates the assumption that inter-event times are strictly positive.

Since the inter-event times τ are assumed to be strictly positive almost surely, it must hold
that Prob(τ ≤ 0) = F ∗(0) = 0, or equivalently Λ∗(0) = 0. However, we can see that

Λ∗(0) = f(0) = softplus(W (3) tanh(W (2) tanh(b̃(1)) + b(2)) + b(3)) > 0

which means that the FullyNN model permits negative inter-event times.

D IMPLEMENTATION DETAILS

D.1 SHARED ARCHITECTURE

We implement SOSFlow, DSFlow and LogNormMix, together with baselines: RMTPP (Gompertz
distribution), exponential distribution and a FullyNN model. All of them share the same pipeline,
from the data preprocessing to the parameter tuning and model selection, differing only in the way
we calculate p∗(τ). This way we ensure a fair evaluation. Our implementation uses Pytorch.3

From arival times ti we calculate the inter-event times τi = ti − ti−1. Since they can contain very
large values, RNN takes log-transformed and centered inter-event time and produces hi ∈ RH . In
case we have marks, we additionally input mi — the index of the mark class from which we get
mark embedding vector mi. In some experiments we use extra conditional information, such as
metadata yi and sequence embedding ej , where j is the index of the sequence.

As illustrated in Section 3.3 we generate the parameters θ of the distribution p∗(τi) from [hi||yi||ej ]
using an affine layer. We apply a transformation of the parameters to enforce the constraints, if
necessary.

All decoders are implemented using a common framework relying on normalizing flows. By defin-
ing the base distribution q(z) and the inverse transformation (g−11 ◦ · · · ◦ g−1M ) we can evaluate the
PDF p∗(τ) at any τ , which allows us to train with maximum likelihood (Section 3.1).

3https://pytorch.org/ (Paszke et al., 2017)
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D.2 LOG-NORMAL MIXTURE

The log-normal mixture distribution is defined in Equation 2. We generate the parameters of the dis-
tribution w ∈ RK ,µ ∈ RK , s ∈ RK (subject to

∑
k wk = 1, wk ≥ 0 and sk > 0), using an affine

transformation (Equation 3). The log-normal mixture is equivalent to the following normalizing
flow model

z1 ∼ GaussianMixture(w,µ, s)

z2 = az1 + b

τ = exp(z2)

By using the affine transformation z2 = az1 + b before the exp transformation, we obtain a better
initialization, and thus faster convergence. This is similar to the batch normalization flow layer

(Dinh et al., 2017), except that b = 1
N

∑N
i=1 log τi and a =

√
1
N

∑N
i=1(log τi − b) are estimated

using the entire dataset, not using batches.

Forward direction samples a value from a Gaussian mixture, applies an affine transformation and
applies exp. In the bacward direction we apply log-transformation to an observed data, center it
with an affine layer and compute the density under the Gaussian mixture.

D.3 BASELINES

We implement FullyNN model (Omi et al., 2019) as described in Appendix C, using the official
implementation as a reference4. The model uses feed-forward neural network with non-negative
weights (enforced by clipping values at 0 after every gradient step). Output of the network is a cumu-
lative intensity function Λ∗(τ) from which we can easily get intensity function λ∗(τ) as a derivative
w.r.t. τ using automatic differentiation in Pytorch. We get the PDF as p∗(τ) = λ∗(τ) exp(−Λ∗(τ)).

We implement RMTPP / Gompertz distribution (Du et al., 2016)5 and the exponential distribution
(Upadhyay et al., 2018) models as described in Appendix B.

All of the above methods define the distribution p∗(τ). Since the inter-event times may come at very
different scales, we apply a linear scaling τ̃ = aτ , where a = 1

N

∑N
i=1 τi is estimated from the data.

This ensures a good initialization for all models and speeds up training.

D.4 DEEP SIGMOIDAL FLOW

A single layer of DSFlow model is defined as

fDSFθ (x) = σ−1

(
K∑
k=1

wkσ

(
x− µk
sk

))
with parameters θ = {w ∈ RK ,µ ∈ RK , s ∈ RK} (subject to

∑
k wk = 1, wk ≥ 0 and sk > 0).

