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Abstract

Claims from the fields of network neuroscience
and connectomics suggest that topological mod-
els of the brain involving complex networks are
of particular use and interest. The field of deep
neural networks has mostly left inspiration from
these claims out. In this paper, we propose three
architectures and use each of them to explore the
intersection of network neuroscience and deep
learning in an attempt to bridge the gap between
the two fields. Using the teachings from net-
work neuroscience and connectomics, we show
improvements over the ResNet architecture, we
show a possible connection between early train-
ing and the spectral properties of the network, and
we show the trainability of a DNN based on the
neuronal network of C.Elegans.

1. Introduction
1.1. Phenomena observed:

1. Improved classification accuracy obtained when
we used deep neural network architectures whose
topologies were inspired by network neuroscience.
Specifics: 89.41% top-1 accuracy on CIFAR-10 with
Small-world RogueNet

2. Positive correlation between the spectral gap of the
graph and the first-epoch accuracy obtained during the
training phase.
Specifics: Pearson correlation of 0.65 on ImageNette
with Ramanujan-Net topology

3. Freezing all the convolutional layers and training only
the parameters associated with the graph edges still
yield far better accuracy than random guess. Specifics:
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Training only the edge-weights of the C.Elagans neu-
ronal network still resulted in 55.7% top-1 accuracy on
the MNIST dataset.

4. Retaining of the small-world topology throughout the
training phase.
Specifics: Small-worldness of the topology measured
by the small-world propensity metric used for weighted
graphs was > 0.53 for all epochs of the training period
for the MNIST dataset and the C.Elgenans neuronal
network.

1.2. Background

There exists a formidable body of work in network neuro-
science (Bassett & Sporns, 2017) and connectomics (For-
nito et al., 2016) that deals with topological modeling of the
brain’s anatomical and functional networks. Some of the
main claims from this field are:

1. Complex networks with small world topology (Watts
& Strogatz, 1998) serve as an attractive model for
the organization of brain anatomical and functional
networks because a small-world topology can support
both segregated/specialized and distributed/integrated
information processing (Bassett & Bullmore, 2006)

2. Human brain structural and functional networks fol-
low small-world configuration and this small-world
model captures individual cognition and exhibits phys-
iological basis. (Liao et al., 2017)

3. Small-world, modules and hubs are present during
the mid-gestation period. Early brain network topol-
ogy can predict later behavioral and cognitive perfor-
mance.(Zhao et al., 2018; Watts & Strogatz, 1998)

It is therefore somewhat striking that the field of deep neural
networks, with all its neuro-biologically inspired building
blocks 1, has mostly left the topology story out.
There have been some nascent attempts worth a mention

1 These sentences appear verbatim in (LeCun et al., 2015): The
convolutional and pooling layers in ConvNets are directly inspired
by the classic notions of simple cells and complex cells in visual
neuroscience, and the overall architecture is reminiscent of the
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here. In (Simard et al., 2005) the authors investigated multi-
layered feed-forward networks trained with back propa-
gation and found that the networks with the small-world
connectivity resulted in lower learning error and lower train-
ing time when benchmarked with networks of regular or
random connectivity. We note in passing that some specifics
of the experimentation used in this paper have been chal-
lenged in (Guo, 2010). Continuing with small-world feed-
forward neural networks theme, the authors in (Erkaymaz
et al., 2017) obtained better results for a diabetes diagnosis
dataset when compared with plain-vanilla fully connected
feed-forward neural networks.
But in the post-AlexNet era, ever with this seemingly
cambrian- explosion of neural network architectures 2, none
seem to be inspired by the ideas prevalent in the domain of
brain connectomics.
In this paper, we showcase a series of experimental attempts
we’ve made to bridge the gap between the two communi-
ties (namely connectomics/network-neuroscience and deep
learning). While it is not yet clear as to what deep neural
network module would serve to be proverbial node in the
complex network framework (we initially tried ResNet mod-
ules - See RogueNet section below), we firmly believe
that the recent work by (Xie et al., 2019) serves as a truly
elegant template and is worthy as the de facto choice for
further modeling.
The rest of the paper is organized as follows: In section
2, we present RogueNet. A DNN model architecture with
small-world topological properties where we used a ResNet
module to be a node. In section-3, we present two architec-
tures, RamanujanNet and C.ElgansNet based on the node
model proposed in (Xie et al., 2019). In section-4, we con-
clude the paper and present the current directions of research
we are currently pursuing to extend this work.

2. Node model-1: RogueNet
Our proposed RogueNet architecture expands upon the Pre-
Activation ResNet architecture in which ReLu activations
and batch normalization are performed before convolutions
(He et al., 2016). We introduce random additive connections
between ResNet modules in a global manner according to
a connectivity pattern resembling a Watts-Strogatz small
world network. The additive skip connections are combined
with the activation from a given ResNet module using a
convolutional gating mechanism inspired by Highway Net-

LGN-V1-V2-V4-IT hierarchy in the visual cortex ventral pathway.
When ConvNet models and monkeys are shown the same picture,
the activations of high-level units in the ConvNet explains half
of the variance of random sets of 160 neurons in the monkeys
inferotemporal cortex.