We obtain the parameters of each layer using Equation 3.

We define p(τ) through the inverse transformation (g−11 ◦ · · · ◦ g
−1
M ), as described in Section 3.1.

zM = g−1M (τ) = log τ

· · ·
zm = g−1m (zm+1) = fDSFθm (zm+1)

· · ·
z1 = σ(z2)

z1 ∼ q1(z1) = Uniform(0, 1)

We use the the batch normalization flow layer (Dinh et al., 2017) between every pair of consecutive
layers, which significantly speeds up convergence.

4https://github.com/omitakahiro/NeuralNetworkPointProcess
5https://github.com/musically-ut/tf_rmtpp
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D.5 SUM-OF-SQUARES POLYNOMIAL FLOW

A single layer of SOSFlow model is defined as

fSOS(x) = a0 +

K∑
k=1

R∑
p=0

R∑
q=0

ap,kaq,k
p+ q + 1

xp+q+1

There are no constraints on the polynomial coefficients a ∈ R(R+1)×K . We obtain a similarly to
Equation 3 as a = Vac+ ba, where c is the context vector.

We define p(τ) by through the inverse transformation (g−11 ◦ · · · ◦ g
−1
M ), as described in Section 3.1.

zM = g−1M (τ) = log τ

· · ·
zm = g−1m (zm+1) = fSOSθm (zm+1)

· · ·
z1 = σ(z2)

z1 ∼ q1(z1) = Uniform(0, 1)

Same as for DSFlow, we use the the batch normalization flow layer between every pair of consecu-
tive layers. When implementing SOSFlow, we used Pyro6 for reference.

D.6 REPARAMETRIZATION SAMPLING

Using a log-normal mixture model allows us to sample with reparametrization which proves to be
useful, e.g. when imputing missing data (Section 5.4). In a score function estimator (Williams, 1992)
given a random variable x ∼ pθ(x), where θ are parameters, we can compute ∇θEx∼pθ(x)[f(x)]
as Ex∼pθ(x)[f(x)∇θ log pθ(x)]. This is an unbiased estimator of the gradients but it often suffers
from high variance. If the function f is differentiable, we can obtain an alternative estimator using
the reparametrization trick: ε ∼ q(ε), x = gθ(ε). Thanks to this reparametrization, we can compute
∇θEx∼pθ(x)[f(x)] = Eε∼q(ε)[∇θf(gθ(ε))]. Such reparametrization estimator typically has lower
variance than the score function estimator (Mohamed et al., 2019). In both cases, we estimate the
expectation using Monte Carlo.

To sample with reparametrization from the mixture model we use the Straight-Through Gumbel
Estimator (Jang et al., 2017). We first obtain a relaxed sample z∗ = softmax((logw + o)/T ),
where each oi is sampled i.i.d. from a Gumbel distribution with zero mean and unit scale, and T is
the temperature parameter. Finally, we get a one-hot sample z = onehot(arg maxk z

∗
k). While a

discrete z is used in the forward pass, during the backward pass the gradients will flow through the
differentiable z∗.

The gradients obtained by the Straight-Through Gumbel Estimator are slightly biased, which in prac-
tice doesn’t have a significant effect on the model’s performance. There exist alternatives (Tucker
et al., 2017; Grathwohl et al., 2018) that provide unbiased gradients, but are more expensive to
compute.

E DATASET STATISTICS

E.1 SYNTHETIC DATA

Synthetic data is generated according to Omi et al. (2019) using well known point processes. We
sample 64 sequences for each process, each sequence containing 1024 events.

Poisson. Conditional intensity function for a homogeneous (or stationary) Poisson point process is
given as λ∗(t) = 1. Constant intensity corresponds to exponential distribution.

Renewal. A stationary process defined by a log-normal probability density function p(τ), where we
set the parameters to be µ = 1.0 and σ = 6.0. Sequences appear clustered.

6https://pyro.ai/ (Bingham et al., 2018)
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Dataset name Number of sequences Number of events

LastFM 929 1268385
Reddit 10000 672350
Stack Overflow 6633 480414
MOOC 7047 396633
Wikipedia 1000 157471
Yelp 300 215146

Table 2: Dataset statistics.

Self-correcting. Unlike the previous two, this point process depends on the history and is defined
by a conditional intensity function λ∗(t) = exp(t −

∑
ti<t

1). After every new event the intensity
suddenly drops, inhibiting the future points. The resulting point patterns appear regular.

Hawkes. We use a self-exciting point process with a conditional intensity function given as λ∗(t) =

µ+
∑
ti<t

∑M
j=1 αjβj exp(−βj(t− ti)). As per Omi et al. (2019), we create two different datasets:

Hawkes1 with M = 1, µ = 0.02, α1 = 0.8 and β1 = 1.0; and Hawkes2 with M = 2, µ = 0.2,
α1 = 0.4, β1 = 1.0, α2 = 0.4 and β2 = 20. For the imputation experiment we use Hawkes1 to
generate the data and remove some of the events.

E.2 REAL-WORLD DATA

In addition we use real-world datasets that are described bellow. Table 2 shows their summary. All
datasets have a large amount of unique sequences and the number of events per sequence varies a lot.
Using marked temporal point processes to predict the type of an event is feasible for some datasets
(e.g. when the number of classes is low), and is meaningless for other.

LastFM.7 The dataset contains sequences of songs that selected users listen over time. Artists are
used as an event type.

Reddit.8 On this social network website users submit posts to subreddits. In the dataset, most active
subreddits are selected, and posts from the most active users on those subreddits are recodered. Each
sequence corresponds to a list of submissions a user makes. The data contains 984 unique subreddits
that we use as classes in mark prediction.

Stack Overflow.9 Users of a question-answering website get rewards (called badges) over time for
participation. A sequence contains a list of rewards for each user. Only the most active users are
selected and only those badges that users can get more than once.

MOOC.8 Contains the interaction of students with an online course system. An interaction is an
event and can be of various types (97 unique types), e.g. watching a video, solving a quiz etc.

Wikipedia.8 A sequence corresponds to edits of a Wikipedia page. The dataset contains most edited
pages and users that have an activity (number of edits) above a certain threshold.

Yelp.10 We use the data from the review forum and consider the reviews for the 300 most visited
restaurants in Toronto. Each restaurant then has a corresponding sequence of reviews over time.

F ADDITIONAL DISCUSSION OF THE EXPERIMENTS

F.1 EVENT TIME PREDICTION USING HISTORY

Detailed setup. Each dataset consists of multiple sequences of inter-event times. We consider 10
train/validation/test splits of the sequences (of sizes 60%/20%/20%). We train all model parameters
by minimizing the negative log-likelihood (NLL) of the training sequences, defined as Ltime(θ) =

7Celma (2010)
8https://github.com/srijankr/jodie/(Kumar et al., 2019)
9https://archive.org/details/stackexchange preprocessed according to Du et al. (2016)

10https://www.yelp.com/dataset/challenge
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Figure 9: Models learn different conditional distribution p(τ |H) on Yelp dataset. Since check-ins
occur during the opening hours, true distribution of the next check-in resembles the one on the right.

− 1
N

∑N
i=1 log p∗θ(τi). After splitting the data into the 3 sets, we break down long training sequences

into sequences of length at most 128. Optimization is performed using Adam (Kingma & Ba, 2015)
with learning rate 10−3. We perform training using mini-batches of 64 sequences. We train for up to
2000 epochs (1 epoch = 1 full pass through all the training sequences). For all models, we compute
the validation loss at every epoch. If there is no improvement for 100 epochs, we stop optimization
and revert to the model parameters with the lowest validation loss.