2 See http://www.asimovinstitute.org/
neural-network-zoo/ to visualize the growing neural-
network zoo

Table 1. Types of ResNet modules used in RogueNet

Basic Bottleneck

Batch Normalization Batch Normalization
ReLU ReLU
Convolution (3x3) Convolution (1x1)
Batch Normalization Batch Normalization
ReLU ReLU
Convolution (3x3) Convolution (3x3)

Batch Normalization
ReLU
Convolution (1x1)

works (Srivastava et al., 2015).

2.1. Topology of the RogueNet architecture

The base architecture which we apply random connections
to is composed of Pre-Activation ResNet modules. These
modules come in two flavors as proposed by He et al., the
first of which is referred to as a ‘basic’ module which con-
tains two convolutional layers, and the second of which is
referred to as a ‘bottleneck’ module which contains three
convolutional layers (He et al., 2015). The details of each
of these are presented in Table 1.

The experiments presented here rely primarily on the use
of basic ResNet modules, and we compare RogueNet archi-
tectures consisting of 34 layers (excluding gating layers) to
ResNet34, which similarly has 34 layers. Each ResNet mod-
ule takes input from the previous ResNet module or layer
and skip connections from previous layers in the network
pass activations which are added to it before being passed
to a gating mechanism and being sent to one or more later
layers in the network. The connectivity pattern of the skip
connections is a Watts Strogatz random network with mean
edge density and rewiring probability set such that it has
small world properties. Our neuron architecture can be seen
in Figure 3

The gating mechanism used in the RogueNet architecture
is inspired by Highway layers, introduced by Srivastava et
al. (Srivastava et al., 2015). The original formulation for
Highway layers is expressed as

y = H(x,WH) · T (x,WT ) + x · (1− T (x,WT ))

where H(x,WH) is an arbitrary fully connected layer with
input x and parameters WH . T (x,WT ) is specified to be
a fully connected layer parameterized by WT and a bias
vector with input x with the sigmoid activation function.

Our gating mechanism differs from this in that we use con-
volutional layers, and our transformation H(x, ·) sums the

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
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output and the activations from the incoming skip connec-
tions. Mathematically, this is described as follows

yL =

(
xL +

∑
i∈S

xi

)
· Tconv(xL,WT )

+ xL · (1− Tconv(xL,WT )),

where L is the index of the current layer and S is the set
of indices of layers which have a skip connection to layer
L. Xj where j refers to the index of a particular layer,
is the activation from the gating mechanism from layer j.
In this case, Tconv(xL, ·) is a 1 by 1 convolution with a
bias term and the sigmoid activation function. Intuitively,
this layer learns how much the incoming skip connection
activations should be weighted relative to the activation
from the previous module.

2.2. Training procedure for RogueNet

Figure 1. Estimating β for a 17 node small world network with
K = 6.

We use the same training procedure for each of the
RogueNet experiments, including our comparison to ResNet.
We trained for 200 epochs on the CIFAR-10 dataset using
SGD with a learning rate of 0.1, momentum set to 0.9,
weight decay set to 0.0005, and a batch size of 128. We
randomly re-compute the connectivity pattern of the skip
connections once per epoch according to the Watts Strogatz
recipe for generating random Watts Strogatz graphs. This
process is parameterized by a mean edge density, K, and a
rewiring probability, β, which were fixed to be K = 4 and
β = 0.08. K was found empirically, and β was estimated
based on the value of K by generating random graphs with
various values of β and choosing the β yielding the greatest
difference in the normalized average clustering coefficient
and the average path length, which are properties of small
world networks. An example result of this computation can
be seen in Figure 1

Table 2. Performance comparison on CIFAR-10.

Architecture (K = 4 and
β = 0.08 for RogueNet34) Test accuracy

ResNet34 88.000%
RogueNet34 (highway layer,
no shuffling) 88.510%
RogueNet34 (frozen highway
layer, no shuffling) 88.402%
RogueNet34 (pre-activations,
highway layer, no shuffling) 88.610%
RogueNet34 (pre-activations,
highway layer, epoch-wise shuffling) 89.410%

2.3. RogueNet results

In our RogueNet experiments, we explored various configu-
rations of using pre-activations, freezing the highway layer,
and shuffling the random skip connections. We compare
our top performing configurations with ResNet34 using the
same training procedure on CIFAR-10. We find that our best
configuration involves using pre-activations, using trainable
parameters in the gating mechanisms, and shuffling the skip
connections once per epoch. This and the results of the rest
of the configurations can be found in Table 2. This config-
uration achieves a test accuracy on CIFAR-10 of 89.410%,
where ResNet34 achieves a test accuracy of 88.000%.