We select hyperparameter configuration for each model that achieves the lowest average loss on
the validation set. For each model, we consider different values of L2 regularization strength C ∈
{0, 10−5, 10−3}. Additionally, for SOSFlow we tune the number of transformation layers M ∈
{1, 2, 3} and for DSFlowM ∈ {1, 2, 3, 5, 10}. We have chosen the values of K such that the mixture
model has approximately the same number of parameters as a 1-layer DSFlow or a 1-layer FullyNN
model. More specifically, we set K = 64 for LogNormMix, DSFlow and FullyNN. We found all
these models to be rather robust to the choice of K, as can be seen in Table 3 for LogNormMix. For
SOSFlow we used K = 4 and R = 3, resulting in a polynomial of degree 7 (per each layer). Higher
values of R led to unstable training, even when using batch normalization.

Additional discussion. In this experiment, we only condition the distribution p∗(τi) on the history
embedding hi. We don’t learn sequence embeddings ej since they can only be learned for the
training sequences, and not fore the validation/test sets.

There are two important aspects related to the NLL loss values that we report. First, the absolute
loss values can be arbitrarily shifted by rescaling the data. Assume, that we have a distribution p(τ)
that models the distribution of τ . Now assume that we are interested in the distribution q(x) of
x = aτ (for a > 0). Using the change of variables formula, we obtain log q(x) = log p(τ) + log a.
This means that by simply scaling the data we can arbitrarily offset the log-likelihood score that we
obtain. Therefore, the absolute values of of the (negative) log-likelihood L for different models are
of little interest — all that matters are the differences between them.

The loss values are dependent on the train/val/test split. Assume that model 1 achieves loss values
L1 = {1.0, 3.0} on two train/val/test splits, and model 2 achieves L2 = {2.0, 4.0} on the same
splits. If we first aggregate the scores and report the average L̂1 = 2.0±1.0, L̂2 = 3.0±1.0, it may
seem that the difference between the two models is not significant. However, if we first compute the
differences and then aggregate (L2 −L1) = 1.0± 0.0 we see a different picture. Therefore, we use
the latter strategy in Figure 3. For completeness, we also report the numbers obtained using the first
strategy in Table 4.

As a baseline, we also considered the constant intensity / exponential distribution model (Upadhyay
et al., 2018). However, we excluded the results for it from Figure 3, since it consistently achieved
the worst loss values and had high variance. We still include the results for the constant intensity
model in Table 4. We also performed all the experiments on the synthetic datasets (Appendix E.1).
The results are shown in Table 5, together with NLL scores under the true model. We see that
LogNormMix and DSFlow, besides achieving the best results, recover the true distribution.

Finally, in Figure 9 we plot the conditional distribution p(τ |H) with models trained on Yelp dataset.
The events represent check-ins into a specific restaurant. Since check-ins mostly happen during the
opening hours, the inter-event time is likely to be on the same day (0h), next day (24h), the day after
(48h), etc. LogNormMix can fully recover this behavior from data while others either cannot learn
multimodal distributions (e.g. RMTPP) or struggle to capture it (e.g. FullyNN).
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K 2 4 8 16 32 64

Reddit 10.239 10.208 10.189 10.185 10.191 10.192
LastFM -2.828 -2.879 -2.881 -2.880 -2.877 -2.860
MOOC 6.246 6.053 6.055 6.055 6.050 5.660
Stack Overflow 14.461 14.438 14.435 14.435 14.436 14.428
Wikipedia 8.399 8.389 8.385 8.384 8.384 8.386
Yelp 13.169 13.103 13.058 13.045 13.032 13.024
Poisson 1.006 0.992 0.991 0.991 0.990 0.991
Renewal 0.256 0.254 0.254 0.254 0.256 0.259
Self-correcting 0.831 0.785 0.782 0.783 0.784 0.784
Hawkes1 0.530 0.523 0.532 0.532 0.523 0.523
Hawkes2 0.036 0.026 0.024 0.024 0.026 0.024

Table 3: Performance of LogNormMix model for different numbers K of mixture components.

Reddit LastFM MOOC Stack Overflow Wikipedia Yelp

LogNormMix 10.19 ± 0.078 -2.88 ± 0.147 6.03 ± 0.092 14.44 ± 0.013 8.39 ± 0.079 13.02 ± 0.070
DSFlow 10.20 ± 0.074 -2.88 ± 0.148 6.03 ± 0.090 14.44 ± 0.019 8.40 ± 0.090 13.09 ± 0.065
SOSFlow 10.27 ± 0.106 -2.56 ± 0.133 6.27 ± 0.058 14.47 ± 0.049 8.44 ± 0.120 13.21 ± 0.068
FullyNN 10.23 ± 0.072 -2.84 ± 0.179 6.83 ± 0.152 14.45 ± 0.014 8.40 ± 0.086 13.04 ± 0.073
LogNormal 10.38 ± 0.077 -2.60 ± 0.140 6.53 ± 0.016 14.62 ± 0.013 8.52 ± 0.078 13.44 ± 0.074
RMTPP 10.88 ± 0.293 -1.30 ± 0.164 10.65 ± 0.023 14.51 ± 0.014 10.02 ± 0.085 13.36 ± 0.056
Exponential 11.07 ± 0.070 -1.28 ± 0.152 10.64 ± 0.026 18.48 ± 3.257 10.03 ± 0.083 13.78 ± 1.250

Table 4: Time prediction test NLL on real-world data.

F.2 LEARNING WITH MARKS

Detailed setup. We use the same setup as in Section F.1, except two differences. For learning in a
marked temporal point process, we mimic the architecture from Du et al. (2016). The RNN takes
a tuple (τi,mi) as input at each time step, where mi is the mark. Moreover, the loss function now
includes a term for predicting the next mark: Ltotal(θ) = − 1

N

∑N
i=1 [log p∗θ(τi) + log p∗θ(mi)].

The next mark mi at time ti is predicted using a categorical distribution p∗(mi). The distribution is
parametrized by the vector πi, where πi,c is the probability of event mi = c. We obtain πi using
the history embedding hi passed through a feedforward neural network

πi = softmax
(
V (2)
π tanh(V (1)

π hi + b(1)π ) + b(2)π

)
where V (1)

π ,V
(2)
π b

(1)
π , b

(2)
π are the parameters of the neural network.

Additional discussion. In Figure 3 (right) we reported the differences in time NLL between dif-
ferent models Ltime(θ) = − 1

N

∑N
i=1 log p∗θ(τi). In Table 6 we additionally provide the total NLL

Ltotal(θ) = − 1
N

∑N
i=1 [log p∗θ(τi) + log p∗θ(mi)] averaged over multiple splits.

Using marks as input to the RNN improves time prediction quality for all the models. However,
since we assume that the marks are conditionally independent of the time given the history (as was
done in earlier works), all models have similar mark prediction accuracy.

F.3 LEARNING WITH ADDITIONAL CONDITIONAL INFORMATION

Detailed setup. In the Yelp dataset, the task is to predict the time τi until the next customer check-
in, given the history of check-ins up until the current time ti−1. We want to verify our intuition
that the distribution p∗(τi) depends on the current time ti−1. For example, p∗(τi) might be different
depending on whether it’s a weekday and / or it’s an evening hour. Unfortunately, a model that
processes the history with an RNN cannot easily obtain this information. Therefore, we provide this
information directly as a context vector yi when modeling p∗(τi).

The first entry of context vector yi ∈ {0, 1}2 indicates whether the previous event ti−1 took place on
a weekday or a weekend, and the second entry indicates whether ti−1 was in the 5PM–11PM time
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Poisson Renewal Self-correcting Hawkes1 Hawkes2

True model 0.999 0.254 0.757 0.453 -0.043

LogNormMix 0.99 ± 0.006 0.25 ± 0.010 0.78 ± 0.003 0.52 ± 0.047 0.02 ± 0.049
DSFlow 0.99 ± 0.006 0.25 ± 0.010 0.78 ± 0.002 0.52 ± 0.047 0.02 ± 0.050
SOSFlow 1.00 ± 0.013 0.25 ± 0.010 0.88 ± 0.011 0.59 ± 0.056 0.06 ± 0.046
FullyNN 1.00 ± 0.006 0.28 ± 0.013 0.78 ± 0.004 0.55 ± 0.047 0.06 ± 0.047
LogNormal 1.08 ± 0.008 0.25 ± 0.010 1.03 ± 0.006 0.55 ± 0.047 0.06 ± 0.049
RMTPP 0.99 ± 0.006 1.01 ± 0.023 0.78 ± 0.003 0.74 ± 0.057 0.69 ± 0.058
Exponential 0.99 ± 0.006 1.00 ± 0.023 0.94 ± 0.002 0.74 ± 0.055 0.69 ± 0.054

Table 5: Time prediction test NLL on synthetic data.