3. Node model-2: RamanujanNet and
C.ElegansNet

3.1. RamanujanNet

We propose an architecture which leverages the spectral
properties of the connectivity pattern in the graph, based
on the RandWire architecture proposed by Xie et al. (Xie
et al., 2019). In their work, they propose an architecture
composed of three randomly connected graph modules, each
with random connections between nodes consisting of a
single convolutional layer. In their work, they propose the
use of Watts Strogatz, Erdos Renyi, and Barabasi Albert
graphs, where a different random graph is used for each of
the three modules. We propose the use of expander graphs
where the same graph is replicated across the three modules.
We experiment with expander graphs with various spectral
gaps generated by sampling random K-regular graphs and
computing the spectral gap. In our experiments, each graph
consists of 36 nodes and 64 edges.

3.2. Training procedure for RamaujanNet

We train the RamaujanNet architecture using 9 different
graph topologies with various spectral gaps for 1 epoch
each on MNIST and ImageNette using the Adam optimizer
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with a learning rate of 0.001 (Kingma & Ba, 2014).

3.3. RamaujanNet results

We evaluated the first epoch accuracy across randomly sam-
pled K-regular graphs with various spectral gaps. We discov-
ered that the first epoch accuracy was positively correlated
with spectral gap across the MNIST and Imagenette datasets
(fas). The results for these can be found in Figure 2. Here,
we show that the Pearson correlation between first epoch ac-
curacy and spectral gap on MNIST is 0.55, and the Pearson
correlation on the Imagenette dataset is 0.65.

Figure 2. First epoch accuracy by spectral gap on MNIST and
Imagenette.

3.4. C.ElegansNet

We propose another architecture which is also based on
RandWire, but this time using only a single graph based
module instead of three such consecutive modules as de-
scribed by Xie et al. (Xie et al., 2019). In this architecture,
we choose our participant graph topology to be a small world
network found in nature, namely the neuronal network of
C.Elegans. In this series of experiments, we trained a neural
network using this architecture on MNIST, KMNIST, and
Fashion MNIST. An additional experiment was conducted
in which we froze every parameter including the final fully
connected softmax layer except those corresponding to edge
weights in the C.Elegans small world network, and tracked
the evolution of small world propensity of the graph over
training.

3.5. Training procedure for C.ElegansNet

We train the C.ElegansNet architecture with 10 random ini-
tializations for 2 epochs each on MNIST, KMNIST, and
Fashion MNIST using the Adam optimizer with a learning
rate of 0.001 (Kingma & Ba, 2014). For our experiment
in which we froze all other parameters except for the net-
work edge weights, we trained on MNIST for 20 epochs.
Additionally, we tracked the small world propensity of the
C.Elegans graph with the learned edge weights over training.
Before computing the small world propensity, we standard-
ized the neural network parameters and applied the sigmoid
activation function to ensure positivity while transforming
the parameters in a monotonic way.

3.6. C.ElegansNet results

We discovered that the C.ElegansNet architecture was able
to consistently achieve competitive results on MNIST, KM-
NIST, and Fashion MNIST. Figure 4 shows the distribu-
tion of our results compiled from 10 training trials on each
dataset. The mean test accuracy on MNIST was 99%, while
we achieved 93% on KMNIST, and 90% on Fashion MNIST.

Additionally, upon freezing all parameters traditionally
associated with deep neural networks leaving the edge
weights as the only trainable parameters, we found that
the C.ElegansNet architecture achieved 55.7% accuracy on
MNIST. The loss and accuracy curves for this experiment
can be seen in Figure 5. For this experiment we also tracked
the small world propensity of the C.Elegans graph with the
learned edge weights over training and found that it does
not significantly change throughout training.

4. Conclusion and future work
We have demonstrated three distinct approaches to apply-
ing work from network neurosciences and connectomics to
deep learning. Our experiments show improvements over
ResNet by the inclusion of skip connections which follow a
connectivity pattern with small world properties, a possible
connection between early training performance and spectral
gap when using expander graphs as the participant graph
topology with the node model proposed by (Xie et al., 2019),
and the trainability of a DNN based on the neuronal network
of C.Elegans with and without freezing the parameters of
the convolutional and fully connected layers.

In future work, we will examine the impact of other spec-
tral properties of the graph topologies used both in the ar-
chitectures we proposed and in the RandWire architecture
proposed by (Xie et al., 2019). Additionally, we will ex-
plore parameter efficient connectivity patterns which could
achieve similar performance to related networks with more
parameters.
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Figure 5. Performance of C.ElegansNet with all parameters frozen except the C.Elegans graph edge weights.
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Figure 6. Examples of random small world skip connections using a base architecture of ResNet34.
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Figure 7. High level architecture of C.ElegansNet.
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Figure 8. Loss and accuracy curves for C.ElegansNet with no parameter freezing (Top to bottom: MNIST, KMNIST, Fashion MNIST;
Left to right: Training loss, test loss, test accuracy).

Figure 9. Evolution of the small world propensity of the C.Elegans graph throughout training on MNIST with frozen non-edge weight
parameters.