Time NLL Total NLL Mark accuracy
Reddit MOOC Reddit MOOC Reddit MOOC

LogNormMix 10.28 ± 0.066 5.75 ± 0.040 12.40 ± 0.094 7.58 ± 0.047 0.62±0.014 0.45±0.003
DSFlow 10.28 ± 0.073 5.78 ± 0.067 12.39 ± 0.064 7.52 ± 0.074 0.62±0.013 0.45±0.004
SOSFlow 10.35 ± 0.106 6.06 ± 0.084 12.49 ± 0.158 7.78 ± 0.107 0.62±0.013 0.46±0.009
FullyNN 10.41 ± 0.079 6.22 ± 0.224 12.51 ± 0.094 7.93 ± 0.230 0.63±0.013 0.46±0.004
LogNormal 10.42 ± 0.076 6.38 ± 0.019 12.51 ± 0.080 8.11 ± 0.026 0.62±0.013 0.42±0.005
RMTPP 11.15 ± 0.061 10.29 ± 0.209 13.26 ± 0.085 12.14 ± 0.220 0.62±0.014 0.41±0.006

Table 6: Time and total NLL and mark accuracy when learning a marked TPP.

window. To each of the four possibilities we assign a learnable 64-dimensional embedding vector.
The distribution of p∗(τi) until the next event depends on the embedding vector of the time stamp
ti−1 of the most recent event.

F.4 MISSING DATA IMPUTATION

Detailed setup. The dataset for the experiment is generated as a two step process: 1) We generate
a sequence of 100 events from the model used for Hawkes1 dataset (Appendix E.1) resulting in a
sequence of arrival times {t1, . . . tN}, 2) We choose random ti and remove all the events that fall
inside the interval [ti, ti+k] where k is selected such that the interval length is approximately tN/3.

We consider three strategies for learning with missing data (shown in Figure 4 (left)):

a) No imputation. The missing block spans the time interval [ti, ti+k]. We simply ignore the
missing data, i.e. training objective Ltime will include an inter-event time τ = ti+k − ti.

b) Mean imputation. We estimate the average inter-event time τ̂ from the observed data, and
impute events at times {ti + nτ̂ for n ∈ N, such that ti + nτ̂ < ti+k}. These imputed
events are fed into the history-encoding RNN, but are not part of the training objective.

c) Sampling . The RNN encodes the history up to and including ti and produces hi that we
use to define the distribution p∗(τ |hi). We draw a sample τ (imp)j form this distribution and
feed it into the RNN. We keep repeating this procedure until the samples get past the point
ti+k. The imputed inter-event times τ (imp)j are affecting the hidden state of the RNN (thus

influencing the likelihood of future observed inter-event times τ (obs)i ).
We sample multiple such sequences in order to approximate the expected log-likelihood
of the observed inter-event times Eτ(imp)∼p∗

[∑
i log p∗(τ

(obs)
i )

]
. Since this objective in-

cludes an expectation that depends on p∗, we make use of reparametrization sampling to
obtain the gradients w.r.t. the distribution parameters (Mohamed et al., 2019).

F.5 SEQUENCE EMBEDDING

Detailed setup. When learning sequence embeddings, we train the model as described in Appendix
F.1, besides one difference. First, we pre-train the sequence embeddings ej by disabling the his-
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tory embedding hi and optimizing − 1
N

∑
i log pθ(τi|ej). Afterwards, we enable the history and

minimize − 1
N

∑
i log pθ(τi|ej ,hi).

In Figure 6 the top row shows samples generated using eSC , embedding of a self-correcting se-
quence, the bottom row was generated using eSC , embedding of a renewal sequence, and the middle
row was generated using 1/2(eSC + eRN ), an average of the two embeddings.
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